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Abstract. Memory gradient methods are used for unconstrained optimization,
especially large scale problems. The first idea of memory gradient methods was
proposed by Miele and Cantrell (1969) and subsequently extended by Cragg and
Levy (1969). Recently Narushima and Yabe (2006) proposed a new memory
gradient method which generates a descent search direction for the objective
function at every iteration and converges globally to the solution if the Wolfe
conditions are satisfied within the line search strategy. On the other hand, Sun
and Zhang (2001) proposed a particular choice of step size, and they applied
it to the conjugate gradient method. In this paper, we apply the choice of the
step size proposed by Sun and Zhang to the memory gradient method proposed
by Narushima and Yabe and establish its global convergence.
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§1. Introduction

We consider the following unconstrained optimization problem

minimize f(x),(1.1)

where f : Rn → R is sufficiently smooth and its gradient g ≡ ∇f is available.
We denote g(xk) by gk and the Euclidean norm by ‖ · ‖. Usually we use the
iterative method for solving the problem (1.1) and its form is given by

xk+1 = xk + αkdk,(1.2)
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where xk ∈ Rn is the k-th approximation to the solution, αk ∈ R is a step
size and dk ∈ Rn is a search direction.

There exist many kinds of iterative methods. In general, the Newton
method and quasi-Newton methods are very effective to solve problem (1.1).
These methods, however, must keep matrices of size n× n. Thus these meth-
ods cannot always be applied to large scale problems. Although the steepest
descent method does not need any matrices, it has slow rate of convergence.
Accordingly, acceleration of the steepest descent method (which does not need
any matrices) has recently attracted attention. For instance, the conjugate
gradient method is one of the most famous methods. The search direction of
this method is usually defined by

dk = −gk + βkdk−1,(1.3)

where βk ∈ R. The parameter βk is chosen so that the method (1.2)–(1.3)
reduces to the linear conjugate gradient method if f(x) is a strictly convex
quadratic function and if αk is the exact one-dimensional minimizer. Well-
known formulas for βk are the Fletcher-Reeves (FR), Polak-Ribiére-Polyak
(PRP), Hestenes-Stiefel (HS) and Dai-Yuan (DY) formulas, and they are given
by

βFR
k = ‖gk‖2/‖gk−1‖2,

βPRP
k = gT

k yk−1/‖gk−1‖2,

βHS
k = gT

k yk−1/d
T
k−1yk−1,

βDY
k = ‖gk‖2/dT

k−1yk−1,

where yk−1 = gk − gk−1. The global convergence properties of the conju-
gate gradient methods have been studied by many researchers (see [3, 9] for
example).

The memory gradient method also aims to accelerate the steepest descent
method and it was first proposed by Miele and Cantrell [7] and was subse-
quently extended by Cragg and Levy [2]. The search direction of this method
is defined by

dk = −γkgk +
m∑

i=1

ξkidk−i,

where m is the number of past iterations remembered, ξki ∈ R (i = 1, . . . ,m)
and γk ∈ R are parameters. More recently, a different type of memory gradient
methods were proposed by Narushima and Yabe [11]. These methods always
satisfy the sufficient descent condition and converge globally if the Wolfe con-
ditions are satisfied within the line search strategy. Moreover Narushima [10]
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combined it with nonmonotone line search strategy and established the global
convergence.

It is important to study how we choose a step size in iterative methods.
Usually we choose a step size which satisfies the Wolfe conditions

f(xk) − f(xk + αkdk) ≥ −σ1αkg
T
k dk,(1.4)

g(xk + αkdk)Tdk ≥ σ2g
T
k dk,(1.5)

or the Armijo condition (1.4) only, where 0 < σ1 < σ2 < 1. In those line
search techniques, it is necessary to compute the function and the gradient
value several times at each iteration. For very large scale problems, these
computations can be too expensive.

Sun and Zhang [12] proposed a particular choice of step size, which means
no line search. They gave the following step size:

αk = −δ gT
k dk

dT
kQkdk

,

where δ is some positive constant and {Qk} is a sequence of symmetric positive
definite matrices. In addition, they established global convergence of some
conjugate gradient methods without line search. There are some applications
which use the above step size [1, 5].

In the present paper, we will consider a memory gradient method, which
was proposed by Narushima and Yabe [11], without line search and prove its
global convergence.

