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Abstract. Suppose that a statistic S is asymptotically distributed as a distri-
bution function G(x) as some parameter ε → 0. We consider monotone trans-
formations of S in order to improve the asymptotic approximation. The trans-
formations proposed here preserve monotonicity and give transformed statis-
tics T (S) whose distribution function is coincident with G(x) up to the order
O(εr−1). It may be observed that the proposed transformations give a sig-
nificant improvement to approximations. Further, we shall also consider error
bounds for the remainder term of an asymptotic expansion for the distribution
of T (S). Finally, some applications of the findings are demonstrated for some
test statistics.
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§1. Introduction

In statistical inference it is basic to obtain the sampling distribution of a
statistic. However, we often encounter the situation where the exact distribu-
tion cannot be obtained in a closed form, or even if it is obtained, the exact
distribution is of no use because of its complexity. To overcome this situation,
various approximations of the quantiles as well as the distribution function
have been studied. The one to which we restrict attention is that of using
asymptotic approximations, especially asymptotic expansions.

Let F (x) be the distribution function of a statistic S depending on some
parameter ε, not necessary the inverse of a sample size. In this paper, we
consider a statistic S whose limiting distribution is G(x) as ε→ 0 and suppose
that a statistic S has an asymptotic expansion

(1.1) F (x) ≡ P(S ≤ x) = G(x) + εh(x)g(x) +O(ε2),
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where g(x) is the density function of G(x), h(x) is a polynomial of degree
k and limx→∞ h(x)g(x) = 0. The asymptotic expansion (1.1) is called an
Edgeworth type expansion. When G(x) is the Standard Normal distribution
N(0, 1), the formula (1.1), with ε = n−1/2 where n is the sample size, is termed
an Edgeworth expansion. One may refer to Hall (1992a) and its references. In
the case that G(x) is a chi-squared distribution χ2

f with f degrees of freedom,
some examples of the statistic S with ε = n−1 are as follows: For k = 1,
the likelihood ratio test statistic (see Hayakawa (1977)); for k = 2, Lawley-
Hotelling trace criterion and Bartlett-Nanda-Pillai trace criterion, which are
test statistics for multivariate linear hypothesis under normality (see Anderson
(1984) and Siotani, Hayakawa and Fujikoshi (1985)); for k = 3, the score
test statistic (see Harris (1985)), Hotelling’s T 2-statistic under nonnormality
(see Kano (1995) and Fujikoshi (1997b)) and test statistics for multivariate
linear hypothesis under nonnormality (see Wakaki, Yanagihara and Fujikoshi
(2002)).

In order to obtain an approximated quantile of statistic S, we consider a
monotone function T = T (S) satisfying

(1.2) P(T ≤ x) = G(x) +O(ε2).

For such a monotone function T , it holds that

P(S ≤ b(uα)) = P(T (S) ≤ uα) = 1 − α+O(ε2),

where uα is the upper α point of G(x) and b(·) is the inverse function of T .
We shall propose methods to use b(uα) as an approximated upper α point of
S.

The transformation T = T (S) satisfying property (1.2) is called the Bartlett
correction or a Bartlett type correction and it has been investigated by many
researchers in the case that the limiting distribution is χ2

f (e.g., Cordeiro and
Ferrari (1991), Kakizawa (1996), Fujikoshi (1997a), Fujisawa (1997), Cordeiro
and Ferrari (1998), Cordeiro, Ferrari and Cysneiros (1998), Fujikoshi (2000),
Aoshima, Enoki and Ito (2003), and Enoki and Aoshima (2004)). In the case
that the limiting distribution is N(0, 1), such transformations were investi-
gated by Hall (1992b) and Fujioka and Maesono (2000), among others. In this
paper, we shall consider new transformations given by a different approach
from others. Here, the assumption that the limiting distribution of S is N(0, 1)
or χ2

f is not necessary. It may be observed that new transformations, proposed
in this paper, give a significant improvement to approximations. Further, we
shall also consider error bounds for the remainder term in (1.2) in order to
obtain a positive constant c such that

(1.3) |P(T ≤ x) −G(x)| ≤ ε2c.
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These findings would lead a broad application with a wide class of statistics.
This paper is organized as in the following way. In Section 2, we propose

new monotone transformations T = T (S), satisfying property (1.2), in a dif-
ferent approach from others. In Section 3, we give a method for obtaining such
transformations from the moments of a statistic S when the limiting distribu-
tion of S is a chi-squared distribution. In Section 4, a uniform or non-uniform
error bound for the remainder term in (1.2) is provided for accuracy of im-
proved asymptotic approximations. Finally, in Section 5, some applications of
the findings are demonstrated for some test statistics.

§2. Transformations with improved asymptotic approximations

For a statistic S whose limiting distribution is G(x), we assume that the
distribution function can be expanded as in (1.1). Then, we consider a mono-
tone transformation T = T (S) based on the Bartlett correction or a Bartlett
type correction. That is, we consider a monotone function T = T (S) satisfying
property (1.2). We can easily get the following lemma that is a clue to find a
desired function T = T (S).

Lemma 2.1. Suppose that a statistic S has an asymptotic expansion (1.1). If
the monotone transformation T = T (S) can be expanded as

(2.1) T = S + εh(S) +Op(ε2),

then property (1.2) is satisfied.

In the case that the limiting distribution is χ2
f , some monotone transfor-

mations that hold (2.1) have been proposed in many articles (e.g., Fujikoshi
(2000) for k = 2, Cordeiro, Ferrari and Cysneiros (1998) and Aoshima, Enoki
and Ito (2003) for k = 3, and Kakizawa (1996) and Enoki and Aoshima (2004)
for a general k). In the case that the limiting distribution is N(0, 1), such
transformations were given by Hall (1992b) and Fujioka and Maesono (2000).
We, however, consider new transformations that have not only (2.1) and the
monotoneity but also a theoretical background described below for a gen-
eral setup in (1.1) where the limiting distribution of S is not always assumed
N(0, 1) or χ2

f .
Let xα and uα be the upper α points of F and G, respectively. Then, we

note that

(2.2) xα = F−1(G(uα)).

Now we define that
T ∗ = G−1(F (S)).
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From (2.2), since it follows for all α ∈ (0, 1) that

P(T ∗ ≤ uα) = P(S ≤ F−1(G(uα)))
= P(S ≤ xα)
= 1 − α,

we consider T ∗ as an exact transformation to a limiting distribution G. If
F (x) is completely known, T ∗ is available. As far as F (x) is available in a
form (1.1), we have to replace F (x) with

(2.3) F̃ (x) = G(x) + εh(x)g(x).

