6-Shredders in 6-Connected Graphs

Masao Tsugaki

(Received November 19, 2003)

Abstract

For a graph G, a subset S of $V(G)$ is called a shredder if $G-S$ consists of three or more components. We show that if G is a 6 -connected graph of order at least 325 , then the number of shredders of cardinality 6 of G is less than or equal to $(2|V(G)|-9) / 3$.

AMS 2000 Mathematics Subject Classification. 05C40.
Key words and phrases. Graph, connectivity, shredder, upper bound.

§1. INTRODUCTION

In this paper, we consider only finite, undirected, simple graphs with no loops and no multiple edges. Let $G=(V(G), E(G))$ be a graph. As is introduced by Cheriyan and Thurimella in [1], a subset S of $V(G)$ is called a shredder if $G-S$ consists of three or more components. A shredder of cardinality k is referred to as a k-shredder. In [2; Theorem 1], it is proved that if $k \geq 5$ and G is a k-connected graph, then the number of k-shredders of G is less than $2|V(G)| / 3$, and it is shown that for each fixed $k \geq 5$, the coefficient $2 / 3$ in the upper bound is best possible. For $k=5$, it is shown in [3; Theorem 3] that if G is a 5 -connected graph of order at least 135 , then the number of 5 -shredders of G is less than or equal to $(2|V(G)|-10) / 3$, and it is shown that this bound is attained by infinitely many graphs (for results concerning the case where $1 \leq k \leq 4$, the reader is referred to [4] and [2; Theorem 2]). In this paper, we prove:

Theorem Let G be a 6-connected graph of order at least 325. Then the number of 6 -shredders of G is less than or equal to

$$
(2|V(G)|-9) / 3
$$

We conclude this section by constructing an infinite family of graphs G which attain the bound $(2|V(G)|-9) / 3$ in the Theorem. Let $m \geq 3$. First define a graph H of order $4 m$ by

$$
\begin{aligned}
V(H) & =\left\{y_{i, j} \mid 1 \leq i \leq 2 m, j=1,2\right\}, \\
E(H) & =\left\{y_{i, j} y_{i+2, k} \mid 1 \leq i \leq 2 m-2, j=1,2, k=1,2\right\} \\
& \cup\left\{y_{1, j} y_{2, k}, y_{2 m-1, j} y_{2 m, k} \mid j=1,2, k=1,2\right\} .
\end{aligned}
$$

Thus H is the graph obtained from the cycle of length $2 m$ by "splitting" each vertex into two independent vertices, where $\left\{y_{1,1}, y_{1,2}\right\},\left\{y_{3,1}, y_{3,2}\right\}$, $\left\{y_{5,1}, y_{5,2}\right\}, \cdots,\left\{y_{2 m-1,1}, y_{2 m-1,2}\right\},\left\{y_{2 m, 1}, y_{2 m, 2}\right\},\left\{y_{2 m-2,1}, y_{2 m-2,2}\right\}$, $\left\{y_{2 m-4,1}, y_{2 m-4,2}\right\}, \cdots,\left\{y_{2,1}, y_{2,2}\right\}$ occur in this order along the cycle. Now define a graph G of order $6 m-3$ by

$$
\begin{aligned}
V(G)=V(H) & \cup\left\{x_{i} \mid 3 \leq i \leq 2 m-3\right\} \cup\{a, b\}, \\
E(G)=E(H) & \cup\left\{x_{i} y_{i, j}, x_{i} y_{i+1, j} \mid 3 \leq i \leq 2 m-3, j=1,2\right\} \\
& \cup\left\{a x_{i}, b x_{i} \mid 3 \leq i \leq 2 m-3\right\} \\
\cup & \left\{a y_{3, j}, b y_{2 m-2, j} \mid j=1,2\right\} \\
& \cup\left\{a y_{i, j}, b y_{i, j} \mid i=1,2,2 m-1,2 m, j=1,2\right\} .
\end{aligned}
$$

Then G is 6 -connected, and has $4 m-56$-shredders

$$
\begin{aligned}
& \left\{y_{i, 1}, y_{i, 2}, y_{i+4,1}, y_{i+4,2}, x_{i+1}, x_{i+2}\right\}(2 \leq i \leq 2 m-5), \\
& \left\{y_{2 m-4,1}, y_{2 m-4,2}, y_{2 m, 1}, y_{2 m, 2}, x_{2 m-3}, b\right\}, \\
& \left\{y_{2 m-3,1}, y_{2 m-3,2}, y_{2 m, 1}, y_{2 m, 2}, a, b\right\}, \\
& \left\{y_{2 m-2,1}, y_{2 m-2,2}, y_{2 m-1,1}, y_{2 m-1,2}, a, b\right\}, \\
& \left\{y_{1,1}, y_{1,2}, y_{5,1}, y_{5,2}, x_{3}, a\right\}, \\
& \left\{y_{1,1}, y_{1,2}, y_{4,1}, y_{4,2}, a, b\right\}, \\
& \left\{y_{2,1}, y_{2,2}, y_{3,1}, y_{3,2}, a, b\right\}, \\
& \left\{y_{i, 1}, y_{i, 2}, y_{i+1,1}, y_{i+1,2}, a, b\right\}(3 \leq i \leq 2 m-3) .
\end{aligned}
$$

Thus the number of 6 -shredders of G is $4 m-5=(2(6 m-3)-9) / 3=$ $(2|V(G)|-9) / 3$.

Figure 1: $m=5$

§2. PRELIMINARY RESULTS

Throughout the rest of this paper, let G be a 6 -connected graph, and let \mathscr{S} denote the set of 6 -shredders of G. For each $S \in \mathscr{S}$, we define $\mathscr{K}(S)$, $\mathscr{L}(S)$ and $L(S)$ as follows. Let $S \in \mathscr{S}$. We let $\mathscr{K}(S)$ denote the set of components of $G-S$. Write $\mathscr{K}(S)=\left\{H_{1}, \cdots, H_{s}\right\}(s=|\mathscr{K}(S)|)$. We may assume $\left|V\left(H_{1}\right)\right| \geq\left|V\left(H_{2}\right)\right| \geq \cdots \geq\left|V\left(H_{s}\right)\right|$ (any such labeling will do). Under this notation, we let $\mathscr{L}(S)=\mathscr{K}(S)-\left\{H_{1}\right\}$ and $L(S)=\cup_{2 \leq i \leq s} V\left(H_{i}\right)$; thus $L(S)=\cup_{C \in \mathscr{L}(S)} V(C)$. Now let $\mathscr{L}=\cup_{S \in \mathscr{S}} \mathscr{L}(S)$. A member F of \mathscr{L} is said to be saturated if there exists a subset \mathscr{C} of $\mathscr{L}-\{F\}$ such that $V(F)=\cup_{C \in \mathscr{C}} V(C)$.

