SUT Journal of Mathematics Vol. 39, No. 2 (2003), 211–224

6-Shredders in 6-Connected Graphs

Masao Tsugaki

(Received November 19, 2003)

Abstract. For a graph G, a subset S of V(G) is called a shredder if G - S consists of three or more components. We show that if G is a 6-connected graph of order at least 325, then the number of shredders of cardinality 6 of G is less than or equal to (2|V(G)| - 9)/3.

AMS 2000 Mathematics Subject Classification. 05C40.

Key words and phrases. Graph, connectivity, shredder, upper bound.

§1. INTRODUCTION

In this paper, we consider only finite, undirected, simple graphs with no loops and no multiple edges. Let G = (V(G), E(G)) be a graph. As is introduced by Cheriyan and Thurimella in [1], a subset S of V(G) is called a *shredder* if G - S consists of three or more components. A shredder of cardinality k is referred to as a k-shredder. In [2; Theorem 1], it is proved that if $k \ge 5$ and G is a k-connected graph, then the number of k-shredders of G is less than 2|V(G)|/3, and it is shown that for each fixed $k \ge 5$, the coefficient 2/3 in the upper bound is best possible. For k = 5, it is shown in [3; Theorem 3] that if G is a 5-connected graph of order at least 135, then the number of 5-shredders of G is less than or equal to (2|V(G)| - 10)/3, and it is shown that this bound is attained by infinitely many graphs (for results concerning the case where $1 \le k \le 4$, the reader is referred to [4] and [2; Theorem 2]). In this paper, we prove:

Theorem Let G be a 6-connected graph of order at least 325. Then the number of 6-shredders of G is less than or equal to

$$(2|V(G)| - 9)/3.$$

We conclude this section by constructing an infinite family of graphs G which attain the bound (2|V(G)| - 9)/3 in the Theorem. Let $m \ge 3$. First define a graph H of order 4m by

$$V(H) = \{y_{i,j} | 1 \le i \le 2m, \ j = 1, 2\},\$$

$$E(H) = \{y_{i,j}y_{i+2,k} | 1 \le i \le 2m - 2, \ j = 1, 2, \ k = 1, 2\},\$$

$$\cup \{y_{1,j}y_{2,k}, \ y_{2m-1,j}y_{2m,k} | j = 1, 2, \ k = 1, 2\}.$$

Thus *H* is the graph obtained from the cycle of length 2m by "splitting" each vertex into two independent vertices, where $\{y_{1,1}, y_{1,2}\}$, $\{y_{3,1}, y_{3,2}\}$, $\{y_{5,1}, y_{5,2}\}$, \cdots , $\{y_{2m-1,1}, y_{2m-1,2}\}$, $\{y_{2m,1}, y_{2m,2}\}$, $\{y_{2m-2,1}, y_{2m-2,2}\}$, $\{y_{2m-4,1}, y_{2m-4,2}\}$, \cdots , $\{y_{2,1}, y_{2,2}\}$ occur in this order along the cycle. Now define a graph *G* of order 6m - 3 by

$$\begin{split} V(G) &= V(H) \quad \cup \quad \{x_i | 3 \leq i \leq 2m-3\} \cup \{a, b\}, \\ E(G) &= E(H) \quad \cup \quad \{x_i y_{i,j}, \ x_i y_{i+1,j} | 3 \leq i \leq 2m-3, \ j = 1, 2\} \\ & \cup \quad \{ax_i, \ bx_i | 3 \leq i \leq 2m-3\} \\ & \cup \quad \{ay_{3,j}, \ by_{2m-2,j} | j = 1, 2\} \\ & \cup \quad \{ay_{i,j}, \ by_{i,j} | i = 1, 2, 2m-1, 2m, \ j = 1, 2\}. \end{split}$$