However, F̃ (x) does not hold the monotoneity. Now, we modify F̃ (x) so as
to hold the monotoneity and construct a transformation with its modified
function. Though Yanagihara and Tonda (2003) proposed such a modification
of F̃ (x) in the case that the limiting distribution is χ2

f , their idea can be
extended to the general case at hand as follows:

(2.4) F̂ (x) = d−1

{
F̃ (x) +

ε2

4

∫ x

−∞
g(t){a(t)}2dt

}
,

where

d = lim
x→∞

{
F̃ (x) +

ε2

4

∫ x

−∞
g(t){a(t)}2dt

}
,(2.5)

a(x) =
1

g(x)

(
d

dx
h(x)g(x)

)
.(2.6)

Then, F̂ (x) is monotone and limx→∞ F̂ (x) = 1. With a monotone function
F̂ (x), we propose a new transformation:

(2.7) T1 = G−1(F̂ (S)).

Theorem 2.1. Suppose that a statistic S can be expanded as in (1.1). Then,
for a monotone transformation T1 = T1(S) defined by (2.7) with (2.4), it holds
that

P(T1 ≤ x) = G(x) +O(ε2).

Proof. As for a function F̃ (x) defined by (2.3), note that d = 1 + O(ε2) in
(2.5). Hence, we have that F̂ (x) = F (x) + O(ε2). Therefore, since T1 can be
expanded as in (2.1), we get the desired result from Lemma 2.1.

Next, we consider another adjustment to F̃ (x) under the assumption that
a(x) given by (2.6) is a polynomial of a certain degree. That assumption is
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correct at least for the case that the limiting distribution of S is a normal
distribution or a chi-squared distribution:

(2.8) F∗(x) =
∫ x

−∞
g(t) exp

(
εa(t) − ε2p(t)

)
dt,

where a(x) is given by (2.6) and p(x) is a polynomial such that deg[a(x)]+1 ≤
deg[p(x)] < ∞ and p(x) → +∞ as x → −∞ or ∞. Then, F∗(x) is monotone
and F∗(x) = F (x) + O(ε2). With a monotone function F∗(x), we propose
another new transformation:

(2.9) T2 = G−1(F∗(S)).

Theorem 2.2. Suppose that a statistic S can be expanded as in (1.1). Then,
for a monotone transformation T2 = T2(S) defined by (2.9) with (2.8), it holds
that

P(T2 ≤ x) = G(x) +O(ε2).

Proof. The claim is proved similarly to Theorem 2.1.

We can see an advantage of T2 in the following case. Suppose that a statistic
S can be expanded as

(2.10) F (x) = P(S ≤ x) = G(x)+εh1(x)g(x)+· · ·+εr−1hr−1(x)g(x)+O(εr),

where hi(x) is a polynomial of degree ki. The form (1.1) is the case that r = 2.
Then, we consider a monotone transformation T = T (S) satisfying

(2.11) P(T ≤ x) = G(x) +O(εr).

For such a monotone function T , it holds that

P(S ≤ b(uα)) = P(T (S) ≤ uα) = 1 − α+O(εr),

where uα is the upper α point of G and b(·) is the inverse function of T . In the
case that the limiting distribution is χ2

f , Kakizawa (1996) proposed a trans-
formation satisfying (2.11). However, his method requires a quite complex
calculation to come to a transformation. Now, let us apply transformation T2

to this case as follows: Let

ai(x) =
1

g(x)

(
d

dx
hi(x)g(x)

)
.

Here, we assume that ai(x) is a polynomial of a certain degree. Under mild
additional assumptions on the smoothness of the underlying distribution, we
have that

F ′(x) = g(x)
{
1 + εa1(x) + ε2a2(x) + · · · + εr−1ar−1(x) +O(εr)

}
.
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Define F∗(x) by

F∗(x) =
∫ x

−∞
g(t) exp

{
εa(t) − ε2

2
{a(t)}2 + · · ·(2.12)

· · · + (−1)rεr−1

r − 1
{a(t)}r−1 − εrp(t)

}
dt,

where
a(x) = a1(x) + εa2(x) + · · · + εr−2ar−1(x),

and p(x) is a polynomial such that deg[{a(x)}r−1] + 1 ≤ deg[p(x)] < ∞ and
p(x) → +∞ as x → −∞ or ∞. Then, F∗(x) is monotone. By using the
relation exp(x−x2/2+ · · ·+(−1)rxr−1/(r−1)) = 1+x+O(xr), we have that
F∗(x) = F (x) +O(εr).

Theorem 2.3. Suppose that a statistic S can be expanded as in (2.10). Then,
for a monotone transformation T2 = T2(S) defined by (2.9) with (2.12), it holds
that

P(T2 ≤ x) = G(x) +O(εr).

In order to prove Theorem 2.3, we give the following lemma. When the
limiting distribution is χ2

f , it was given by Kakizawa (1997).

Lemma 2.2. Suppose that a statistic S has an asymptotic expansion (2.10).
Let b(x) be the inverse function of the transformation T = T (S) such that
b(x) = x + O(ε). If and only if b(x) is coincident with the Cornish-Fisher
type expansion for F−1(G(x)) up to the order O(εr−1), then property (2.11) is
satisfied.

Proof. Let b̃(x) be the one formed by the terms up to the order O(εr−1) in
the Cornish-Fisher type expansion for F−1(G(x)). Then,

F (b̃(x)) = F
(
F−1(G(x)) − (F−1(G(x)) − b̃(x))

)
(2.13)

= F
(
F−1(G(x))

)− F ′ (F−1(G(x))
)
(F−1(G(x)) − b̃(x)) + · · ·

= G(x) +O(εr).

On the other hand,

F (b(x)) = F (b̃(x)) + F ′(b̃(x))(b(x) − b̃(x))(2.14)

+
1
2
F ′′(b̃(x))(b(x) − b̃(x))2 + · · · .
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It is easy to see that b̃(x) = x + O(ε). Noting that b(x) = x + O(ε), we get
b(x)− b̃(x) = O(ε). In the case that F (b(x)) = G(x) +O(εr), from (2.13) and
(2.14), we obtain b(x) − b̃(x) = O(εr).

Proof of Theorem 2.3. Since F∗(x) = F (x) + O(εr), we get F∗(F−1(x)) =
x+O(εr). On the other hand,

x = F∗(F−1(x) + F−1
∗ (x) − F−1(x))

= F∗(F−1(x)) + F ′
∗(ξ)(F

−1
∗ (x) − F−1(x)),

where ξ = F−1(x) + θ(F−1∗ (x) − F−1(x)) with 0 ≤ θ ≤ 1. From these facts
and that F ′∗(x) = F ′(x) +O(εr), we get F−1∗ (x) = F−1(x) +O(εr). Therefore,
Theorem 2.3 is proved by Lemma 2.2.

Remark 2.1. The integrability of F∗(x) in (2.12) is proved as follows:
When x < 0 and m is even, we have that

exp(x) ≤ 1 + x+
1
2!
x2 +

1
3!
x3 + · · · + 1

m!
xm.

Let

q(x) = εa(x) − ε2

2
{a(x)}2 + · · · + (−1)rεr−1

r − 1
{a(x)}r−1 − εrp(x).

From the assumption of p(x), there exists a positive number x0 such that
q(x) < 0 for any x satisfying |x| > x0. Therefore, we have for any x satisfying
|x| > x0 that

exp{q(x)} ≤ 1 + q(x) +
1
2!
{q(x)}2 +

1
3!
{q(x)}3 + · · · + 1

m!
{q(x)}m(≡ Q(x)).