This paper is organized as follows. In Section 2, we analyze general iterative
methods without line search and consider a sufficient condition for the global
convergence. In Section 3, we apply the method in Section 2 to the memory
gradient method proposed by Narushima and Yabe [11], and prove its global
convergence. In Section 4, we propose one choice of {Qk}. In Section 5, some
numerical results are reported and conclusions are made in Section 6.

§2. General iterative method without line search

In this section, we discuss iterative methods with no line search which is given
by Sun and Zhang [12].

First we introduce the choice of the step size proposed in [12]. Let {Qk}
be a sequence of symmetric and uniformly positive definite matrices, namely,
there exist positive constants νmin and νmax such that

νmin‖v‖2 ≤ vTQkv ≤ νmax‖v‖2(2.1)
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for all v ∈ Rn and all k. We use the following step size proposed in [12]

αk = −δ gT
k dk

dT
kQkdk

,(2.2)

where δ is a positive constant. In this paper, we call this step size Sun-Zhang’s
step size. We emphasize that dk in (2.2) is allowed to be any nonzero search
direction with gT

k dk 	= 0. Usually we expect that dk is descent, but this
formula allows us that dk is even ascent. Specifically, whether dk is a descent
direction or not, αkdk becomes a descent direction, i.e., gT

k (αkdk) < 0 as long
as gT

k dk 	= 0. If gT
k dk = 0, then we can use dk = −gk and αk = δgT

k gk/g
T
k Qkgk,

for example.
Now we introduce the algorithm of general iterative methods without line

search.

Algorithm 2.1. (General iterative method without line search)

Step 0. Given x0 ∈ Rn. Set k := 0.

Step 1. Compute a search direction dk.

Step 2. Compute a step size αk by (2.2).

Step 3. Let xk+1 = xk + αkdk. If a stopping criterion is satisfied, then
stop.

Step 4. Set k := k + 1 and go to Step 1.

Next, in order to establish the subsequent theorems, we make the following
assumptions.

Assumption 2.2.
(A1) The objective function f is bounded below on Rn and is continuously
differentiable in a convex neighborhood N of the level set L = {x ∈ Rn :
f(x) ≤ f(x0)} at the initial point x0.
(A2) The convex neighborhood N includes the sequence {xk} generated by
Algorithm 2.1, namely, {xk} ⊂ N .
(A3) The gradient g is Lipschitz continuous in N , i.e., there exists a positive
constant L such that

‖g(x) − g(y)‖ ≤ L‖x− y‖
for all x, y ∈ N .

It should be noted that the assumption that the objective function is bounded
below is weaker than the usual assumption that the level set is bounded.

Now we consider a sufficient condition which establishes the global conver-
gence. In the rest of this section, we assume gk 	= 0 for all k, otherwise a
stationary point has been found. The following lemma is proved by Sun and
Zhang [Lemma 4, 12].
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Lemma 2.3. Suppose that Assumption 2.2 is satisfied. Let {xk} be a sequence
generated by Algorithm 2.1 with δ ∈ (0, νmin/L). Then the sequence {f(xk)}
is non-increasing and the following holds:

∞∑
k=0

(gT
k dk)2

‖dk‖2
<∞.

Note that Sun and Zhang [12] assume the boundedness of the level set, but it
is unnecessary for this lemma.

We are interested in the condition under which we establish the global
convergence property. To this end, we consider the cosine measure

cos θk = − gT
k (αkdk)

‖gk‖‖αkdk‖ =
|gT

k dk|
‖gk‖‖dk‖ .

This measure is the cosine of the angle between αkdk and the steepest descent
direction −gk.

The next theorem means that the sequence {xk} generated by Algorithm 2.1
converges if there is a subsequence {xk′} of {xk} such that cos θk′ is bounded
away from zero for k′ sufficiently large.

Theorem 2.4. Suppose that all assumptions of Lemma 2.3 hold and there
exist a positive constant c1 and a subsequence {xk′} of {xk} such that cos θk′ ≥
c1 for all k′ sufficiently large. Then the sequence {xk} converges in the sense
that

lim inf
k→∞

‖gk‖ = 0.