Then G is 6-connected, and has 4m - 5 6-shredders

$$\{y_{i,1}, y_{i,2}, y_{i+4,1}, y_{i+4,2}, x_{i+1}, x_{i+2}\} (2 \le i \le 2m - 5), \\ \{y_{2m-4,1}, y_{2m-4,2}, y_{2m,1}, y_{2m,2}, x_{2m-3}, b\}, \\ \{y_{2m-3,1}, y_{2m-3,2}, y_{2m,1}, y_{2m,2}, a, b\}, \\ \{y_{2m-2,1}, y_{2m-2,2}, y_{2m-1,1}, y_{2m-1,2}, a, b\}, \\ \{y_{1,1}, y_{1,2}, y_{5,1}, y_{5,2}, x_{3}, a\}, \\ \{y_{1,1}, y_{1,2}, y_{4,1}, y_{4,2}, a, b\}, \\ \{y_{2,1}, y_{2,2}, y_{3,1}, y_{3,2}, a, b\}, \\ \{y_{i,1}, y_{i,2}, y_{i+1,1}, y_{i+1,2}, a, b\} (3 \le i \le 2m - 3).$$

Thus the number of 6-shredders of G is 4m - 5 = (2(6m - 3) - 9)/3 = (2|V(G)| - 9)/3.

Figure 1: m = 5

§2. PRELIMINARY RESULTS

Throughout the rest of this paper, let G be a 6-connected graph, and let \mathscr{S} denote the set of 6-shredders of G. For each $S \in \mathscr{S}$, we define $\mathscr{K}(S)$, $\mathscr{L}(S)$ and L(S) as follows. Let $S \in \mathscr{S}$. We let $\mathscr{K}(S)$ denote the set of components of G - S. Write $\mathscr{K}(S) = \{H_1, \dots, H_s\}$ ($s = |\mathscr{K}(S)|$). We may assume $|V(H_1)| \ge |V(H_2)| \ge \dots \ge |V(H_s)|$ (any such labeling will do). Under this notation, we let $\mathscr{L}(S) = \mathscr{K}(S) - \{H_1\}$ and $L(S) = \bigcup_{2 \le i \le s} V(H_i)$; thus $L(S) = \bigcup_{C \in \mathscr{L}(S)} V(C)$. Now let $\mathscr{L} = \bigcup_{S \in \mathscr{S}} \mathscr{L}(S)$. A member F of \mathscr{L} is said to be saturated if there exists a subset \mathscr{C} of $\mathscr{L} - \{F\}$ such that $V(F) = \bigcup_{C \in \mathscr{C}} V(C)$.

Let $S, T \in \mathscr{S}$ with $S \neq T$. We say that S meshes with T if S intersects with at least two members of $\mathscr{K}(T)$. It is easy to see that if S meshes with T, then T intersects with all members of $\mathscr{K}(S)$, and hence T meshes with Sand S intersects with all members of $\mathscr{K}(T)$ (see [1; Lemma 4.3 (1)]).

The following three lemmas are proved in [4; Lemma 2.1 and Claims 2.3 and 3.3] (see also [2; Lemmas 3.2, 3.4 and 3.5]).

Lemma 2.1. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that S does not mesh with T. Then one of the following holds:

- (i) $L(S) \cap L(T) = \emptyset$, $(L(S) \cup L(T)) \cap (S \cup T) = \emptyset$, and no edge of G joins a vertex in L(S) and a vertex in L(T);
- (ii) there exists $C \in \mathscr{L}(S)$ such that $V(C) \supseteq L(T)$ (so $L(S) \supseteq L(T)$); or

(iii) there exists $D \in \mathscr{L}(T)$ such that $V(D) \supseteq L(S)$ (so $L(T) \supseteq L(S)$).

Lemma 2.2. Let $S, T \in \mathcal{S}$ with $S \neq T$, and suppose that S meshes with T. Then the following hold.

- (i) $S \supseteq L(T)$ or $T \supseteq L(S)$.
- (ii) $L(S) \cap L(T) = \emptyset$.

Lemma 2.3. Let $C, D \in \mathcal{L}$. Then one of the following holds:

- (i) $V(C) \cap V(D) = \emptyset;$
- (ii) $V(C) \supseteq V(D)$; or
- (iii) $V(D) \supseteq V(C)$.

The following lemma is proved in [2; Lemma 3.6].

Lemma 2.4. Let $F \in \mathcal{L}$. Suppose that F is saturated, and let \mathcal{C} be a subset of $\mathcal{L} - \{F\}$ with minimum cardinality such that $V(F) = \bigcup_{C \in \mathcal{C}} V(C)$. Then the following hold.