By using this fact,

F∗(x) =
∫ x

−∞
g(t) exp{q(t)}dt

≤
∫ min{x,−x0}

−∞
g(t)Q(t)dt+

∫ min{x,x0}

min{x,−x0}
g(t) exp{q(t)}dt

+
∫ x

min{x,x0}
g(t)Q(t)dt

<∞.

In addition, by using the relation exp(x− x2/2 + · · · + (−1)rxr−1/(r − 1)) =
1 + x+O(xr), we have for even number m ≥ r that

Q(x) = 1 + εa(x) + εrR(x),

where R(x) is a polynomial of finite degree and that R(x) = O(1).

Remark 2.2. In (2.12), we assume that ai(x) is a polynomial. It should be
noted that this assumption is not necessary when F∗(x) in (2.12) is integrable.
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§3. The method of moments

In Section 2, we assume that hi(x)’s in (2.10) are available in an explicit
form. However, we often encounter the situation that it is difficult to access to
the polynomials hi(x)’s, even though its existence is assured. Such a situation
appears in treating the distribution of a multivariate test statistic under non-
normality. In order to overcome this difficulty, we give a method for obtaining
the transformations, proposed in Section 2, from the moments of a statistic
S. In order to illustrate the idea explicitly, we focus on a case that the lim-
iting distribution is a chi-squared distribution. The method used here is an
extension of Cordeiro and Ferrari (1998). In general, the problem of deriving
moments is more tractable than the one of deriving the asymptotic expan-
sion (2.10). It would lead a broad application with a wide class of statistics,
especially under nonnormality, where their asymptotic expansions are quite
difficult to access.

Suppose that a nonnegative statistic S can be expanded as

F (x) = P(S ≤ x)(3.1)

= Gf (x) +
1
n
h1(x)gf (x) + · · · + 1

nr−1
hr−1(x)gf (x) +O(n−r),

where hi(x) is a polynomial of degree i × k without constant terms. Here
Gf (·) and gf (·) denote, respectively, the cumulative distribution and density
functions of a central chi-squared random variable with f degrees of freedom,
χ2

f . If x and u are corresponding quantiles of F and Gf respectively, then

F (x) = Gf (u)

and it is required to solve this equation for x in terms of u.

Lemma 3.1. Suppose that a nonnegative statistic S has an asymptotic expan-
sion (3.1). Let x and u be corresponding quantiles of F and Gf respectively.
Then, x and u satisfy the following relation:

(3.2) x = u+
1
n

k∑
j=1

β1,ju
j+

1
n2

2k∑
j=1

β2,ju
j+· · ·+ 1

nr−1

(r−1)k∑
j=1

βr−1,ju
j+O(n−r),

where βi,j’s are constants.

Proof. Let

Du ≡ d/du, ψ(u) = −g′f (u)/gf (u) =
1
2
−
(
f

2
− 1
)

1
u
,

zn(x) =
1
n
h1(x) +

1
n2
h1(x) + · · · + 1

nr−1
hr−1(x).
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Then, from Hill and Davis (1968), we have that

(3.3) x = u−
r−1∑
i=1

D(i)(zn(u))i/i! +O(n−r),

where D(1) denotes the identity operator and

D(i) = (ψ(u) −Du)(2ψ(u) −Du) · · · ((i− 1)ψ(u) −Du), i = 2, 3, · · · , r − 1.

In (3.3), the term of order n−i, qi(u) (say), can be expressed as

(3.4) qi(u) = −
i∑

j=1

∑
Mi(j)

D(j)

j!
j!

m1!m2! · · ·mi!
{h1(u)}m1{h2(u)}m2 · · · {hi(u)}mi ,

where Mi(j) = {(m1,m2, · · · ,mi) ∈ Zi
+;m1 + 2m2 + · · ·+ imi = i,m1 +m2 +

· · ·+mi = j}. Since hi(u) is a polynomial of u and deg{hi(u)} = ik, we obtain
that

deg{h1(u)}m1{h2(u)}m2 · · · {hi(u)}mi = (m1 + 2m2 + · · · + imi)k = ik.

On the other hand, since hi(u) does not have constant terms, {h1(u)}m1

{h2(u)}m2 · · · {hi(u)}mi is a polynomial of lowest degree i. Therefore, we
can see that qi(u) is a polynomial of degree ik without constant terms.

Next, we give a method for obtaining the quantities βi,j without using (3.1).
It is assumed that the quantity k that appears in (3.1) is known. For instance,
if the statistic of interest is a likelihood ratio statistic (a score statistic) in
particular, we know that k = 1 (k = 3). There are situations, however, that
the quantity k is not known. Such situations will be addressed at the end of
this section.

Let

E[Si] = μ′i
(
1 +

ci,1
n

+
ci,2
n2

+ · · · + ci,r−1

nr−1

)
+O(n−r), (i = 1, 2, · · · ),

where ci,j ’s are constants and μ′i = E[(χ2
f )i] = f(f + 2) · · · (f + 2(i − 1)).

Cordeiro and Ferrari (1998) expressed quantities β1,1, β1,2, · · · , β1,k with c1,1,
c2,1, · · · , ck,1. Here, we consider the case of higher order.

Theorem 3.1. Suppose that x and u satisfy the relation (3.2). Let βi =
(βi,1, βi,2, · · · , βi,ik)′ and cj = (c1,j , c2,j , · · · , cjk,j)′. Then, for i = 1, 2, · · · , r−
1, βi can be expressed with c1, c2, · · · , ci.
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Proof. From (3.2), we have that

S = χ2
f +

1
n

k∑
j=1

β1,j(χ2
f )j +

1
n2

2k∑
j=1

β2,j(χ2
f )j + · · ·

· · · + 1
nr−1

(r−1)k∑
j=1

βr−1,j(χ2
f )j +Op(n−r).

From this, we have that

Sm =
∑

m0+m1+···+mr−1=m

m!
m0!m1! · · ·mr−1!

(χ2
f )m0

⎧⎨
⎩ 1
n

k∑
j=1

β1,j(χ2
f )j

⎫⎬
⎭

m1

· · ·

· · ·
⎧⎨
⎩ 1
nr−1

(r−1)k∑
j=1

βr−1,j(χ2
f )j

⎫⎬
⎭

mr−1

+Op(n−r)

= (χ2
f )m +

r−1∑
i=1

∑
M ′

i

1
ni

m!
m0!m1! · · ·mi!

(χ2
f )m0

⎧⎨
⎩

k∑
j=1

β1,j(χ2
f )j

⎫⎬
⎭

m1

· · ·

· · ·
⎧⎨
⎩

ik∑
j=1

βi,j(χ2
f )j

⎫⎬
⎭

mi

+Op(n−r),

where M ′
i = {(m0,m1, · · · ,mi) ∈ Zi+1

+ ;m1 + 2m2 + · · · + imi = i,m0 +m1 +
· · · +mi = m}. Therefore, we obtain that

cm,i =
1
μ′m

∑
M ′

i

m!
m0!m1! · · ·mi!