P roof . If the theorem is not true, there exists a constant c2 > 0 such that

‖gk‖ ≥ c2(2.3)

for all k. Then from (2.3) and the assumption cos θk′ ≥ c1, we have

|gT
k′dk′ |
‖dk′‖ =

‖gk′‖‖dk′‖ cos θk′

‖dk′‖ ≥ c1c2

for all k′ sufficiently large. Therefore, we obtain

∞∑
k′

(gT
k′dk′)2

‖dk′‖2
= ∞,

which contradicts Lemma 2.3. Therefore the proof is complete. �
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We next consider the sufficient descent condition, namely, for some constant
c3 > 0,

gT
k dk ≤ −c3‖gk‖2(2.4)

for all k. The sufficient descent condition is a stronger condition than the
descent condition gT

k dk < 0. We sometimes assume it to analyze convergence
properties of iterative methods. The following proposition implies that the
sufficient descent condition holds if cos θk is bounded away from zero.

Proposition 2.5. Suppose that Assumption 2.2 holds. Let the sequence {xk}
be generated by Algorithm 2.1. If there exists a positive constant ĉ1 such
that cos θk ≥ ĉ1 for all k, then αkdk satisfies the sufficient descent condition,
namely, there exists some positive constant ĉ3 such that

gT
k (αkdk) ≤ −ĉ3‖gk‖2

for all k.

Proof . From (2.2), (2.1) and cos θk ≥ ĉ1, we have

αkg
T
k dk = −δ (gT

k dk)2

dT
kQkdk

≤ − δ

νmax

(gT
k dk)2

‖dk‖2

= − δ

νmax

‖gk‖2‖dk‖2 cos2 θk

‖dk‖2

≤ − δĉ21
νmax

‖gk‖2.

This implies that the sufficient descent condition holds with ĉ3 = δĉ21/νmax. �

§3. The memory gradient method without line search

In this section, we combine Sun-Zhang’s step size (2.2) with the memory gra-
dient method proposed by Narushima and Yabe [11]. We define a search
direction by the form

dk = −γkgk +
1
m

m∑
i=1

βkidk−i, (k ≥ 1)(3.1)

where βki ∈ R (i = 1, . . . ,m), γk ∈ [γ, γ̄] are parameters, and γ and γ̄ are
given positive constants. Note that for the case k < m, equation (3.1) is
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interpreted as dk = −γkgk +
1
k

k∑
i=1

βkidk−i. The search direction at the first

iteration is the steepest descent direction with a sizing parameter γ0 > 0,
namely, d0 = −γ0g0. We define βki as follows:

βki = ‖gk‖2ψ†
ki,(3.2)

where a† is defined by

a† =

{
0 if a = 0,
1
a

otherwise,

and ψki (i = 1, . . . ,m) are parameters which satisfy the condition

{
gT
k dk−1 + ‖gk‖‖dk−1‖ < γkψk1 (i = 1),
gT
k dk−i + ‖gk‖‖dk−i‖ ≤ γkψki (i = 2, . . . ,m).

(3.3)

Note that βk1 > 0 and βki ≥ 0 (i = 2, . . . ,m) hold by the fact that ψk1 > 0
and ψki ≥ 0 (i = 2, . . . ,m). It is known that the memory gradient method
with (3.1)–(3.3) always satisfies the descent condition. The next lemma was
given by Narushima and Yabe [Theorem 2.1, 11].

Lemma 3.1. Let dk be defined by the memory gradient method (3.1)–(3.3).
Then dk satisfies the descent condition gT

k dk < 0 for all k.

By using Theorem 2.4 and Lemma 3.1, we obtain the following theorem.

Theorem 3.2. Suppose all assumptions of Lemmas 2.3 and 3.1 hold. Then
{xk} achieves a solution in a finite number of iterations or converges in the
sense that

lim inf
k→∞

‖gk‖ = 0.

P roof. If the algorithm does not terminate after finite many iterations, we
have that

‖gk‖ > 0 for all k.

From (3.1), we have

‖dk‖2 =

∥∥∥∥∥ 1
m

m∑
i=1

βkidk−i

∥∥∥∥∥
2

− 2γkg
T
k dk − γ2

k‖gk‖2.
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Dividing both sides by (gT
k dk)2, we obtain that

‖dk‖2

(gT
k dk)2

=
‖ 1

m

∑m
i=1 βkidk−i‖2

(gT
k dk)2

− 2γk
gT
k dk

(gT
k dk)2

− γ2
k

‖gk‖2

(gT
k dk)2

=
‖ 1

m

∑m
i=1 βkidk−i‖2

(gT
k dk)2

− γk
2

gT
k dk

− γ2
k

‖gk‖2

(gT
k dk)2

=
‖ 1

m

∑m
i=1 βkidk−i‖2

(gT
k dk)2

−
(

1
‖gk‖ + γk

‖gk‖
gT
k dk

)2

+
1

‖gk‖2

≤ ‖ 1
m

∑m
i=1 βkidk−i‖2

(gT
k dk)2

+
1

‖gk‖2

≤
( 1

m

∑m
i=1 βki‖dk−i‖
|gT

k dk|
)2

+
1

‖gk‖2
.(3.4)