- (i) $V(C) \cap V(D) = \emptyset$ for all $C, D \in \mathscr{C}$ with $C \neq D$.
- (ii) $\mathscr{C} = \bigcup_{T \in \mathscr{T}} \mathscr{L}(T)$ for some subset \mathscr{T} of \mathscr{S} (so $V(F) = \bigcup_{T \in \mathscr{T}} L(T)$).
- (iii) $L(S) \cap L(T) = \emptyset$ for all $S, T \in \mathscr{T}$ with $S \neq T$.
- (iv) $|\mathscr{T}| \geq 2$.
- (v) $|\mathscr{C}| \ge 4$.
- (vi) If we define a graph \mathscr{G} on \mathscr{T} by joining S and T $(S, T \in \mathscr{T}, S \neq T)$ if and only if S meshes with T, then \mathscr{G} is connected.

The following lemma is essentially proved in [2; Lemma 3.7].

Lemma 2.5. Let $V \neq \emptyset$ be a finite set, and let \mathscr{M} be a family of subsets of V which satisfies the following three properties:

- (a) $\emptyset \notin \mathcal{M};$
- (b) if $C, D \in \mathcal{M}$, then $C \cap D = \emptyset$ or $C \supseteq D$ or $D \supseteq C$; and
- (c) if $F \in \mathcal{M}$, $\mathscr{C} \subseteq \mathcal{M} \{F\}$ and $F = \bigcup_{C \in \mathscr{C}} C$, then $|\mathscr{C}| \ge 4$.

Then the following hold.

214

- (I) $|\mathscr{M}| \le (4|V| 1)/3.$
- (II) If $|\mathcal{M}| = (4|V|-1)/3$, then $V \in \mathcal{M}$ and one of the following holds:
 - (i) |V| = 1; or
 - (ii) there exists $\mathscr{C} \subseteq \mathscr{M} \{V\}$ with $|\mathscr{C}| = 4$ such that $V = \bigcup_{C \in \mathscr{C}} C$, and such that for each $C \in \mathscr{C}$, $|\{X \in \mathscr{M} | X \subseteq C\}| = (4|C|-1)/3$.
- (III) If $V \in \mathcal{M}$ and $(4|V|-3)/3 \leq |\mathcal{M}| \leq (4|V|-2)/3$, then one of the following holds:
 - (i) there exists $\mathscr{C} \subseteq \mathscr{M} \{V\}$ with $4 \leq |\mathscr{C}| \leq 5$ such that $V = \bigcup_{C \in \mathscr{C}} C$;
 - (ii) there exists $\mathscr{C} \subseteq \mathscr{M} \{V\}$ with $|\mathscr{C}| = 6$ such that $V = \bigcup_{C \in \mathscr{C}} C$, and such that for each $C \in \mathscr{C}$, $|\{X \in \mathscr{M} | X \subseteq C\}| = (4|C|-1)/3;$
 - (iii) there exists $C \in \mathcal{M}$ such that |C| = |V| 1; or
 - (iv) there exist $C, D \in \mathscr{M}$ with $C \cap D = \emptyset$ such that $|C \cup D| = |V| 1$, $|\{X \in \mathscr{M} | X \subseteq C\}| = (4|C|-1)/3$, and $|\{X \in \mathscr{M} | X \subseteq D\}| = (4|D|-1)/3$.

The following two lemmas follow from Lemma 2.5, and are essentially proved in [4; Lemmas 2.8 and 2.9].

Lemma 2.6. Let $F \in \mathcal{L}$, and set $\mathcal{T} = \{T \in \mathcal{S} | L(T) \subseteq V(F)\}$. Then the following hold.

- (I) $|\mathscr{T}| \le (2|V(F)| 2)/3.$
- (II) If $|\mathscr{T}| = (2|V(F)| 2)/3$, then one of the following holds:
 - (i) F is trivial (i.e., |V(F)| = 1); or
 - (ii) F is saturated, and there exist $T_1, T_2 \in \mathscr{T}$ such that $V(F) = L(T_1) \cup L(T_2)$, T_1 meshes with T_2 , $|\mathscr{L}(T_1)| = |\mathscr{L}(T_2)| = 2$, and $|\{T \in \mathscr{S} | L(T) \subseteq L(T_i)\}| = (2|L(T_i)| 1)/3$ for each i = 1, 2.
- (III) If $|\mathcal{T}| = (2|V(F)| 3)/3$, then one of the following holds:
 - (i) F is saturated, and there exist $T_1, T_2 \in \mathscr{T}$ such that $V(F) = L(T_1) \cup L(T_2), T_1$ meshes with T_2 , and $|\mathscr{L}(T_1)| = 2$ and $2 \leq |\mathscr{L}(T_2)| \leq 3$;
 - (ii) F is saturated, and there exist $T_1, T_2, T_3 \in \mathscr{T}$ such that $V(F) = L(T_1) \cup L(T_2) \cup L(T_3)$, T_3 meshes with T_1 and T_2 , $|\mathscr{L}(T_1)| = |\mathscr{L}(T_2)| = |\mathscr{L}(T_3)| = 2$, and $|\{T \in \mathscr{S} | L(T) \subseteq L(T_i)\}| = (2|L(T_i)| 1)/3$ for each i = 1, 2, 3; or