E

⎡
⎣(χ2

f )m0

⎧⎨
⎩

k∑
j=1

β1,j(χ2
f )j

⎫⎬
⎭

m1

· · ·

· · ·
⎧⎨
⎩

ik∑
j=1

βi,j(χ2
f )j

⎫⎬
⎭

mi
⎤
⎦

=
m

μ′m
E

⎡
⎣(χ2

f )m−1

⎧⎨
⎩

ik∑
j=1

βi,j(χ2
f )j

⎫⎬
⎭
⎤
⎦+Bm,i(f,β1,β2, · · · ,βi−1),

where Bm,i(f,β1,β2, · · · ,βi−1) is an appropriate function depending on f, β1,
β2, · · · , βi−1. From this, it holds that

ik∑
j=1

βi,jμ
′
m+j−1 =

μ′m
m

{
cm,i −Bm,i(f,β1,β2, · · · ,βi−1)

}
(3.5)

=
μ′m
m
c̃m,i (say).
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Since μ′m+j−1 = f(f + 2) · · · (f + 2(m + j − 2)), we can write μ′m+j−1 =
μ′m(f + 2m)(j−1), where (s)(t) = s(s+ 2) · · · (s+ 2(t− 1)) for t = 1, 2, · · · and
(s)(0) = 1. Then, it follows that the system of equations (3.5) can be written
as

ik∑
j=1

βi,j(f + 2m)(j−1) =
c̃m,i

m
, m = 1, 2, · · · , ik

or in matrix form as

(3.6) P iβi = c̃i,

where P i = (pi′j′) with pi′j′ = (f + 2i′)(j′−1), i′, j′ = 1, 2, · · · , ik and c̃i =(
c̃1,i, 2−1c̃2,i, · · · , (ik)−1c̃ik,i

)′. Similarly to a method by Cordeiro and Ferrari
(1998), it is proved that the system of linear equations in (3.6) has a unique
solution. Since, for i = 1, the theorem has been proved by Cordeiro and Ferrari
(1998), the theorem is proved for all i = 1, 2, · · · , r − 1 by using induction in
(3.6).

Theorem 3.2. Suppose that a nonnegative statistic S has an asymptotic ex-
pansion (3.1). Let x and u be corresponding quantiles of F and Gf respectively.
Then, for i = 1, 2, · · · , r − 1, hi(x) can be expressed with c1, c2, · · · , ci.

Proof. From Lemma 3.1, x and u satisfy the relation (3.2). Then, from
Theorem 3.1, for i = 1, 2, · · · , r − 1, βi can be expressed with c1, c2, · · · , ci.
For qi(u) defined in (3.4), it follows that

ik∑
j=1

βi,ju
j = qi(u),

and we can write it as

qi(u) = −hi(u) +Hi(h1, h2, · · · , hi−1)

where Hi(h1, h2, · · · , hi−1) is an appropriate function depending on h1(u),
h2(u), · · · , hi−1(u). For i = 1, the theorem has been proved by Cordeiro
and Ferrari (1998). Therefore, the theorem is proved for all i = 1, 2, · · · , r− 1
by using induction.

As mentioned before, the results described above are proved on the assump-
tion that k is known. When this is not the case, one may suppose a positive
integer, k0 say, instead of unknown k. Let us write equation (3.6) for k and
k0 that

P ikβik = c̃ik,

P ik0β̂ik0
= ˆ̃cik0 ,
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respectively. Here, indices express the size of matrix or vector. When k0 ≤ k,
it has that

P ik =
(

P ik0 Q12

Q21 Q22

)
,

where Q�’s are appropriate matrices. Note that β̂ik0
= (βi,1, βi,2, · · · , βi,ik0)

′

for i = 1. When k0 > k, it has that

P ik0

(
βik

0

)
= c̃ik0 ,

where 0 is a zero vector with size i(k0 − k). Note that

β̂ik0
=
(

βik

0

)

for i = 1. By using induction for i = 1, 2, · · · , r − 1, we can get the same
results as in Theorems 3.1 and 3.2.

§4. Accuracy of improved asymptotic approximations

Let F (x) be the distribution function of a statistic S depending on some
parameter ε, not necessary the inverse of a sample size. A typical form of the
asymptotic expansion of F (x) around the limiting distribution G(x) of F (x)
as ε→ 0 is

(4.1) F (x) = P(S ≤ x) = G(x) + g(x)
r−1∑
j=1

hj(x)εj +Rr(x),

where g(x) is the density function ofG(x) and hj(x)’s are suitable polynomials.
When F (x) is approximated by a function of the form

F̃r(x) = G(x) + g(x)
r−1∑
j=1

hj(x)εj ,

it is well known that the error Rr(x) = F (x) − F̃r(x) satisfies

Rr(x) = O(εr)

uniformly in x under suitable regularity conditions (see, e.g., Bhattacharya
and Ghosh (1978)). This means that there exists a positive constant cr such
that for small ε

(4.2) |Rr(x)| ≤ εrcr.
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Such cr and ε have been obtained on some special statistics (see, e.g.,
Fujikoshi (1993), Shimizu and Fujikoshi (1997), Fujikoshi,Ulyanov and Shimizu
(2005a,b) and Fujikoshi and Ulyanov (2006)). In this section, our aim is to
obtain an error bound for a monotone transformation T = T (S) satisfying
property (2.11).

From Section 2, as for an approximation to F (x), let us start with a mono-
tone function F̂ (x) expanded as

(4.3) F̂ (x) = F̃r(x) +R∗
r(x),

where R∗
r(x) = O(εr). For the remainder term R∗

r(x) in (4.3), we assume that
there exists a positive constant c∗r such that

(4.4) |R∗
r(x)| ≤ εrc∗r.

With a monotone function F̂ (x), we consider a monotone transformation T =
T (S) defined by

(4.5) T = G−1(F̂ (S)),

which satisfies property (2.11).

Theorem 4.1. If P(S ≤ x) can be written in the form (4.1) with (4.2), then

(4.6) |P(T (S) ≤ x) −G(x)| ≤ εr c̃r,

where T is a monotone transformation defined by (4.5) and c̃r is a positive
constant depending on cr in (4.2) and c∗r in (4.4).

Proof. Let b(x) be the inverse function to T . Then, b(x) can be written as

(4.7) b(x) = F̂−1(G(x)).

From (4.1), (4.2), (4.4) and (4.7), we get

|P(T (S) ≤ x) −G(x)| = |P(S ≤ b(x)) −G(x)| = |F (b(x)) − F̂ (b(x))|
= |Rr(b(x)) −R∗

r(b(x))|
≤ εr(cr + c∗r).

By defining
c̃r = cr + c∗r,

we obtain (4.6).