Let $S, T \in \mathscr{S}$ with $S \neq T$. We say that S meshes with T if S intersects with at least two members of $\mathscr{K}(T)$. It is easy to see that if S meshes with T, then T intersects with all members of $\mathscr{K}(S)$, and hence T meshes with S and S intersects with all members of $\mathscr{K}(T)$ (see [1; Lemma 4.3 (1)]).

The following three lemmas are proved in [4; Lemma 2.1 and Claims 2.3 and 3.3] (see also [2; Lemmas 3.2, 3.4 and 3.5]).

Lemma 2.1. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that S does not mesh with T. Then one of the following holds:
(i) $L(S) \cap L(T)=\emptyset,(L(S) \cup L(T)) \cap(S \cup T)=\emptyset$, and no edge of G joins a vertex in $L(S)$ and a vertex in $L(T)$;
(ii) there exists $C \in \mathscr{L}(S)$ such that $V(C) \supseteq L(T)$ (so $L(S) \supseteq L(T)$); or
(iii) there exists $D \in \mathscr{L}(T)$ such that $V(D) \supseteq L(S)$ (so $L(T) \supseteq L(S))$.

Lemma 2.2. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that S meshes with T. Then the following hold.
(i) $S \supseteq L(T)$ or $T \supseteq L(S)$.
(ii) $L(S) \cap L(T)=\emptyset$.

Lemma 2.3. Let $C, D \in \mathscr{L}$. Then one of the following holds:
(i) $V(C) \cap V(D)=\emptyset$;
(ii) $V(C) \supseteq V(D)$; or
(iii) $V(D) \supseteq V(C)$.

The following lemma is proved in [2; Lemma 3.6].
Lemma 2.4. Let $F \in \mathscr{L}$. Suppose that F is saturated, and let \mathscr{C} be a subset of $\mathscr{L}-\{F\}$ with minimum cardinality such that $V(F)=\cup_{C \in \mathscr{C}} V(C)$. Then the following hold.
(i) $V(C) \cap V(D)=\emptyset$ for all $C, D \in \mathscr{C}$ with $C \neq D$.
(ii) $\mathscr{C}=\cup_{T \in \mathscr{T}} \mathscr{L}(T)$ for some subset \mathscr{T} of $\mathscr{S}\left(\right.$ so $\left.V(F)=\cup_{T \in \mathscr{T}} L(T)\right)$.
(iii) $L(S) \cap L(T)=\emptyset$ for all $S, T \in \mathscr{T}$ with $S \neq T$.
(iv) $|\mathscr{T}| \geq 2$.
(v) $|\mathscr{C}| \geq 4$.
(vi) If we define a graph \mathscr{G} on \mathscr{T} by joining S and $T(S, T \in \mathscr{T}, S \neq T)$ if and only if S meshes with T, then \mathscr{G} is connected.

The following lemma is essentially proved in [2; Lemma 3.7].
Lemma 2.5. Let $V \neq \emptyset$ be a finite set, and let \mathscr{M} be a family of subsets of V which satisfies the following three properties:
(a) $\emptyset \notin \mathscr{M}$;
(b) if $C, D \in \mathscr{M}$, then $C \cap D=\emptyset$ or $C \supseteq D$ or $D \supseteq C$; and
(c) if $F \in \mathscr{M}, \mathscr{C} \subseteq \mathscr{M}-\{F\}$ and $F=\cup_{C \in \mathscr{C}} C$, then $|\mathscr{C}| \geq 4$.

Then the following hold.
(I) $|\mathscr{M}| \leq(4|V|-1) / 3$.
(II) If $|\mathscr{M}|=(4|V|-1) / 3$, then $V \in \mathscr{M}$ and one of the following holds:
(i) $|V|=1$; or
(ii) there exists $\mathscr{C} \subseteq \mathscr{M}-\{V\}$ with $|\mathscr{C}|=4$ such that $V=\cup_{C \in \mathscr{C}} C$, and such that for each $C \in \mathscr{C},|\{X \in \mathscr{M} \mid X \subseteq C\}|=(4|C|-1) / 3$.
(III) If $V \in \mathscr{M}$ and $(4|V|-3) / 3 \leq|\mathscr{M}| \leq(4|V|-2) / 3$, then one of the following holds:
(i) there exists $\mathscr{C} \subseteq \mathscr{M}-\{V\}$ with $4 \leq|\mathscr{C}| \leq 5$ such that $V=\cup_{C \in \mathscr{C}} C$;
(ii) there exists $\mathscr{C} \subseteq \mathscr{M}-\{V\}$ with $|\mathscr{C}|=6$ such that $V=\cup_{C \in \mathscr{C}} C$, and such that for each $C \in \mathscr{C},|\{X \in \mathscr{M} \mid X \subseteq C\}|=(4|C|-1) / 3$;
(iii) there exists $C \in \mathscr{M}$ such that $|C|=|V|-1$; or
(iv) there exist $C, D \in \mathscr{M}$ with $C \cap D=\emptyset$ such that $|C \cup D|=|V|-1$, $|\{X \in \mathscr{M} \mid X \subseteq C\}|=(4|C|-1) / 3$, and $|\{X \in \mathscr{M} \mid X \subseteq D\}|=$ $(4|D|-1) / 3$.

The following two lemmas follow from Lemma 2.5, and are essentially proved in [4; Lemmas 2.8 and 2.9].