M. TSUGAKI

(iii) F is not saturated, and there exists $T_0 \in \mathscr{T}$ such that $|L(T_0)| = |V(F)| - 1$, $|\mathscr{L}(T_0)| = 2$, and $|\{T \in \mathscr{S} | L(T) \subseteq L(T_0)\}| = (2|L(T_0)| - 1)/3$.

Lemma 2.7. Let $S \in \mathscr{S}$, and write $\mathscr{L}(S) = \{F_1, \dots, F_p\}$ $(p = |\mathscr{L}(S)|)$. Set $\mathscr{T} = \{T \in \mathscr{S} | L(T) \subseteq L(S)\}$, and set $\mathscr{T}_i = \{T \in \mathscr{S} | L(T) \subseteq V(F_i)\}$. Then the following hold.

- (I) $|\mathscr{T}| \le (2|L(S)| 2p + 3)/3 \le (2|L(S)| 1)/3.$
- (II) If $|\mathcal{T}| = (2|L(S)| 1)/3$, then p = 2 and $|\mathcal{T}_i| = (2|V(F_i)| 2)/3$ for each *i*.
- (III) If $|\mathscr{T}| = (2|L(S)|-2)/3$, then p = 2, and either $|\mathscr{T}_1| = (2|V(F_1)|-2)/3$ and $|\mathscr{T}_2| = (2|V(F_2)|-3)/3$, or $|\mathscr{T}_1| = (2|V(F_1)|-3)/3$ and $|\mathscr{T}_2| = (2|V(F_2)|-2)/3$.

The following two lemmas are proved in [3; Lemmas 2.11 and 2.12].

Lemma 2.8. Let $S, T \in \mathcal{S}$, and suppose that S meshes with T and $L(S) \not\subseteq T$. Then $L(T) \subseteq S$ and |L(T)| = 2.

Lemma 2.9. Suppose that $|V(G)| \ge 13$. Let $S, T \in \mathscr{S}$, and suppose that S meshes with T, $L(S) \subseteq T$ and $L(T) \subseteq S$. Then $|L(S)| + |L(T)| \le 6$.

The following lemma follows from Lemmas 2.8 and 2.9.

Lemma 2.10. Suppose that $|V(G)| \ge 13$. Let $S, T \in \mathscr{S}$, and suppose that S meshes with T and $|L(S)| \ge 4$. Then $L(T) \subseteq S$ and |L(T)| = 2.

As an immediate corollary of Lemma 2.10, we obtain the following lemma.

Lemma 2.11. Suppose that $|V(G)| \ge 13$. Let $S, T \in \mathscr{S}$ with $S \ne T$, and suppose that $|L(S)|, |L(T)| \ge 4$. Then S does not mesh with T.

We now proceed to prove a refinement of Lemma 2.8 (see Lemma 2.13).

Lemma 2.12. Let $S, T \in \mathcal{S}$, and suppose that S meshes with T and $L(S) \not\subseteq T$. Let $F \in \mathcal{K}(S)$, and suppose that $|V(F)| \ge 2$. Then $|T \cap V(F)| \ge 2$.