110 H. ENOKI AND M. AOSHIMA

Remark 4.1. It should be noted that a monotone function F∗(x) in (2.12)
satisfies (4.3). In view of Remark 2.1, by noting that

F̃r(x) =
∫ x

−∞
g(t)(1 + εa(t))dt,

F∗(x) in (2.12) also satisfies (4.4).

Remark 4.2. The case that the error bound in (4.2) or (4.4) is non-uniform
can be treated as well.

Remark 4.3. When r = 2 and the limiting distribution of S is a chi-squared
distribution in (4.1), Enoki and Aoshima (2004) gave sharper error bounds in
a way different from here. They applied an improved chi-squared approxima-
tion to the asymptotic distribution given by Siotani (1956) and examined its
accuracy along with its uniform or non-uniform error bound.

§5. Applications

Here, we consider transformations (2.7) and (2.9) for some test statistics
and examine their accuracy of the approximation to the true percentile point
xα of S. We conducted simulation experiments as follows: For parameters
given in advance, the approximate percentile point was calculated for each
monotone transformation. By using these percentile points, we conducted the
Monte Carlo simulation with 100,000 (= R, say) independent trials for a test
statistic. Let sr (r = 1, ..., R) be an observed value of S and pr = 1 (or
0) if sr is (or is not) larger than the approximate percentile point. On the
other hand, let s[1] ≤ s[2] ≤ · · · ≤ s[R] be the ordered values of sr and let
us define s[(1−α)R] as an observed value of xα. We briefly write it xα. Let
p̄ = 100

∑R
r=1 pr/R which estimates the test size (100α%) with its estimated

standard error s(p̄) = 100
√

(p̄/100)(1 − p̄/100)/R. In addition, with respect
to transformations (2.7) and (2.9), we conducted numerical integrations with
Mathematica.

Example 5.1 Let S = (n − q)s2h/s
2
e be a test statistic for testing the

equality of means of q nonnormal populations Πi (i = 1, ..., q) with common
variance. Here, s2h and s2e are the sums of squares due to the hypothesis
and the error, respectively, based on the sample of the size ni from Πi. Let
ρi =

√
ni/n, where n is the total sample size. Assume that ρi = O(1) as

nj ’s tend to infinity. Let κ3 and κ4 be the third and the fourth cumulants
of the standardized variate. Then, under a general condition, an asymptotic
expansion for the null distribution of S was given by Fujikoshi, Ohmae and
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Yanagihara (1999) in the form (1.1) with G = χ2
f , ε = n−1, k = 3, f = q − 1,

and h(x) given by

h(x) = −2
k∑

i=1

⎛
⎝ k∑

j=i

aj∏i−1
�=0(f + 2�)

xi

⎞
⎠ ,

a1 = −1
2
(q − 1)2 + 3d1κ

2
3 − 2d2κ4, a2 =

1
4
(q2 − 1) − 3d1κ

2
3 + d2κ4,

a3 = d1κ
2
3,

where

d1 =
5
24

⎛
⎝ q∑

j=1

n

nj
− q2

⎞
⎠+

1
12

(q−1)(q−2), d2 =
1
8

⎛
⎝ q∑

j=1

n

nj
− q2

⎞
⎠− 1

4
(q−1).

We examined performance of the proposed transformations under the fol-
lowing two nonnormal models:

(i) χ2 distribution with 4 degrees of freedom;
(ii) Gamma distribution with shape parameter 3 and scale parameter 1/3.

Table 5.1 gives the true percentile point xα and the approximate percentile
points tE(u), tAEI(u), tK(u), t1(u) and t2(u) for the case q = 3. Here, u de-
notes the upper 5% point of χ2

2 and tE(u) is computed from the Cornish-Fisher
type expansion up to the order O(n−1). On the other hand, tAEI(u), tK(u),
t1(u) and t2(u) are computed from Aoshima, Enoki and Ito (2003), Kakizawa
(1996), (2.7) and (2.9), respectively. Since the Cornish-Fisher type expansion
and the others yield the same approximation up to the order O(n−1), the
transformations T aim to find an improvement of approximations to xα in the
terms of O(n−2).

Table 5.1 The percentile points when q = 3

Sample sizes Upper 5% points (χ2
2(0.05) = 5.9915)

n1 n2 n3 xα tE(u) tAEI(u) tK(u) t1(u) t2(u)
5 5 5 7.455 6.823 7.012 6.986 6.924 7.566

(i) 10 10 10 6.501 6.407 6.449 6.443 6.433 6.528
3 6 6 7.521 6.815 7.116 7.033 7.025 7.411
5 5 10 6.916 6.609 6.759 6.720 6.723 6.884
5 5 5 7.367 6.945 7.177 7.231 7.143 7.378

(ii) 10 10 10 6.375 6.468 6.519 6.528 6.517 6.545
3 6 6 7.460 6.939 7.228 7.278 7.226 7.330
5 5 10 6.918 6.702 6.849 6.870 6.859 6.887

100,000 replications
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Table 5.2 The actual test sizes when q = 3

Sample sizes Nominal 5% test
n1 n2 n3 α1 α2 α3 α4 α5 α6

5 5 5 8.077 6.084 5.736 5.782 5.895 4.798
0.086 0.076 0.074 0.074 0.074 0.068

10 10 10 6.200 5.191 5.100 5.112 5.131 4.941
(i) 0.076 0.070 0.070 0.070 0.070 0.069

3 6 6 8.260 6.260 5.690 5.835 5.849 5.172
0.087 0.077 0.073 0.074 0.074 0.070

5 5 10 7.151 5.621 5.303 5.389 5.383 5.061
0.081 0.073 0.071 0.071 0.071 0.069

5 5 5 7.958 5.719 5.290 5.199 5.370 4.984
0.086 0.073 0.071 0.070 0.071 0.069

10 10 10 5.917 4.814 4.696 4.670 4.703 4.640
(ii) 0.075 0.068 0.067 0.067 0.067 0.067

3 6 6 8.119 5.921 5.379 5.290 5.381 5.196
0.086 0.075 0.071 0.071 0.071 0.070

5 5 10 7.067 5.426 5.144 5.100 5.124 5.067
0.081 0.072 0.070 0.070 0.070 0.069

100,000 replications

As for the actual test sizes, Table 5.2 gives values of p̄ (s(p̄)), on the first
(second) line in each cell, for each monotone transformation. Here, the actual
test sizes are defined by

α1 = P(T > u), α2 = P(T > tE(u)), α3 = P(T > tAEI(u)),
α4 = P(T > tK(u)), α5 = P(T > t1(u)), α6 = P(T > t2(u))

for the case that q = 3. For the transformation given by (2.9), we consider
the following case:

a(x) =
3∑

j=1

aj

{
xj∏j−1

�=0(f + 2�)
− 1

}
, p(x) =

{
2{a(x)}2 in (i)
−4

5a(x) + 8
5{a(x)}2 in (ii)

.