Lemma 2.6. Let $F \in \mathscr{L}$, and set $\mathscr{T}=\{T \in \mathscr{S} \mid L(T) \subseteq V(F)\}$. Then the following hold.
(I) $|\mathscr{T}| \leq(2|V(F)|-2) / 3$.
(II) If $|\mathscr{T}|=(2|V(F)|-2) / 3$, then one of the following holds:
(i) F is trivial (i.e., $|V(F)|=1$); or
(ii) F is saturated, and there exist $T_{1}, T_{2} \in \mathscr{T}$ such that $V(F)=L\left(T_{1}\right) \cup$ $L\left(T_{2}\right), T_{1}$ meshes with $T_{2},\left|\mathscr{L}\left(T_{1}\right)\right|=\left|\mathscr{L}\left(T_{2}\right)\right|=2$, and $\mid\{T \in$ $\left.\mathscr{S} \mid L(T) \subseteq L\left(T_{i}\right)\right\} \mid=\left(2\left|L\left(T_{i}\right)\right|-1\right) / 3$ for each $i=1,2$.
(III) If $|\mathscr{T}|=(2|V(F)|-3) / 3$, then one of the following holds:
(i) F is saturated, and there exist $T_{1}, T_{2} \in \mathscr{T}$ such that $V(F)=L\left(T_{1}\right) \cup$ $L\left(T_{2}\right), T_{1}$ meshes with T_{2}, and $\left|\mathscr{L}\left(T_{1}\right)\right|=2$ and $2 \leq\left|\mathscr{L}\left(T_{2}\right)\right| \leq 3$;
(ii) F is saturated, and there exist $T_{1}, T_{2}, T_{3} \in \mathscr{T}$ such that $V(F)=$ $L\left(T_{1}\right) \cup L\left(T_{2}\right) \cup L\left(T_{3}\right), T_{3}$ meshes with T_{1} and $T_{2},\left|\mathscr{L}\left(T_{1}\right)\right|=$ $\left|\mathscr{L}\left(T_{2}\right)\right|=\left|\mathscr{L}\left(T_{3}\right)\right|=2$, and $\left|\left\{T \in \mathscr{S} \mid L(T) \subseteq L\left(T_{i}\right)\right\}\right|=\left(2\left|L\left(T_{i}\right)\right|-\right.$ 1)/3 for each $i=1,2,3$; or
(iii) F is not saturated, and there exists $T_{0} \in \mathscr{T}$ such that $\left|L\left(T_{0}\right)\right|=$ $|V(F)|-1,\left|\mathscr{L}\left(T_{0}\right)\right|=2$, and $\left|\left\{T \in \mathscr{S} \mid L(T) \subseteq L\left(T_{0}\right)\right\}\right|=\left(2\left|L\left(T_{0}\right)\right|-\right.$ 1) $/ 3$.

Lemma 2.7. Let $S \in \mathscr{S}$, and write $\mathscr{L}(S)=\left\{F_{1}, \cdots, F_{p}\right\}(p=|\mathscr{L}(S)|)$. Set $\mathscr{T}=\{T \in \mathscr{S} \mid L(T) \subseteq L(S)\}$, and set $\mathscr{T}_{i}=\left\{T \in \mathscr{S} \mid L(T) \subseteq V\left(F_{i}\right)\right\}$. Then the following hold.

$$
\begin{equation*}
|\mathscr{T}| \leq(2|L(S)|-2 p+3) / 3 \leq(2|L(S)|-1) / 3 . \tag{I}
\end{equation*}
$$

(II) If $|\mathscr{T}|=(2|L(S)|-1) / 3$, then $p=2$ and $\left|\mathscr{T}_{i}\right|=\left(2\left|V\left(F_{i}\right)\right|-2\right) / 3$ for each i.
(III) If $|\mathscr{T}|=(2|L(S)|-2) / 3$, then $p=2$, and either $\left|\mathscr{T}_{1}\right|=\left(2\left|V\left(F_{1}\right)\right|-2\right) / 3$ and $\left|\mathscr{T}_{2}\right|=\left(2\left|V\left(F_{2}\right)\right|-3\right) / 3$, or $\left|\mathscr{T}_{1}\right|=\left(2\left|V\left(F_{1}\right)\right|-3\right) / 3$ and $\left|\mathscr{T}_{2}\right|=$ $\left(2\left|V\left(F_{2}\right)\right|-2\right) / 3$.

The following two lemmas are proved in [3; Lemmas 2.11 and 2.12].
Lemma 2.8. Let $S, T \in \mathscr{S}$, and suppose that S meshes with T and $L(S) \nsubseteq T$. Then $L(T) \subseteq S$ and $|L(T)|=2$.

Lemma 2.9. Suppose that $|V(G)| \geq 13$. Let $S, T \in \mathscr{S}$, and suppose that S meshes with $T, L(S) \subseteq T$ and $L(T) \subseteq S$. Then $|L(S)|+|L(T)| \leq 6$.

The following lemma follows from Lemmas 2.8 and 2.9.
Lemma 2.10. Suppose that $|V(G)| \geq 13$. Let $S, T \in \mathscr{S}$, and suppose that S meshes with T and $|L(S)| \geq 4$. Then $L(T) \subseteq S$ and $|L(T)|=2$.

As an immediate corollary of Lemma 2.10, we obtain the following lemma.
Lemma 2.11. Suppose that $|V(G)| \geq 13$. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that $|L(S)|,|L(T)| \geq 4$. Then S does not mesh with T.

We now proceed to prove a refinement of Lemma 2.8 (see Lemma 2.13).
Lemma 2.12. Let $S, T \in \mathscr{S}$, and suppose that S meshes with T and $L(S) \nsubseteq$ T. Let $F \in \mathscr{K}(S)$, and suppose that $|V(F)| \geq 2$. Then $|T \cap V(F)| \geq 2$.

Proof. If $V(F) \subseteq T$, then we clearly have $|T \cap V(F)|=|V(F)| \geq 2$. Thus we may assume $V(F) \nsubseteq T$. Since $L(S) \nsubseteq T$, we have $L(T) \subseteq S$ and $|L(T)|=2$ by Lemma 2.8. Set $R=(T \cap V(F)) \cup(S-L(T))$. Then R separates $V(F)-(T \cap V(F))$ from the rest. This implies $|R| \geq 6$, and hence $|T \cap V(F)|=|R|-|S-L(T)| \geq 6-|S-L(T)|=|L(T)|=2$.