Proof. If $V(F) \subseteq T$, then we clearly have $|T \cap V(F)| = |V(F)| \ge 2$. Thus we may assume $V(F) \not\subseteq T$. Since $L(S) \not\subseteq T$, we have $L(T) \subseteq S$ and |L(T)| = 2 by Lemma 2.8. Set $R = (T \cap V(F)) \cup (S - L(T))$. Then R separates $V(F) - (T \cap V(F))$ from the rest. This implies $|R| \ge 6$, and hence $|T \cap V(F)| = |R| - |S - L(T)| \ge 6 - |S - L(T)| = |L(T)| = 2$. \Box **Lemma 2.13.** Let $S, T \in \mathscr{S}$, and suppose that S meshes with T and $L(S) \not\subseteq T$. Write $\mathscr{L}(S) = \{F_1, \dots, F_p\}$ $(p = |\mathscr{L}(S)|)$ with $|V(F_1)| \leq |V(F_2)| \leq \dots \leq |V(F_p)|$. Then |L(T)| = 2 and $3 \leq |T \cap L(S)| \leq 4$, and one of the following holds:

- (i) p = 2, $|V(F_1)| = 1$, $|V(F_2)| \ge 3$, $V(F_1) \subseteq T$, and $|T \cap V(F_2)| = 2$;
- (ii) p = 2, $|V(F_1)| = 1$, $|V(F_2)| \ge 4$, $V(F_1) \subseteq T$, and $|T \cap V(F_2)| = 3$;
- (iii) p = 3, $|V(F_1)| = |V(F_2)| = 1$, $|V(F_3)| \ge 3$, $V(F_1) \cup V(F_2) \subseteq T$, and $|T \cap V(F_3)| = 2$; or
- (iv) p = 2, $|V(F_1)| \ge 2$, $|V(F_2)| \ge 3$, and $|T \cap V(F_1)| = |T \cap V(F_2)| = 2$.

Proof. By Lemma 2.8, |L(T)| = 2. Let $q = \max\{i|1 \le i \le p, |V(F_i)| = 1\}$ (if $|V(F_1)| = 2$, we let q = 0). Then $V(F_i) \subseteq T$ for each $1 \le i \le q$ by the assumption that S meshes with T, and $|T \cap V(F_i)| \ge 2$ for each $q + 1 \le i \le p$ by Lemma 2.12. Since $L(S) \not\subseteq T$, we have $p \ge q + 1$, i.e., $|V(F_p)| \ge 2$. Write $\mathscr{K}(S) - \mathscr{L}(S) = \{C\}$. Then $|V(C)| \ge |V(F_p)| \ge 2$ by the definition of $\mathscr{L}(S)$, and hence $|T \cap V(C)| \ge 2$ by Lemma 2.12. Since $(\sum_{1 \le i \le p} |T \cap V(F_i)|) + |T \cap V(C)| \le |T| = 6$, we obtain

(2.1)
$$q + 2(p-q) \le q + \sum_{q+1 \le i \le p} |T \cap V(F_i)| \le 4.$$

Now if $q \ge 2$, then since $p \ge q + 1$, it follows from (2.1) that q = 2, p = 3 and $|T \cap V(F_3)| = 2$, and hence (iii) holds because $L(S) \not\subseteq T$; if q = 0, then since $p \ge 2$, it follows from (2.1) that p = 2 and $|T \cap V(F_1)| = |T \cap V(F_2)| = 2$, and hence (iv) holds because $L(S) \not\subseteq T$; if q = 1, then it follows from (2.1) that p = 2 and $|T \cap V(F_2)| = 2$ or 3, and hence (i) or (ii) holds because $L(S) \not\subseteq T$. \Box

Lemma 2.14. Let $S, T \in \mathcal{S}$, and suppose that S meshes with T and $|L(S)| \geq 3$. 3. Then $|T \cap L(S)| \geq 3$.

Proof. If $L(S) \subseteq T$, then clearly $|T \cap L(S)| = |L(S)| \ge 3$; if $L(S) \not\subseteq T$, then $|T \cap L(S)| \ge 3$ by Lemma 2.13. \Box

We define an order relation \leq in \mathscr{S} as follows:

$$S \le T \Longleftrightarrow L(S) \subseteq L(T)(S, T \in \mathscr{S}).$$

Lemma 2.15. Let $S \in \mathscr{S}$ and $F \in \mathscr{L}(S)$, and suppose that $|V(F)| \ge 4$. Let $\mathscr{T} = \{T \in \mathscr{S} | L(T) \subseteq V(F)\}$. Let T_1, \dots, T_s be the maximal members of \mathscr{T} (with respect to the order relation defined above), and suppose that $|V(F) - (L(T_1) \cup \dots \cup L(T_s))| \le 1$.