From Tables 5.1 and 5.2, we can see that the transformation given by (2.9)
gives a most significant improvement for the approximate percentile point
among the others. Note that transformation given by (2.9) is affected by the
function p(x). As for a choice of p(x), it is under investigation. Note that the
value of t1(u) is close to tAEI(u) or tK(u). It seems that transformation given
by (2.7) does not make a significant difference from the predecessors.
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Example 5.2 Let X1, . . . , Xn be independently and identically dis-
tributed as Np(μ,Σ). Let X = 1

n

∑n
j=1 Xj and S = 1

ν

∑n
j=1(Xj − X)(Xj −

X)′ where ν = n− 1 ≥ p. Then, Hotelling’s T 2-statistic is defined by

T 2 = n(X − μ)′S−1(X − μ).

The statistic is used for testing hypotheses about the mean vector μ or for
estimating confidence regions for the unknown μ. Let us put S = T 2. Then,
an asymptotic expansion for the distribution of S was given by Siotani (1971)
as follows:

F (x) ≡ P(S ≤ x) = Gp(x)+
1
ν

2∑
j=0

a1jGp+2j(x)+
1
ν2

4∑
j=0

a2jGp+2j(x)+O(ν−3),

where Gp+2j(·) is a distribution function of χ2
p+2j and

a10 = −p
2

4
, a11 = −p

2
, a12 =

1
4
p(p+ 2), a20 =

1
96
p(3p3 − 8p2 + 8),

a21 =
p3

8
, a22 = − 1

16
p(p+ 2)(p2 − 6), a23 = − 7

24
p(p+ 2)(p+ 4),

a24 =
1
32
p(p+ 2)(p+ 4)(p+ 6).

Let

a1(x) = a10 +
2∑

j=1

a1j
xj∏j−1

�=0(p+ 2�)
and a2(x) = a20 +

4∑
j=1

a2j
xj∏j−1

�=0(p+ 2�)
.

Let F̃i(x) be the one formed by the terms of F (x) up to the order O(n−i). We
examined performance of the proposed transformation given by (2.9) with the
following setup:

(1) a(x) = a1(x), p(x) =
1
2
{a(x)}2;

(2) a(x) = a1(x), p(x) =
1
2
{a(x)}2 − 1

3ν
{a(x)}3 +

1
4ν2

{a(x)}4;

(3) a(x) = a1(x) +
1
ν
a2(x), p(x) =

1
2
{a(x)}2;

(4) a(x) = a1(x) +
1
ν
a2(x), p(x) =

1
2
{a(x)}2 − 1

3ν
{a(x)}3 +

1
4ν2

{a(x)}4.

Under the setup (1), (2), (3) or (4), we note for F∗(x) defined by (2.8) that
F∗(x) = F̃1(x) + o(n−2), F∗(x) = F̃1(x) + o(n−4), F∗(x) = F̃2(x) + o(n−2) and
F∗(x) = F̃2(x) + o(n−4), respectively.
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Table 5.3 The percentile points when α = 0.05

p ν xα tE t1 t21 t22 t̃E t̃21 t̃22
2 20 7.4145 7.1885 7.5335 7.2151 7.1984 7.3134 7.4477 7.4325

0.95 0.9459 0.9518 0.9464 0.9461 0.9482 0.9506 0.9503
40 6.6423 6.5900 6.6743 6.5994 6.5985 6.6212 6.6450 6.6442

0.95 0.9489 0.9507 0.9491 0.9491 0.9496 0.9501 0.9501
60 6.4131 6.3905 6.4278 6.3954 6.3952 6.4044 6.4138 6.4137

0.95 0.9495 0.9503 0.9496 0.9496 0.9498 0.9500 0.9500
80 6.3033 6.2907 6.3116 6.2937 6.2937 6.2985 6.3036 6.3035

0.95 0.9497 0.9502 0.9498 0.9498 0.9499 0.9500 0.9500
100 6.2389 6.2309 6.2442 6.2329 6.2329 6.2357 6.2390 6.2390

0.95 0.9498 0.9501 0.9499 0.9499 0.9499 0.9500 0.9500
4 40 11.3559 11.0873 11.3218 11.0363 10.9901 11.2291 11.4130 11.3553

0.95 0.9457 0.9495 0.9449 0.9441 0.9480 0.9509 0.9500
60 10.6677 10.5541 10.6674 10.5251 10.5156 10.6171 10.6771 10.6674

0.95 0.9480 0.9500 0.9475 0.9474 0.9491 0.9500 0.9500
80 10.3499 10.2875 10.3534 10.2711 10.2680 10.3230 10.3530 10.3500

0.95 0.9489 0.9501 0.9486 0.9485 0.9495 0.9501 0.9500
100 10.1669 10.1276 10.1704 10.1173 10.1160 10.1503 10.1683 10.1670

0.95 0.9493 0.9501 0.9491 0.9491 0.9497 0.9500 0.9500

When α = 0.05, Table 5.3 gives the true percentile point xα, the approx-
imate percentile points tE , t1, t21, t22, t̃E , t̃21 and t̃22 together with the val-
ues of F (x) in each second line. Here, tE (t̃E) and t1 are computed from
the Cornish-Fisher type expansion up to the order O(n−1) (O(n−2)) and the
transformation given by (2.7), respectively. On the other hand, t21, t22, t̃21
and t̃22 are computed from the transformation given by (2.9) under the setups
(1), (2), (3) and (4), respectively. By using the fact {(ν − p + 1)/(νp)}T 2 is
distributed as the F -distribution with parameters (p, ν − p+ 1), we obtained
the exact value of xα and F (x) for each percentile point. When the term of
O(n−2) is obtained, we can observe that the transformations give a significant
improvement. Comparing t21 with t22, it seems that t22 does not always im-
prove t21. On the other hand, comparing t̃21 with t̃22, we can see an excellent
improvement in t̃22. From Theorem 4.1, the distance |F∗(x) − F̃ (x)| links to
c̃r in (4.6). The approximation might be improved by choosing p(x) such that
|F∗(x) − F̃ (x)| becomes small.

Next, we examine Theorem 4.1 numerically. We conducted simulation ex-
periments as follows: For parameters given in advance, error bounds for the
remainder term of type (4.2) was calculated. We referred to Fujikoshi (1993)
for a calculation of (4.2). In the case that error bounds are non-uniform, we
referred to Fujikoshi (1988, 1993) and obtained non-uniform bounds of type

c
1+x� with a constant c. Here, we set � = 2 in Example 5.3 and � = 1 in
Examples 5.4 and 5.5. By using these error bounds with some constants and
functions, we calculated error bounds of type (4.6). Tables 5.4, 5.6 and 5.8
present that values of the uniform bound (4.2) on the first line in each cell and
that values of the uniform bound (4.6) given by Theorem 4.1 with transforma-
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tion (2.9) ((2.7)) on the second (third) line in each cell. Tables 5.5, 5.7 and 5.9
give values of the non-uniform bound in the same arrangement as before. As
for non-uniform bounds, we consider a case x = uα, the upper α point of the
limiting distribution.