Lemma 2.13. Let $S, T \in \mathscr{S}$, and suppose that S meshes with T and $L(S) \nsubseteq$ T. Write $\mathscr{L}(S)=\left\{F_{1}, \cdots, F_{p}\right\}(p=|\mathscr{L}(S)|)$ with $\left|V\left(F_{1}\right)\right| \leq\left|V\left(F_{2}\right)\right| \leq \cdots \leq$ $\left|V\left(F_{p}\right)\right|$. Then $|L(T)|=2$ and $3 \leq|T \cap L(S)| \leq 4$, and one of the following holds:
(i) $p=2,\left|V\left(F_{1}\right)\right|=1,\left|V\left(F_{2}\right)\right| \geq 3, V\left(F_{1}\right) \subseteq T$, and $\left|T \cap V\left(F_{2}\right)\right|=2$;
(ii) $p=2,\left|V\left(F_{1}\right)\right|=1,\left|V\left(F_{2}\right)\right| \geq 4, V\left(F_{1}\right) \subseteq T$, and $\left|T \cap V\left(F_{2}\right)\right|=3$;
(iii) $p=3,\left|V\left(F_{1}\right)\right|=\left|V\left(F_{2}\right)\right|=1,\left|V\left(F_{3}\right)\right| \geq 3, V\left(F_{1}\right) \cup V\left(F_{2}\right) \subseteq T$, and $\left|T \cap V\left(F_{3}\right)\right|=2$; or
(iv) $p=2,\left|V\left(F_{1}\right)\right| \geq 2,\left|V\left(F_{2}\right)\right| \geq 3$, and $\left|T \cap V\left(F_{1}\right)\right|=\left|T \cap V\left(F_{2}\right)\right|=2$.

Proof. By Lemma 2.8, $|L(T)|=2$. Let $q=\max \left\{i\left|1 \leq i \leq p,\left|V\left(F_{i}\right)\right|=1\right\}\right.$ (if $\left|V\left(F_{1}\right)\right|=2$, we let $q=0$). Then $V\left(F_{i}\right) \subseteq T$ for each $1 \leq i \leq q$ by the assumption that S meshes with T, and $\left|T \cap V\left(F_{i}\right)\right| \geq 2$ for each $q+1 \leq i \leq p$ by Lemma 2.12. Since $L(S) \nsubseteq T$, we have $p \geq q+1$, i.e., $\left|V\left(F_{p}\right)\right| \geq 2$. Write $\mathscr{K}(S)-\mathscr{L}(S)=\{C\}$. Then $|V(C)| \geq\left|V\left(F_{p}\right)\right| \geq 2$ by the definition of $\mathscr{L}(S)$, and hence $|T \cap V(C)| \geq 2$ by Lemma 2.12. Since $\left(\sum_{1 \leq i \leq p}\left|T \cap V\left(F_{i}\right)\right|\right)+\mid T \cap$ $V(C)|\leq|T|=6$, we obtain

$$
\begin{equation*}
q+2(p-q) \leq q+\sum_{q+1 \leq i \leq p}\left|T \cap V\left(F_{i}\right)\right| \leq 4 \tag{2.1}
\end{equation*}
$$

Now if $q \geq 2$, then since $p \geq q+1$, it follows from (2.1) that $q=2, p=3$ and $\left|T \cap V\left(F_{3}\right)\right|=2$, and hence (iii) holds because $L(S) \nsubseteq T$; if $q=0$, then since $p \geq 2$, it follows from (2.1) that $p=2$ and $\left|T \cap V\left(F_{1}\right)\right|=\left|T \cap V\left(F_{2}\right)\right|=2$, and hence (iv) holds because $L(S) \nsubseteq T$; if $q=1$, then it follows from (2.1) that $p=2$ and $\left|T \cap V\left(F_{2}\right)\right|=2$ or 3 , and hence (i) or (ii) holds because $L(S) \nsubseteq T$.

Lemma 2.14. Let $S, T \in \mathscr{S}$, and suppose that S meshes with T and $|L(S)| \geq$ 3. Then $|T \cap L(S)| \geq 3$.

Proof. If $L(S) \subseteq T$, then clearly $|T \cap L(S)|=|L(S)| \geq 3$; if $L(S) \nsubseteq T$, then $|T \cap L(S)| \geq 3$ by Lemma 2.13.

We define an order relation \leq in \mathscr{S} as follows:

$$
S \leq T \Longleftrightarrow L(S) \subseteq L(T)(S, T \in \mathscr{S}) .
$$

Lemma 2.15. Let $S \in \mathscr{S}$ and $F \in \mathscr{L}(S)$, and suppose that $|V(F)| \geq 4$. Let $\mathscr{T}=\{T \in \mathscr{S} \mid L(T) \subseteq V(F)\}$. Let T_{1}, \cdots, T_{s} be the maximal members of \mathscr{T} (with respect to the order relation defined above), and suppose that $\mid V(F)$ $\left(L\left(T_{1}\right) \cup \cdots \cup L\left(T_{s}\right)\right) \mid \leq 1$.
(i) (a) Let $P \in \mathscr{S}$, and suppose that P meshes with S. Then there exists i $(1 \leq i \leq s)$ such that P meshes with T_{i} and such that $P \cap L\left(T_{j}\right)=\emptyset$ for each $1 \leq j \leq s$ with $j \neq i$.
(b) If $|P \cap V(F)|=2$, then $\left|L\left(T_{i}\right)\right|=2$.
(ii) Let $1 \leq i \leq s$, and suppose that $\left|L\left(T_{i}\right)\right|=2$. Then there exists at most one member of \mathscr{S} which meshes with both S and T_{i}.
(iii) Let \mathscr{S}_{0} be the set of those members P of \mathscr{S} such that P meshes with S and $|P \cap V(F)|=2$. Then $\left|\mathscr{S}_{0}\right| \leq\left|\left\{i\left|1 \leq i \leq s,\left|L\left(T_{i}\right)\right|=2\right\} \mid\right.\right.$.

Proof. Set $X=V(F)-\left(L\left(T_{1}\right) \cup \cdots \cup L\left(T_{s}\right)\right)$ (so $|X|=0$ or 1 by assumption). Let $P \in \mathscr{S}$, and suppose that P meshes with S. Since $|L(S)| \geq$ $|V(F)|+1 \geq 5,|L(S)|+|L(P)| \geq 7$, and hence $L(P) \subseteq S, L(S) \nsubseteq P$ and $|L(P)|=2$ by Lemmas 2.9 and 2.8. Consequently