- (i) (a) Let P ∈ S, and suppose that P meshes with S. Then there exists i (1 ≤ i ≤ s) such that P meshes with T_i and such that P ∩ L(T_j) = Ø for each 1 ≤ j ≤ s with j ≠ i.
 (b) If |P ∩ V(F)| = 2, then |L(T_i)| = 2.
- (ii) Let $1 \le i \le s$, and suppose that $|L(T_i)| = 2$. Then there exists at most one member of \mathscr{S} which meshes with both S and T_i .
- (iii) Let \mathscr{S}_0 be the set of those members P of \mathscr{S} such that P meshes with Sand $|P \cap V(F)| = 2$. Then $|\mathscr{S}_0| \le |\{i|1 \le i \le s, |L(T_i)| = 2\}|$.

Proof. Set $X = V(F) - (L(T_1) \cup \cdots \cup L(T_s))$ (so |X| = 0 or 1 by assumption). Let $P \in \mathscr{S}$, and suppose that P meshes with S. Since $|L(S)| \ge |V(F)| + 1 \ge 5$, $|L(S)| + |L(P)| \ge 7$, and hence $L(P) \subseteq S$, $L(S) \not\subseteq P$ and |L(P)| = 2 by Lemmas 2.9 and 2.8. Consequently

$$(2.2) 2 \le |P \cap V(F)| \le 3$$

by Lemma 2.13. Since $|X| \leq 1$, (2.2) implies that there exists i such that $P \cap L(T_i) \neq \emptyset$. Since $L(P) \cap L(T_i) = \emptyset$ (recall that $L(P) \subseteq S$), this together with Lemma 2.1 implies that P meshes with T_i . Suppose that there exists $i \neq i$ such that $P \cap L(T_i) \neq \emptyset$. Then as above, P meshes with T_i . Consequently, we have $|P \cap L(T_i)| \geq 2$ and $|P \cap L(T_i)| \geq 2$, and hence $|P \cap V(F)| \geq 4$, which contradicts (2.2). Thus $P \cap L(T_j) = \emptyset$ for each $j \neq i$. This proves (i) (a). Now if $|L(T_i)| \ge 3$, then $|P \cap V(F)| \ge |P \cap L(T_i)| \ge 3$ by Lemma 2.14, which proves (i) (b). To prove (ii), let now $1 \le i \le s$ with $|L(T_i)| = 2$, and suppose that there exist two members P, Q of \mathscr{S} which mesh with S and T_i . Set U = $(N_G(L(P)\cup L(Q))\cap V(F))\cup (S-(L(P)\cup L(Q)))$. Since $N_G(L(P))-L(P)=P$, it follows from (i) (a) that $N_G(L(P)) \cap V(F) = P \cap V(F) \subseteq L(T_i) \cup X$ and, similarly $N_G(L(Q)) \cap V(F) \subseteq L(T_i) \cup X$. Also since |L(P)| = |L(Q)| = 2, it follows from Lemma 2.1 and 2.2 that $L(P) \cap L(Q) = \emptyset$. Consequently $|U| \leq |L(T_i) \cup X| + 2 \leq 5$. On the other hand, since S separates V(F)from the rest, U separates $V(F) - (N_G(L(P) \cup L(Q)) \cap V(F))$ from the rest. Therefore we get a contradiction to the assumption that G is 6-connected. Thus (ii) is proved. Finally we prove (iii). For each $P \in \mathscr{S}_0$, let i_P denote the unique index such that P meshes with T_{i_P} . Then by (i) (b), $|L(T_{i_P})| = 2$ for every $P \in \mathscr{S}_0$. Further by (ii), $i_P \neq i_Q$ for any $P, Q \in \mathscr{S}_0$ with $P \neq Q$. Hence $|\mathscr{S}_0| = |\{i_P | P \in \mathscr{S}_0\}| \le |\{i| | L(T_i)| = 2\}|$, as desired. \Box

Lemma 2.16. Let $S \in \mathscr{S}$, and suppose that $|L(S)| \ge 9$, and $|\{T \in \mathscr{S}|L(T) \subseteq L(S)\}| = (2|L(S)|-1)/3$. Suppose further that there exist two members P_1, P_2 of \mathscr{S} which mesh with S. Then $|\mathscr{L}(S)| = 2$, one of the components in $\mathscr{L}(S)$ is trivial, and we have $|P_1 \cap L(S)| = 4$ or $|P_2 \cap L(S)| = 4$.