Example 5.3 We consider the case when S = Z/Y is a scale mixture
of standard normal variable Z with Y = (χ2

n/n)−1/2 where Z and Y are
independent. An asymptotic expansion for the distribution of S is given in
the form (4.1) with G = N(0, 1) (the Standard Normal distribution), ε = n−1

and h(x) given by

h(x) = −1
4
(x3 + x)

Then, a uniform bound for the remainder term of type (4.2), can be obtained
(see, e.g., Fujikoshi (1993) and Shimizu and Fujikoshi (1997)). For a uniform
bound of type (4.4), it can be obtained numerically. Let us apply Theorem 4.1
to this case. For the transformation given by (2.9), we consider the following
case:

a(x) =
1
4
(x4 − 2x2 − 1), p(x) =

1
2
{a(x)}2.

Further we consider non-uniform error bounds at x = uα, the upper α point of
Φ. A non-uniform bound for the remainder term of type (4.2) can be obtained
(see, e.g., Fujikoshi (1988, 1993) and Ulyanov, Fujikoshi and Shimizu (1999)).
For a non-uniform bound of type (4.4), it can be obtained numerically. The
results of numerical studies are summarized in Tables 5.4 and 5.5.

Table 5.4 Uniform error bounds

n = 10 20 30 40 50 70 100 150
0.70008 0.01601 0.00419 0.00187 0.00105 0.00047 0.00021 0.00009
0.70883 0.01820 0.00517 0.00242 0.00140 0.00065 0.00030 0.00012
0.70571 0.01727 0.00466 0.00209 0.00117 0.00051 0.00022 0.00009

Table 5.5 Non-uniform error bounds at x = uα

α\n 20 30 40 50 70 100 150
0.35490 0.03589 0.01050 0.00465 0.00159 0.00059 0.00021

0.05 0.35603 0.03639 0.01078 0.00483 0.00168 0.00063 0.00023
0.35616 0.03635 0.01072 0.00476 0.00163 0.00060 0.00022
0.20510 0.02074 0.00607 0.00268 0.00092 0.00034 0.00012

0.01 0.20631 0.02128 0.00637 0.00288 0.00102 0.00039 0.00014
0.20638 0.02121 0.00629 0.00280 0.00096 0.00035 0.00013
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Example 5.4 We consider the case when S = χ2
f/Y with Y = χ2

n/n where
χ2

f and Y are independent. An asymptotic expansion for the distribution of
S was given by Siotani (1956) in the form (4.1) with G = χ2

f , ε = n−1, k = 2,
and h(x) given by

h(x) = −2
k∑

i=1

⎛
⎝ k∑

j=i

aj∏i−1
�=0(f + 2�)

xi

⎞
⎠ ,

a1 = −1
2
f2, a2 =

1
4
f(f + 2).

Then, a uniform bound for the remainder term of type (4.2), can be obtained
(see, e.g., Fujikoshi (1993) and Shimizu and Fujikoshi (1997)). For a uniform
bound of type (4.4), it can be obtained numerically. For the transformation
given by (2.9), we consider the following case:

a(x) =
2∑

j=1

aj

{
xj∏j−1

�=0(f + 2�)
− 1

}
, p(x) =

1
2
{a(x)}2.

Further we consider non-uniform error bounds at x = uα, the upper α point of
χ2

f . A non-uniform bound for the remainder term of type (4.2) can be obtained
(see, e.g., Fujikoshi (1988, 1993) and Ulyanov, Fujikoshi and Shimizu (1999)).
For a non-uniform bound of type (4.4), it can be obtained numerically. The
results of numerical studies are summarized in Tables 5.6 and 5.7.

Table 5.6 Uniform error bounds

f\n 10 20 30 40 50 70 100 150

1.36445 0.03108 0.00812 0.00362 0.00203 0.00090 0.00040 0.00017
2 1.38445 0.03608 0.01034 0.00487 0.00283 0.00131 0.00060 0.00025

1.36456 0.03110 0.00812 0.00362 0.00203 0.00090 0.00040 0.00017

1.40106 0.03159 0.00819 0.00363 0.00203 0.00090 0.00040 0.00016
4 1.45106 0.04409 0.01374 0.00675 0.00403 0.00192 0.00090 0.00039

1.40191 0.03170 0.00822 0.00364 0.00204 0.00090 0.00040 0.00016

0.37938 0.00840 0.00214 0.00094 0.00052 0.00023 0.00010 0.00004
6 0.46938 0.03090 0.01214 0.00657 0.00412 0.00207 0.00100 0.00044

0.37994 0.00847 0.00216 0.00095 0.00053 0.00023 0.00010 0.00004

1.04956 0.02659 0.00749 0.00349 0.00202 0.00093 0.00042 0.00018
8 1.18955 0.06159 0.02304 0.01224 0.00762 0.00378 0.00182 0.00080

1.05241 0.02694 0.00759 0.00353 0.00204 0.00093 0.00043 0.00018

0.11407 0.00379 0.00123 0.00062 0.00037 0.00018 0.00008 0.00004
10 0.31407 0.05379 0.02345 0.01312 0.00837 0.00426 0.00208 0.00093

0.12276 0.00490 0.00155 0.00075 0.00044 0.00020 0.00009 0.00004
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Table 5.7 Non-uniform error bounds at x = uα

α f\n 20 30 40 50 70 100 150

0.12445 0.02119 0.00779 0.00393 0.00155 0.00063 0.00025
2 0.12481 0.02135 0.00788 0.00398 0.00158 0.00065 0.00026

0.12445 0.02119 0.00779 0.00393 0.00155 0.00063 0.00025
0.05297 0.00896 0.00328 0.00164 0.00064 0.00026 0.00010

4 0.05442 0.00960 0.00364 0.00187 0.00076 0.00032 0.00013
0.05298 0.00896 0.00328 0.00164 0.00064 0.00026 0.00010
0.00695 0.00116 0.00042 0.00021 0.00008 0.00003 0.00001

0.05 6 0.01034 0.00267 0.00127 0.00075 0.00036 0.00017 0.00007
0.00695 0.00117 0.00042 0.00021 0.00008 0.00003 0.00001
0.02649 0.00513 0.00208 0.00113 0.00049 0.00021 0.00009

8 0.03281 0.00794 0.00366 0.00214 0.00100 0.00047 0.00020
0.02665 0.00517 0.00209 0.00113 0.00049 0.00021 0.00009
0.04974 0.00832 0.00301 0.00150 0.00058 0.00023 0.00009

10 0.06002 0.01289 0.00558 0.00314 0.00142 0.00064 0.00027
0.05041 0.00849 0.00308 0.00153 0.00059 0.00024 0.00009

0.08521 0.01451 0.00533 0.00269 0.00106 0.00043 0.00017
2 0.08659 0.01512 0.00568 0.00291 0.00117 0.00049 0.00019

0.08578 0.01468 0.00540 0.00272 0.00107 0.00044 0.00017
0.03891 0.00658 0.00241 0.00121 0.00047 0.00019 0.00007

4 0.04330 0.00853 0.00350 0.00191 0.00083 0.00037 0.00015
0.04163 0.00739 0.00274 0.00138 0.00053 0.00021 0.00008
0.00530 0.00089 0.00032 0.00016 0.00006 0.00003 0.00001