On the other hand, we obtain from Lemma 3.1, (3.1), (3.2), (3.3) and the fact
that ψ†

kiψki ≤ 1

|gT
k dk| = −gT

k dk

= γk‖gk‖2 − 1
m

m∑
i=1

βkig
T
k dk−i

=
1
m

m∑
i=1

(γk‖gk‖2 − βkig
T
k dk−i)

≥ 1
m

m∑
i=1

(γk‖gk‖2ψ†
kiψki − βkig

T
k dk−i)

≥ 1
m

m∑
i=1

(γkψki − gT
k dk−i)βki

≥ 1
m
‖gk‖

m∑
i=1

βki‖dk−i‖.(3.5)

The last inequality follows from the fact that γkψki − gT
k dk−i ≥ ‖gk‖‖dk−i‖

yields

m∑
i=1

βki(γkψki − gT
k dk−i) ≥ ‖gk‖

m∑
i=1

βki‖dk−i‖.

Therefore we have from (3.5)

1
m

∑m
i=1 βki‖dk−i‖
|gT

k dk|
≤ 1

‖gk‖ .(3.6)
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Finally we obtain from (3.4) and (3.6)

(gT
k dk)2

‖dk‖2
≥ ‖gk‖2

2
,

which implies that cos θk ≥ 1√
2
. Therefore from Theorem 2.4, the proof is

complete. �

§4. Choice of matrix Qk

In this section, we give a concrete choice of Qk. Sun-Zhang’s step size (2.2)
can be interpreted as a minimizer of the quadratic model F (α) of f(xk +αdk)
in α

F (α) = f(xk) + αgT
k dk +

α2

2
dT

kBkdk ≈ f(xk + αdk),

where Bk is ∇2f(xk) or its approximation. From F ′(α) = 0, we have (2.2)
with δ = 1 and Qk = Bk. Therefore it is appropriate that Qk is an approx-
imation matrix to the Hessian matrix ∇2f(xk). To generate the symmetric
positive definite approximation matrix, the BFGS or the DFP updating for-
mula is usually used. However the matrix updated by the BFGS formula is not
necessarily positive definite when the inequality sT

k−1yk−1 > 0 is not satisfied,
where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. In order to overcome this
weakness, Li and Fukushima [6] proposed the modified BFGS update

Bk = Bk−1 −
Bk−1sk−1s

T
k−1Bk−1

sT
k−1Bk−1sk−1

+
zk−1z

T
k−1

sT
k−1zk−1

,(4.1)

where

zk−1 = yk−1 + λk−1sk−1(4.2)

and λk−1 is a nonnegative parameter such that sT
k−1zk−1 > 0. If Bk−1 is

positive definite, then the modified BFGS update always generates the positive
definite approximation matrix. However we must store the matrix if we use
(4.1) as Qk. Thus we recommend the formula

Qk = ηkI − ηk

sk−1s
T
k−1

sT
k−1sk−1

+
zk−1z

T
k−1

sT
k−1zk−1

,(4.3)

where ηk is a positive sizing parameter and I denotes the unit matrix. The
above formula is the modified BFGS update (4.1) with Bk−1 = ηkI. When we
use (4.3) as Qk, we can compute dT

kQkdk without matrix-vector product and
do not need keeping any matrices.
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§5. Numerical results

In previous sections, we establish the global convergence of the memory gradi-
ent method with Sun-Zhang’s step size. In this section, we give some numerical
results to investigate the practical performance of the proposed method. For
this purpose, we first study the behavior of the sequence {f(xk)} and next
discuss the results of our method for general test functions.

In our experiment, we first chose γk and next determined ψki (i = 1, . . . ,m)
that satisfy condition (3.3). We chose γ0 = 1 and

γk =
zT
k−1sk−1

zT
k−1zk−1

for k ≥ 1, where zk−1 is defined by (4.2). Though this choice of the sizing
parameter is different from the sizing parameter used in [10, 11], it is natural
to choose such a parameter, because zk−1 is used instead of yk−1 in updating
Qk. Moreover we used η0 = 1 and

ηk =
zT
k−1sk−1

sT
k−1sk−1

for k ≥ 1. For given γk, we used ψki (i = 1, . . . ,m) defined by

ψki =
||gk||||dk−i|| + gT

k dk−i + n

γk
.