Proof. By Lemma 2.7 (II), $|\mathscr{L}(S)| = 2$. Write $\mathscr{L}(S) = \{F_1, F_2\}$ with $|V(F_1)| \leq |V(F_2)|$. By Lemma 2.13, $2 \leq |P_j \cap V(F_2)| \leq 3$ for each j = 1, 2. Since $|L(S)| \geq 9$, we have $|V(F_2)| \geq 5$. Again by Lemma 2.7 (II), $|\{T \in \mathscr{S}|L(T) \subseteq V(F_2)\}| = (2|V(F_2)| - 2)/3$. By Lemma 2.6 (II), this implies that there exist $T_1, T_2 \in \mathscr{S}$ such that $V(F_2) = L(T_1) \cup L(T_2)$. Since $|V(F_2)| \geq 5$, we clearly have $|\{i|1 \leq i \leq 2, |L(T_i)| = 2\}| \leq 1$. By Lemma 2.15 (iii), this implies that we have $|P_1 \cap V(F_2)| = 3$ or $|P_2 \cap V(F_2)| = 3$. We may assume $|P_1 \cap V(F_2)| = 3$. Then by Lemma 2.13, $|V(F_1)| = 1$ and $|P_1 \cap L(S)| = 4$, as desired. \Box

Lemma 2.17. Let $S \in \mathscr{S}$, and suppose that $|L(S)| \ge 12$. Suppose further that there exist three members of \mathscr{S} which mesh with S. Then $|\{T \in \mathscr{S} | L(T) \subseteq L(S)\}| \le (2|L(S)|-2)/3$.

Proof. Let P_1, P_2, P_3 be members of \mathscr{S} which mesh with S. By Lemma 2.7 (I), $|\{T \in \mathscr{S} | L(T) \subseteq L(S)\}| \leq (2|L(S)| - 1)/3$. Suppose that $|\{T \in \mathscr{S} | L(T) \subseteq L(S)\}| = (2|L(S)| - 1)/3$. We argue as in Lemma 2.16. By Lemma 2.7 (II), $|\mathscr{L}(S)| = 2$. Write $\mathscr{L}(S) = \{F_1, F_2\}$ with $|V(F_1)| \leq |V(F_2)|$. By Lemma 2.16, $|V(F_1)| = 1$, and hence $|V(F_2)| \geq 11$. By Lemma 2.7 (II), $|\{T \in \mathscr{S} | L(T) \subseteq V(F_2)\}| = (2|V(F_2)| - 2)/3$. By Lemma 2.6 (II), there exist $T_1, T_2 \in \mathscr{S}$ such that $V(F_2) = L(T_1) \cup L(T_2)$, T_1 meshes with T_2 , and

(2.3)
$$|\{T \in \mathscr{S} | L(T) \subseteq L(T_i)\}| = (2|L(T_i)| - 1)/3 \text{ for each } i = 1, 2.$$

We may assume $|L(T_1)| \le |L(T_2)|$. Since $|L(T_1)| + |L(T_2)| = |V(F_2)| \ge 11$, it follows from Lemma 2.10 that $|L(T_1)| = 2$, and hence

$$(2.4) |L(T_2)| \ge 9.$$

By (i) (a) and (ii) of Lemma 2.15,

(2.5) at least two of
$$P_1$$
, P_2 and P_3 mesh with T_2 .

On the other hand, since $|P_j \cap V(F_2)| \leq 3$ for each $1 \leq j \leq 3$ by Lemma 2.13, we clearly have

$$(2.6) |P_j \cap L(T_2)| \le 3 \text{ for each } 1 \le j \le 3.$$

Now in view of (2.3) through (2.6), we get a contradiction by applying Lemma 2.16 with S replaced by T_2 . \Box

§3. PROOF OF THE THEOREM

We continue with the notation of the preceeding section, and prove the Theorem. Thus let $|V(G)| \ge 325$ and, by way of contradiction, suppose that

(3.1)
$$|\mathscr{S}| \ge (2|V(G)| - 8)/3.$$

Let S_1, \dots, S_m be the maximal members of \mathscr{S} with respect to the order relation defined immediately before Lemma 2.15. We may assume $|L(S_1)| \geq \cdots \geq |L(S_m)|$. Let $p_i = |\mathscr{L}(S_i)|$ for each i, and let $W = V(G) - (L(S_1) \cup \cdots \cup L(S_m))$. Arguing as in [3; Claims 3.2 through 3.4], we obtain the following three claims. We include sketches of their proofs for the convenience of the reader.