$$
\begin{equation*}
2 \leq|P \cap V(F)| \leq 3 \tag{2.2}
\end{equation*}
$$

by Lemma 2.13. Since $|X| \leq 1,(2.2)$ implies that there exists i such that $P \cap L\left(T_{i}\right) \neq \emptyset$. Since $L(P) \cap L\left(T_{i}\right)=\emptyset$ (recall that $L(P) \subseteq S$), this together with Lemma 2.1 implies that P meshes with T_{i}. Suppose that there exists $j \neq i$ such that $P \cap L\left(T_{j}\right) \neq \emptyset$. Then as above, P meshes with T_{j}. Consequently, we have $\left|P \cap L\left(T_{i}\right)\right| \geq 2$ and $\left|P \cap L\left(T_{j}\right)\right| \geq 2$, and hence $|P \cap V(F)| \geq 4$, which contradicts (2.2). Thus $P \cap L\left(T_{j}\right)=\emptyset$ for each $j \neq i$. This proves (i) (a). Now if $\left|L\left(T_{i}\right)\right| \geq 3$, then $|P \cap V(F)| \geq\left|P \cap L\left(T_{i}\right)\right| \geq 3$ by Lemma 2.14, which proves (i) (b). To prove (ii), let now $1 \leq i \leq s$ with $\left|L\left(T_{i}\right)\right|=2$, and suppose that there exist two members P, Q of \mathscr{S} which mesh with S and T_{i}. Set $U=$ $\left(N_{G}(L(P) \cup L(Q)) \cap V(F)\right) \cup(S-(L(P) \cup L(Q)))$. Since $N_{G}(L(P))-L(P)=P$, it follows from (i) (a) that $N_{G}(L(P)) \cap V(F)=P \cap V(F) \subseteq L\left(T_{i}\right) \cup X$ and, similarly $N_{G}(L(Q)) \cap V(F) \subseteq L\left(T_{i}\right) \cup X$. Also since $|L(P)|=|L(Q)|=2$, it follows from Lemma 2.1 and 2.2 that $L(P) \cap L(Q)=\emptyset$. Consequently $|U| \leq\left|L\left(T_{i}\right) \cup X\right|+2 \leq 5$. On the other hand, since S separates $V(F)$ from the rest, U separates $V(F)-\left(N_{G}(L(P) \cup L(Q)) \cap V(F)\right)$ from the rest. Therefore we get a contradiction to the assumption that G is 6 -connected. Thus (ii) is proved. Finally we prove (iii). For each $P \in \mathscr{S}_{0}$, let i_{P} denote the unique index such that P meshes with $T_{i_{P}}$. Then by (i) (b), $\left|L\left(T_{i_{P}}\right)\right|=2$ for every $P \in \mathscr{S}_{0}$. Further by (ii), $i_{P} \neq i_{Q}$ for any $P, Q \in \mathscr{S}_{0}$ with $P \neq Q$. Hence $\left|\mathscr{S}_{0}\right|=\left|\left\{i_{P} \mid P \in \mathscr{S}_{0}\right\}\right| \leq\left|\left\{i| | L\left(T_{i}\right) \mid=2\right\}\right|$, as desired.

Lemma 2.16. Let $S \in \mathscr{S}$, and suppose that $|L(S)| \geq 9$, and $\mid\{T \in \mathscr{S} \mid L(T) \subseteq$ $L(S)\} \mid=(2|L(S)|-1) / 3$. Suppose further that there exist two members P_{1}, P_{2} of \mathscr{S} which mesh with S. Then $|\mathscr{L}(S)|=2$, one of the components in $\mathscr{L}(S)$ is trivial, and we have $\left|P_{1} \cap L(S)\right|=4$ or $\left|P_{2} \cap L(S)\right|=4$.

Proof. By Lemma 2.7 (II), $|\mathscr{L}(S)|=2$. Write $\mathscr{L}(S)=\left\{F_{1}, F_{2}\right\}$ with $\left|V\left(F_{1}\right)\right| \leq\left|V\left(F_{2}\right)\right|$. By Lemma 2.13, $2 \leq\left|P_{j} \cap V\left(F_{2}\right)\right| \leq 3$ for each $j=1,2$. Since $|L(S)| \geq 9$, we have $\left|V\left(F_{2}\right)\right| \geq 5$. Again by Lemma 2.7 (II), $\mid\{T \in$ $\left.\mathscr{S} \mid L(T) \subseteq V\left(F_{2}\right)\right\} \mid=\left(2\left|V\left(F_{2}\right)\right|-2\right) / 3$. By Lemma 2.6 (II), this implies that there exist $T_{1}, T_{2} \in \mathscr{S}$ such that $V\left(F_{2}\right)=L\left(T_{1}\right) \cup L\left(T_{2}\right)$. Since $\left|V\left(F_{2}\right)\right| \geq 5$, we clearly have $\left|\left\{i\left|1 \leq i \leq 2,\left|L\left(T_{i}\right)\right|=2\right\} \mid \leq 1\right.\right.$. By Lemma 2.15 (iii), this implies that we have $\left|P_{1} \cap V\left(F_{2}\right)\right|=3$ or $\left|P_{2} \cap V\left(F_{2}\right)\right|=3$. We may assume $\left|P_{1} \cap V\left(F_{2}\right)\right|=3$. Then by Lemma 2.13, $\left|V\left(F_{1}\right)\right|=1$ and $\left|P_{1} \cap L(S)\right|=4$, as desired.

Lemma 2.17. Let $S \in \mathscr{S}$, and suppose that $|L(S)| \geq 12$. Suppose further that there exist three members of \mathscr{S} which mesh with S. Then $\mid\{T \in \mathscr{S} \mid L(T) \subseteq$ $L(S)\} \mid \leq(2|L(S)|-2) / 3$.

Proof. Let P_{1}, P_{2}, P_{3} be members of \mathscr{S} which mesh with S. By Lemma 2.7 (I), $|\{T \in \mathscr{S} \mid L(T) \subseteq L(S)\}| \leq(2|L(S)|-1) / 3$. Suppose that $\mid\{T \in$ $\mathscr{S} \mid L(T) \subseteq L(S)\} \mid=(2|L(S)|-1) / 3$. We argue as in Lemma 2.16. By Lemma 2.7 (II), $|\mathscr{L}(S)|=2$. Write $\mathscr{L}(S)=\left\{F_{1}, F_{2}\right\}$ with $\left|V\left(F_{1}\right)\right| \leq\left|V\left(F_{2}\right)\right|$. By Lemma 2.16, $\left|V\left(F_{1}\right)\right|=1$, and hence $\left|V\left(F_{2}\right)\right| \geq 11$. By Lemma 2.7 (II), $\left|\left\{T \in \mathscr{S} \mid L(T) \subseteq V\left(F_{2}\right)\right\}\right|=\left(2\left|V\left(F_{2}\right)\right|-2\right) / 3$. By Lemma 2.6 (II), there exist $T_{1}, T_{2} \in \mathscr{S}$ such that $V\left(F_{2}\right)=L\left(T_{1}\right) \cup L\left(T_{2}\right), T_{1}$ meshes with T_{2}, and

$$
\begin{equation*}
\left|\left\{T \in \mathscr{S} \mid L(T) \subseteq L\left(T_{i}\right)\right\}\right|=\left(2\left|L\left(T_{i}\right)\right|-1\right) / 3 \text { for each } i=1,2 . \tag{2.3}
\end{equation*}
$$