In order to establish sT
k−1zk−1 > 0, we set

λk−1 =
{

0 sT
k−1yk−1 > 0,

2i otherwise,

where i is the smallest integer such that sT
k−1zk−1 > 0 holds. The stopping

condition was

‖gk‖ ≤ 10−5.

To investigate the behavior of the sequence {f(xk)}, we performed our
method for two-dimensional functions. For two-dimensional functions, we
chose (2, 3)T as a starting point and set m = 3 and δ = 1 or δ = 0.099.
We set α0 = δ and αk was computed by (2.2) with (4.3). Figures 1–6 give the
values of log10(f(x) − f(x∗)), where x∗ is the solution of each problem. The
first test function is the following strictly convex quadratic function

f(x, y) =
[
x
y

]T

A

[
x
y

]
,
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where A =
[

10 0
0 1

]
. Since the matrix A has eigen-values νmax = 10 and

νmin = 1, we have νmin/νmax = 0.1. We note that 0.099 ∈ (0, νmin/L) and
1 ∈/ (0, νmin/L). Our method with δ = 1 converges faster than that with
δ = 0.099 does. From Figure 1, we see that the monotonicity of {f(xk)}
can not be found when δ = 1. From Figure 2, we observe the monotonicity of
{f(xk)} when δ = 0.099. Next, we also investigate the behavior of the sequence
{xk} when the objective function is the following non-quadratic function

f(x, y) = cosh(x) + 2 cosh(y) + (xy)2.

As well as the case of the quadratic function, our method with δ = 1 converges
faster than that with δ = 0.099 does. From Figure 3, we see that {f(xk)}
decreases monotonically except for k = 0, which is caused by α0 = δ = 1. For
the case δ = 0.099, we also find the monotonicity of {f(xk)} from Figure 4.
Moreover we examined the behavior for non-convex function

f(x) =
∑
i=1,2

{
i

(
1

1 + e−xi
+

1
1 + exi

)
+ x2

i

}
+

∏
i=1,2

x2
i .

From Figure 5, we see that the monotonicity of {f(xk)} can be found except
for k = 0 when δ = 1. From Figure 6, we also see that the monotonicity
of {f(xk)} can be found when δ = 0.099. In the above three cases, we see
that our method with δ = 1 outperformed our method with δ = 0.099. The
parameter δ should be chosen not too much small if we can. However when
the objective function is a general non-convex function, we cannot estimate
νmin/L and cannot choose δ such that δ ∈ (0, νmin/L). In this case, the
proposed method might not converge.

In order to investigate robustness of our method, we performed our method
for general test functions. In this experiment, the following three choices of
αk are used (called M1, M2, and M3, respectively):

M1. αk chosen by (2.2) with (4.3).

M2. αk chosen by (2.2) with the modified BFGS update (4.1).

M3. αk chosen by the bisection line search method with the Armijo condition
(1.4).

We set σ1 = 0.0001 in the Armijo condition and δ = 1 in Sun-Zhang’s step size
and set the initial matrix Q0 = I in M1 and M2. Although we examined our
method with Qk = I, it did not converge for almost all problems. So we do
not present the results. In addition, we could not perform M2 for large scale
problems, because the approximation matrix Bk is too big. We examined our
method with m = 1, 3, 5, 7, 9.
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In Table 1, the first column, the second column and the third column denote
the problem number used in this paper, the problem name and the dimension
of the problem, respectively. Problems P1 and P2 are defined by

Table 1: Test problems
P Name Dimension n
1 Quadratic function with “bcsstk02” 66
2 Quadratic function with “bcsstm02” 66
3 Extended Rosenbrock function 100 or 10000
4 Extended Powell Singular function 100 or 10000
5 Trigonometric function 100 or 10000
6 Broyden tridiagonal function 100 or 10000
7 Oren function 100
8 Cube function 2
9 Wood function 4
10 Beale function 2
11 Helical valley function 3
12 Jennrich and Sampson function 2

f(x) = xTAx+ bTx,

where A ∈ Rn×n is a matrix and b ∈ Rn is a vector. We set the matrices A
which are described in “Matrix Market” [13] (“bcsstk02” and “bcsstm02” are
matrix name), b is the all one vector and starting point x0 is the zero vector.
Problems P1–P6 and P9–P12 are described by Moré et al. [8] and problems
P7 and P8 are described in Grippo et al. [4]. Tables 2–4 give the numerical
results of the form: (the number of iterations)/(the number of function value
evaluations). We write “Failed ” when the number of iterations exceeds 1000
and we write “Failed* ” when a numerical overflow occurs.