0.01 6 0.01425 0.00486 0.00256 0.00159 0.00079 0.00038 0.00017
0.01209 0.00295 0.00119 0.00060 0.00022 0.00008 0.00003
0.02074 0.00402 0.00163 0.00088 0.00038 0.00017 0.00007

8 0.03582 0.01072 0.00540 0.00330 0.00161 0.00077 0.00034
0.03367 0.00809 0.00336 0.00176 0.00070 0.00027 0.00010
0.03967 0.00663 0.00240 0.00119 0.00046 0.00019 0.00007

10 0.06253 0.01680 0.00812 0.00485 0.00233 0.00110 0.00048
0.06085 0.01360 0.00540 0.00273 0.00102 0.00037 0.00013

Example 5.5 Suppose that, for a p-variate normal population Np(μ,Σ),
where μ and Σ are unknown, we wish to construct a set of simultaneous
confidence intervals on a′μ with a given length 2� for all a, a′a = 1. A
solution to this problem, given by Hyakutake and Siotani (1987), is as follows:
First, take a pilot sample X1, . . . ,Xm of a given size m and compute

X =
1
m

m∑
j=1

Xj , S =
1
ν

m∑
j=1

(Xj − X)(Xj − X)′,

where ν = m− 1 ≥ p. Then, define the total sample size as

N = max{m+ p2, [c · tr(TS)] + 1},
where c is a positive constant, [a] stands for the greatest integer less than a
real number a, and T is a given positive definite matrix which is assumed to
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be symmetric. Next, take an additional sample Xm+1, . . . ,XN of size N −m
and construct the basic random variate Z in the following way:

Choose p matrices Aj : p×N = [a(j)
1 , . . . ,a

(j)
m ,a

(j)
m+1, . . . ,a

(j)
N ], j = 1, . . . , p,

satisfying that
(1) a

(j)
1 = · · · = a

(j)
m ≡ a

(j)
0 (say) (j = 1, . . . , p);

(2) Aj1N = ej , where 1N : N × 1 = (1, 1, . . . , 1)′ and ej : p × 1 =

(0, . . . , 0,
(j)

1 , 0, . . . , 0)′;

(3) AA′ =
1
c
T−1 ⊗ S−1, where A : p2 × N = [A′

1,A
′
2, . . . ,A

′
p]
′ and ⊗

denotes the direct product. Then, define Z by

Z : p× 1 = [tr(A1X
′), tr(A2X

′), . . . , tr(ApX
′)]′,

where X : p×N = [X1, . . . ,Xm,Xm+1, . . . ,XN ].
By using the statistic

S =
c

2p
(Z − μ)′T (Z − μ),

taking T = Ip and choosing c as c = 2pxα/�
2 with xα the upper α point of S,

the solution is obtained as follows:

a′μ ∈ [a′Z ± � ] for all a such that a′a = 1.

When p = 1, 2, we can evaluate the distribution of S exactly. For p ≥ 3,
the exact treatment of the distribution of S becomes complicated. Hyakutake
and Siotani (1987) gave an asymptotic expansion of S in the form (4.1) with
G = χ2

p, ε = ν−1, k = 2, and h(x) given by

h(x) = −2
k∑

i=1

⎛
⎝ k∑

j=i

aj∏i−1
�=0(p+ 2�)

xi

⎞
⎠ ,

a1 =
1
2
(p2 − 2), a2 =

1
4
(p+ 2).

Now, a uniform bound for the remainder term of type (4.2), can be obtained
(see, e.g., Fujikoshi (1993), Mukaihata and Fujikoshi (1993) and Shimizu and
Fujikoshi (1997)). For a uniform bound of type (4.4), it can be obtained
numerically. For the transformation given by (2.9), we consider the following
case:

a(x) =
2∑

j=1

aj

{
xj∏j−1

�=0(p+ 2�)
− 1

}
, p(x) =

1
2
{a(x)}2.

Similarly to Example 5.4, we also consider non-uniform error bounds at x =
uα. Let σ = p−1tr(ΣS−1). In order to obtain error bounds for the remain-
der term, of type (4.2), with the help of a method by Fujikoshi (1993), it is
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necessary to evaluate the exact moments of σ±1. It is difficult to obtain those
in general p, however, Mukaihata and Fujikoshi (1993) gave the ones in the
case p = 2. Here, we examine Theorem 4.1 in the case p = 2. The results of
numerical studies are summarized in Tables 5.8 and 5.9.

Table 5.8 Uniform error bounds when p = 2

ν = 10 20 30 40 50 70 100 150
1.59553 0.01323 0.00319 0.00140 0.00079 0.00035 0.00016 0.00007
1.62053 0.01948 0.00597 0.00297 0.00179 0.00086 0.00041 0.00018
1.59629 0.01333 0.00322 0.00142 0.00080 0.00036 0.00016 0.00007

Table 5.9 Non-uniform error bounds at x = uα when p = 2

α\ν 20 30 40 50 70 100 150
0.04098 0.00666 0.00248 0.00127 0.00052 0.00022 0.00009

0.05 0.04265 0.00740 0.00289 0.00154 0.00065 0.00028 0.00012
0.04108 0.00668 0.00249 0.00128 0.00052 0.00022 0.00009
0.02806 0.00456 0.00169 0.00087 0.00035 0.00015 0.00006

0.01 0.03149 0.00608 0.00255 0.00142 0.00063 0.00029 0.00012
0.02932 0.00493 0.00185 0.00095 0.00038 0.00016 0.00006

It should be noted that non-uniform bounds (4.2) in Examples 5.4–5.6 are
not available in the case ε−1 = 10, because of a restriction relative to ε−1. From
Examples 5.4–5.6, we can see non-uniform bounds at x = uα have a tendency
to be small as α is small. That is, in the case of non-uniform error bounds,
Theorem 4.1 gives sharp error bounds more successfully in the tail part of
the distribution of S. On the other hand, a non-uniform bound proposed by
Fujikoshi (1988) does not necessarily improve the uniform bound of type (4.2)
(see Fujikoshi (1988)). In fact, we observe the phenomenon.

Comparing error bounds based on two transformations we proposed, we
can see a significant superiority of transformation (2.9). This is due to the
fact that the bound (4.4) can be controlled by the relation exp(x − x2/2 +
· · ·+(−1)rxr−1/(r−1)) = 1+x+O(xr). Examples 5.4 and 5.5 were discussed
in Enoki and Aoshima (2004), however, Theorem 4.1 gives sharp error bounds
more successfully than Enoki and Aoshima (2004).

Personal Thoughts

Professor Minoru Siotani has been well-known for his many path-breaking
contributions in multivariate analysis and the theory of asymptotic expansions
in statistics. This article interfaces with both. A major part of this piece goes
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back to the heart of some of the problems where Professor Minoru Siotani and
his colleagues made their distinguished contributions in 1956 and thereafter.
We offer this short piece as our personal homage to Professor Minoru Siotani
in honour of his 80th birthday.
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