We may assume $\left|L\left(T_{1}\right)\right| \leq\left|L\left(T_{2}\right)\right|$. Since $\left|L\left(T_{1}\right)\right|+\left|L\left(T_{2}\right)\right|=\left|V\left(F_{2}\right)\right| \geq 11$, it follows from Lemma 2.10 that $\left|L\left(T_{1}\right)\right|=2$, and hence

$$
\begin{equation*}
\left|L\left(T_{2}\right)\right| \geq 9 \tag{2.4}
\end{equation*}
$$

By (i) (a) and (ii) of Lemma 2.15,

$$
\begin{equation*}
\text { at least two of } P_{1}, P_{2} \text { and } P_{3} \text { mesh with } T_{2} . \tag{2.5}
\end{equation*}
$$

On the other hand, since $\left|P_{j} \cap V\left(F_{2}\right)\right| \leq 3$ for each $1 \leq j \leq 3$ by Lemma 2.13, we clearly have

$$
\begin{equation*}
\left|P_{j} \cap L\left(T_{2}\right)\right| \leq 3 \text { for each } 1 \leq j \leq 3 \tag{2.6}
\end{equation*}
$$

Now in view of (2.3) through (2.6), we get a contradiction by applying Lemma 2.16 with S replaced by T_{2}.

§3. PROOF OF THE THEOREM

We continue with the notation of the preceeding section, and prove the Theorem. Thus let $|V(G)| \geq 325$ and, by way of contradiction, suppose that

$$
\begin{equation*}
|\mathscr{S}| \geq(2|V(G)|-8) / 3 \tag{3.1}
\end{equation*}
$$

Let S_{1}, \cdots, S_{m} be the maximal members of \mathscr{S} with respect to the order relation defined immediately before Lemma 2.15. We may assume $\left|L\left(S_{1}\right)\right| \geq$ $\cdots \geq\left|L\left(S_{m}\right)\right|$. Let $p_{i}=\left|\mathscr{L}\left(S_{i}\right)\right|$ for each i, and let $W=V(G)-\left(L\left(S_{1}\right) \cup \cdots \cup\right.$ $L\left(S_{m}\right)$). Arguing as in [3; Claims 3.2 through 3.4], we obtain the following three claims. We include sketches of their proofs for the convenience of the reader.

Claim 3.1.

(i) $m+2|W| \leq 8$.
(ii) $2 p_{1}+(m-1)+2|W| \leq 11$.

Sketch of Proof. By (3.1) and Lemma 2.7 (I), (2|V(G)|-8)/3 $\leq \sum_{1 \leq i \leq m}$ $\left(2\left|L\left(S_{i}\right)\right|-2 p_{i}+3\right) / 3$, and hence $2\left(p_{1}+\cdots+p_{m}\right)-3 m+2|W| \leq 8$. Since $p_{i} \geq 2$ for all i, both (i) and (ii) follow from this.

Claim 3.2. $\left|L\left(S_{1}\right)\right| \geq 17$.
Sketch of Proof. If $\left|L\left(S_{1}\right)\right| \leq 16$, then by Claim 3.1 (i), $|V(G)| \leq 16 m+$ $|W| \leq 128$, which contradicts the assumption that $|V(G)| \geq 325$.

Claim 3.3. $m \geq 2$ and $\left|L\left(S_{2}\right)\right| \geq 17$.
Sketch of Proof. Suppopse that $m=1$ or $\left|L\left(S_{2}\right)\right| \leq 16$. Then by Claim 3.1 (ii), $\left|V(G)-L\left(S_{1}\right)\right| \leq 16(m-1)+|W| \leq 176-32 p_{1}$, and hence $\left|V(G)-\left(S_{1} \cup L\left(S_{1}\right)\right)\right| \leq 170-32 p_{1}$, which implies $\left|L\left(S_{1}\right)\right| \leq p_{1}\left(170-32 p_{1}\right)$. Consequently $|V(G)| \leq p_{1}\left(170-32 p_{1}\right)+176-32 p_{1} \leq 324$, which contradicts the assumption that $|V(G)| \geq 325$.

In what follows, we do not make use of the inequality $\left|L\left(S_{1}\right)\right| \geq\left|L\left(S_{2}\right)\right|$; thus the roles of S_{1} and S_{2} are symmetric. By Lemma 2.11, Claims 3.2 and 3.3 imply that S_{1} dose not mesh with S_{2}. Since $L\left(S_{1}\right) \cap L\left(S_{2}\right)=\emptyset$ by the maximality of $L\left(S_{1}\right)$ and $L\left(S_{2}\right), L\left(S_{1}\right) \cap S_{2}=L\left(S_{2}\right) \cap S_{1}=\emptyset$ by Lemma 2.1. Write $\mathscr{K}\left(S_{1}\right)-\mathscr{L}\left(S_{1}\right)=\left\{C_{1}\right\}$ and $\mathscr{K}\left(S_{2}\right)-\mathscr{L}\left(S_{2}\right)=\left\{C_{2}\right\} ;$ thus $C_{1}=G-S_{1}-L\left(S_{1}\right)$ and $C_{2}=G-S_{2}-L\left(S_{2}\right)$. We define $\mathscr{T}_{1}, \mathscr{T}_{2}, \mathscr{T}_{1,1}, \mathscr{T}_{1,2}, \mathscr{T}_{1,3}, \mathscr{T}_{2,1}, \mathscr{T}_{2,2}$, $\mathscr{T}_{2,3}$ as follows:

$$
\begin{array}{r}
\mathscr{T}_{1}=\left\{T \in \mathscr{S} \mid L(T) \cap\left(S_{1} \cup S_{2}\right)=\emptyset\right\}, \\
\mathscr{T}_{2}=\left\{T \in \mathscr{S} \mid L(T) \subseteq S_{1} \cup S_{2}\right\}, \\
\mathscr{T}_{1,1}=\left\{T \in \mathscr{S} \mid L(T) \subseteq L\left(S_{1}\right)\right\}, \\
\mathscr{T}_{1,2}=\left\{T \in \mathscr{S} \mid L(T) \subseteq L\left(S_{2}\right)\right\}, \\
\mathscr{T}_{1,3}=\left\{T \in \mathscr{S} \mid L(T) \subseteq V\left(C_{1}\right) \cap V\left(C_{2}\right)\right\}, \\
\mathscr{T}_{2,1}=\left\{T \in \mathscr{T}_{2} \mid L(T) \subseteq S_{1}-S_{2}\right\}, \\
\mathscr{T}_{2,2}=\left\{T \in \mathscr{T}_{2} \mid L(T) \subseteq S_{2}-S_{1}\right\}, \\
\mathscr{T}_{2,3}=\left\{T \in \mathscr{T}_{2} \mid L(T) \subseteq S_{1} \cap S_{2}\right\} .
\end{array}
$$

In view of the maximality of $L\left(S_{1}\right)$ and $L\left(S_{2}\right)$ and Claims 3.2 and 3.3, it follows from Lemmas 2.1 and 2.10 that \mathscr{T}_{1} is the set of those members of \mathscr{S} which mesh with neither S_{1} nor S_{2}, and \mathscr{T}_{2} is the set of those members of \mathscr{S} which mesh with S_{1} or S_{2}. Thus $\mathscr{S}=\mathscr{T}_{1} \cup \mathscr{T}_{2}$ (disjoint union). Further by Lemma 2.1, $\mathscr{T}_{1}=\mathscr{T}_{1,1} \cup \mathscr{T}_{1,2} \cup \mathscr{T}_{1,3}$ (disjoint union) and, by Lemma 2.10, $\mathscr{T}_{2}=\mathscr{T}_{2,1} \cup \mathscr{T}_{2,2} \cup \mathscr{T}_{2,3}$ (disjoint union).

The following two claims immediately follow from Lemma 2.7 (I) (see also [3; Claim 3.6]).

Claim 3.4. $\left|\mathscr{T}_{1, i}\right| \leq\left(2\left|L\left(S_{i}\right)\right|-1\right) / 3(i=1,2)$.
Claim 3.5. $\left|\mathscr{T}_{1,3}\right| \leq 2\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right| / 3$.
The following claim is proved in [3; Claim 3.8].

Claim 3.6.

(i) $\left|\mathscr{T}_{2,1}\right| \leq\left|S_{1}-S_{2}\right| / 2$.
(ii) $\left|\mathscr{T}_{2,2}\right| \leq\left|S_{2}-S_{1}\right| / 2$.
(iii) $\left|\mathscr{T}_{2,3}\right| \leq\left|S_{1} \cap S_{2}\right| / 2$.

Claim 3.7. $\left|S_{1} \cap S_{2}\right|$ is even.
Proof. Suppose that $\left|S_{1} \cap S_{2}\right|$ is odd. Then it follows from Claim 3.6 that $\left|\mathscr{T}_{2}\right| \leq\left(\left|S_{1} \cup S_{2}\right|-3\right) / 2$, and it follows from Claims 3.4 and 3.5 that $\left|\mathscr{T}_{1}\right| \leq$ $\left(2\left(|V(G)|-\left|S_{1} \cup S_{2}\right|\right)-2\right) / 3$. Hence $|\mathscr{S}| \leq\left(2|V(G)|-\left(\left|S_{1} \cup S_{2}\right|+13\right) / 2\right) / 3$. Since $\left|S_{1} \cup S_{2}\right| \geq 7$, this contradicts (3.1).

Write $\left|S_{1} \cap S_{2}\right|=2 x$. Then $\left|S_{1} \cup S_{2}\right|=12-2 x$. Hence it follows from Claim 3.6 that

$$
\begin{equation*}
\left|\mathscr{T}_{2}\right| \leq 6-x, \tag{3.2}
\end{equation*}
$$

and it follows from Claims 3.4 and 3.5 that

$$
\begin{equation*}
\left|\mathscr{T}_{1}\right| \leq(2|V(G)|-26+4 x) / 3 \tag{3.3}
\end{equation*}
$$

By (3.2) and (3.3), $|\mathscr{S}| \leq(2|V(G)|-8+x) / 3$. In view of (3.1), this implies that equality holds in (3.2) (note that $x \leq 2$). Thus it follows from Claim 3.6 that

$$
\begin{equation*}
\left|\mathscr{T}_{2,1}\right|=3-x,\left|\mathscr{T}_{2,2}\right|=3-x,\left|\mathscr{T}_{2,3}\right|=x . \tag{3.4}
\end{equation*}
$$

By Lemma 2.17, this implies that

$$
\begin{equation*}
\left|\mathscr{T}_{1, i}\right| \leq\left(2\left|L\left(S_{i}\right)\right|-2\right) / 3 \text { for each } i=1,2 \tag{3.5}
\end{equation*}
$$

Now it follows from (3.2), (3.5) and Claim 3.5 that $|\mathscr{S}| \leq(2|V(G)|-10+x) / 3$. In view of (3.1), this implies that $x=2$ and equality holds in (3.5), i.e.,

$$
\begin{equation*}
\left|\mathscr{T}_{1, i}\right|=\left(2\left|L\left(S_{i}\right)\right|-2\right) / 3 \text { for each } i=1,2 \tag{3.6}
\end{equation*}
$$

Having (3.4) in mind, write $\mathscr{T}_{2,1}=\left\{P_{1}\right\}, \mathscr{T}_{2,2}=\left\{P_{2}\right\}$ and $\mathscr{T}_{2,3}=\left\{P_{3}, P_{4}\right\}$. It follows from Lemma 2.10 and Claims 3.2 and 3.3 that $\left|L\left(P_{j}\right)\right|=2$ for each $1 \leq j \leq 4$.

Claim 3.8. Let $j=3$ or 4. Then $\left|P_{j} \cap L\left(S_{1}\right)\right|=\left|P_{j} \cap L\left(S_{2}\right)\right|=3$.
Proof. By Lemma 2.14, $\left|P_{j} \cap L\left(S_{1}\right)\right|,\left|P_{j} \cap L\left(S_{2}\right)\right| \geq 3$. Since $\left|P_{j}\right|=6$ and $L\left(S_{1}\right) \cap L\left(S_{2}\right)=\emptyset$, this implies $\left|P_{j} \cap L\left(S_{1}\right)\right|=\left|P_{j} \cap L\left(S_{2}\right)\right|=3$.