From Table 2, we see that there exist non-convergence cases (P3, P4, P8
and P9 for example). From Tables 2 and 3, we find that M1 is comparable with
M2 in many problems but M1 is more robust than M2. Finally, comparing
M1 with M3, we see that M3 outperformed M1 for many problems. However
M1 outperformed M3 for some problems (see P5 and P6 in Tables 2 and 4,
for instance).
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Figure 1: The function value
(δ = 1, m = 3)
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Figure 2: The function value
(δ = 0.099, m = 3)
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Figure 3: The function value
(δ = 1, m = 3)
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Figure 4: The function value
(δ = 0.099, m = 3)
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Figure 5: The function value
(δ = 1, m = 3)
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Figure 6: The function value
(δ = 0.099, m = 3)
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Table 2: Results of M1
P n m = 1 m = 3 m = 5 m = 7 m = 9
1 66 68/69 84/85 106/107 78/79 80/81
2 66 25/26 34/35 32/33 27/28 36/37
3 100 Failed Failed 286/287 Failed Failed

10000 Failed Failed Failed Failed Failed
4 100 Failed 781/782 705/706 507/508 906/907

10000 871/872 560/561 Failed 899/900 Failed
5 100 62/63 80/81 77/78 73/74 81/82

10000 61/62 61/62 61/62 61/62 61/62
6 100 49/50 56/57 52/53 60/61 75/76

10000 89/90 97/98 78/79 67/68 88/89
7 100 208/209 194/195 181/182 192/193 201/202
8 2 Failed* Failed* Failed* Failed Failed*
9 4 Failed Failed Failed Failed Failed
10 2 12/13 12/13 12/13 12/13 12/13
11 3 41/42 17/18 18/19 30/31 19/20
12 2 Failed* 179/180 136/137 255/256 130/131

Table 3: Results of M2
P n m = 1 m = 3 m = 5 m = 7 m = 9
1 66 219/220 190/191 196/197 198/199 200/201
2 66 41/42 47/48 47/48 37/38 41/42
3 100 Failed Failed Failed Failed Failed
4 100 Failed Failed Failed Failed Failed
5 100 130/131 69/70 60/61 79/80 62/63
6 100 173/174 85/86 Failed 114/115 Failed
7 100 Failed* 252/253 197/198 254/255 393/394
8 2 Failed* Failed* Failed* Failed* Failed*
9 4 Failed Failed Failed Failed Failed
10 2 12/13 12/13 12/13 12/13 12/13
11 3 57/58 21/22 28/29 32/33 24/25
12 2 Failed* 3/4 591/592 416/417 Failed
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Table 4: Results of M3
P n m = 1 m = 3 m = 5 m = 7 m = 9
1 66 36/48 38/50 42/54 46/58 35/47
2 66 23/24 26/27 28/29 26/27 25/26
3 100 89/145 84/125 80/129 90/147 58/100

10000 94/157 85/137 80/129 85/149 58/100
4 100 227/357 181/281 175/285 166/287 221/361

10000 244/403 222/358 230/399 244/415 213/359
5 100 85/92 88/92 82/88 80/87 80/87

10000 69/72 68/69 68/69 68/70 68/70
6 100 97/1685 100/1648 103/1672 103/1576 110/1886

10000 106/1925 111/2096 88/1463 97/1759 114/2116
7 100 235/331 178/238 173/238 171/236 157/214
8 2 44/75 39/67 46/75 54/108 56/109
9 4 202/280 95/137 122/173 106/159 151/216
10 2 8/13 9/14 9/14 8/13 8/13
11 3 18/38 16/28 17/29 25/88 24/104
12 2 19/35 22/41 18/39 25/49 20/43

§6. Conclusion

In this paper, we have combined the memory gradient method in [11] with
Sun-Zhang’s step size in [12] and have proved its global convergence property
under the appropriate assumptions. Finally some numerical experiments have
been shown. Our further interests are to study the convergence rate of the
proposed method and to investigate new appropriate choices of parameters
ψki and δ.
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