In what follows, we mainly consider S_{1}. As in Lemma 2.13 , write $\mathscr{L}\left(S_{1}\right)=$ $\left\{F_{1}, \cdots, F_{p}\right\}\left(p=\left|\mathscr{L}\left(S_{1}\right)\right|\right)$ with $\left|V\left(F_{1}\right)\right| \leq\left|V\left(F_{2}\right)\right| \leq \cdots \leq\left|V\left(F_{p}\right)\right|$.

Claim 3.9. $p=2,\left|V\left(F_{1}\right)\right|=1$, and $\left|P_{3} \cap V\left(F_{2}\right)\right|=\left|P_{4} \cap V\left(F_{2}\right)\right|=2$.
Proof. In view of Claim 3.8, this follows from Lemma 2.13.
Since $\left|L\left(S_{1}\right)\right| \geq 17$, it follows from Claim 3.9 that

$$
\begin{equation*}
\left|V\left(F_{2}\right)\right| \geq 16 \tag{3.7}
\end{equation*}
$$

Set $\mathscr{T}=\left\{T \in \mathscr{S} \mid L(T) \subseteq V\left(F_{2}\right)\right\}$. Since $\left|V\left(F_{1}\right)\right|=1$ by Claim 3.9, we clearly have $\left|\left\{T \in \mathscr{S} \mid L(T) \subseteq V\left(F_{1}\right)\right\}\right|=0=\left(2\left|V\left(F_{1}\right)\right|-2\right) / 3$. Hence by (3.6) and Lemma 2.7 (III),

$$
\begin{equation*}
|\mathscr{T}|=\left(2\left|V\left(F_{2}\right)\right|-3\right) / 3 . \tag{3.8}
\end{equation*}
$$

As in Lemma 2.15, let T_{1}, \cdots, T_{s} be the maximal members of \mathscr{T}.
Claim 3.10. F_{2} is saturated.

Proof. Suppose that F_{2} is not saturated. Then by (3.8) and Lemma 2.6 (III), $s=1$ and $\left|V\left(F_{2}\right)-L\left(T_{1}\right)\right|=1$. Let \mathscr{S}_{0} be as in Lemma 2.15 (iii) with $S=S_{1}$ and $F=F_{2}$. Then by Claim 3.9, $P_{3}, P_{4} \in \mathscr{S}_{0}$, and hence $\left|\mathscr{S}_{0}\right| \geq 2$. But since we clearly have $\left|\left\{i\left|1 \leq i \leq s,\left|L\left(T_{i}\right)\right|=2\right\} \mid \leq s=1\right.\right.$, this contradicts Lemma 2.15 (iii).

We are now in a position to complete the proof of the Theorem. By Claim 3.10, $V\left(F_{2}\right)=L\left(T_{1}\right) \cup \cdots \cup L\left(T_{s}\right)$. By (3.8) and Lemma 2.6 (III), $s \leq 3$. Set $I=\left\{i| | L\left(T_{i}\right) \mid=2\right\}$. By (3.7), $|I| \leq s-1$. Let \mathscr{S}_{0} be again as in Lemma 2.15 (iii) with $S=S_{1}$ and $F=F_{2}$. Then $P_{3}, P_{4} \in \mathscr{S}_{0}$ by Claim 3.9, and hence $|I| \geq\left|\mathscr{S}_{0}\right| \geq 2$ by Lemma 2.15 (iii). This forces $s=3,|I|=2$ and $\mathscr{S}_{0}=\left\{P_{3}, P_{4}\right\}$. We may assume $\left|L\left(T_{1}\right)\right|=\left|L\left(T_{2}\right)\right|=2$. We have $\left|L\left(T_{3}\right)\right| \geq 12$ by (3.7), and

$$
\begin{equation*}
\left|\left\{T \in \mathscr{S} \mid L(T) \subseteq L\left(T_{3}\right)\right\}\right|=\left(2\left|L\left(T_{3}\right)\right|-1\right) / 3 \tag{3.9}
\end{equation*}
$$

by Lemma 2.6 (III). By (i) (b) and (ii) of Lemma 2.15, we may assume that P_{3} meshes with T_{1}, and P_{4} meshes with T_{2}. By (i) (a) and (ii) of Lemma 2.15, P_{1} meshes with T_{3}. If T_{1} meshes with T_{2} and T_{3}, then we have $T_{1} \supseteq L\left(P_{3}\right), L\left(T_{2}\right)$ because $\left|L\left(P_{3}\right)\right|=\left|L\left(T_{2}\right)\right|=2$, and we also have $\left|T_{1} \cap L\left(T_{3}\right)\right| \geq 3$ by Lemma 2.14, and hence $6=\left|T_{1}\right| \geq\left|L\left(P_{3}\right)\right|+\left|L\left(T_{2}\right)\right|+\left|T_{1} \cap L\left(T_{3}\right)\right| \geq 7$, which is absurd. Thus T_{1} does not mesh with at least one of T_{2} and T_{3}. Similarly T_{2} does not mesh with at least one of T_{1} and T_{3}. In view of Lemma 2.6 (III), this implies that T_{3} meshes with T_{1} and T_{2}; that is to say, T_{3} meshes with P_{1}, T_{1} and T_{2}. Therefore applying Lemma 2.17 with S replaced by T_{3}, we obtain $\left|\left\{T \in \mathscr{S} \mid L(T) \subseteq L\left(T_{3}\right)\right\}\right| \leq\left(2\left|L\left(T_{3}\right)\right|-2\right) / 3$, which contradicts (3.9). This completes the proof of the Theorem.

Acknowledgement

I would like to thank Professor Yoshimi Egawa for his assistance in the preparation of this paper.

References

[1] J.Cheriyan and R.Thurimella, Fast algorithms for k-shredders and k-node connectivity augumentation, Proc. 28th ACM STOC, 1996, pp. 37-46.
[2] Y.Egawa, k-Shredders in k-connected graphs, preprint.
[3] Y.Egawa and Y.Okadome, 5-Shredders in 5-connected graphs, preprint.
[4] T.Jordán, On the number of shredders, J. Graph Theory 31(1999), 195-200.

Masao Tsugaki
Department of Mathematical Information Science, Science University of Tokyo
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