Claim 3.1.

- (i) $m + 2|W| \le 8$.
- (ii) $2p_1 + (m-1) + 2|W| \le 11$.

Sketch of Proof. By (3.1) and Lemma 2.7 (I), $(2|V(G)|-8)/3 \leq \sum_{1\leq i\leq m} (2|L(S_i)|-2p_i+3)/3$, and hence $2(p_1+\cdots+p_m)-3m+2|W|\leq 8$. Since $p_i\geq 2$ for all *i*, both (i) and (ii) follow from this. \Box

Claim 3.2. $|L(S_1)| \ge 17$.

Sketch of Proof. If $|L(S_1)| \leq 16$, then by Claim 3.1 (i), $|V(G)| \leq 16m + |W| \leq 128$, which contradicts the assumption that $|V(G)| \geq 325$. \Box

Claim 3.3. $m \ge 2$ and $|L(S_2)| \ge 17$.

Sketch of Proof. Suppose that m = 1 or $|L(S_2)| \le 16$. Then by Claim 3.1 (ii), $|V(G) - L(S_1)| \le 16(m-1) + |W| \le 176 - 32p_1$, and hence $|V(G) - (S_1 \cup L(S_1))| \le 170 - 32p_1$, which implies $|L(S_1)| \le p_1(170 - 32p_1)$. Consequently $|V(G)| \le p_1(170 - 32p_1) + 176 - 32p_1 \le 324$, which contradicts the assumption that $|V(G)| \ge 325$. \Box

In what follows, we do not make use of the inequality $|L(S_1)| \ge |L(S_2)|$; thus the roles of S_1 and S_2 are symmetric. By Lemma 2.11, Claims 3.2 and 3.3 imply that S_1 dose not mesh with S_2 . Since $L(S_1) \cap L(S_2) = \emptyset$ by the maximality of $L(S_1)$ and $L(S_2)$, $L(S_1) \cap S_2 = L(S_2) \cap S_1 = \emptyset$ by Lemma 2.1. Write $\mathscr{K}(S_1) - \mathscr{L}(S_1) = \{C_1\}$ and $\mathscr{K}(S_2) - \mathscr{L}(S_2) = \{C_2\}$; thus $C_1 = G - S_1 - L(S_1)$ and $C_2 = G - S_2 - L(S_2)$. We define $\mathscr{T}_1, \mathscr{T}_2, \mathscr{T}_{1,1}, \mathscr{T}_{1,2}, \mathscr{T}_{1,3}, \mathscr{T}_{2,1}, \mathscr{T}_{2,2}, \mathscr{T}_{2,3}$ as follows:

$$\begin{split} \mathscr{T}_1 &= \{T \in \mathscr{S} | L(T) \cap (S_1 \cup S_2) = \emptyset\}, \\ \mathscr{T}_2 &= \{T \in \mathscr{S} | L(T) \subseteq S_1 \cup S_2\}, \\ \mathscr{T}_{1,1} &= \{T \in \mathscr{S} | L(T) \subseteq L(S_1)\}, \\ \mathscr{T}_{1,2} &= \{T \in \mathscr{S} | L(T) \subseteq L(S_2)\}, \\ \mathscr{T}_{1,3} &= \{T \in \mathscr{S} | L(T) \subseteq V(C_1) \cap V(C_2)\}, \\ \mathscr{T}_{2,1} &= \{T \in \mathscr{T}_2 | L(T) \subseteq S_1 - S_2\}, \\ \mathscr{T}_{2,2} &= \{T \in \mathscr{T}_2 | L(T) \subseteq S_2 - S_1\}, \\ \mathscr{T}_{2,3} &= \{T \in \mathscr{T}_2 | L(T) \subseteq S_1 \cap S_2\}. \end{split}$$

In view of the maximality of $L(S_1)$ and $L(S_2)$ and Claims 3.2 and 3.3, it follows from Lemmas 2.1 and 2.10 that \mathscr{T}_1 is the set of those members of \mathscr{S} which mesh with neither S_1 nor S_2 , and \mathscr{T}_2 is the set of those members of \mathscr{S} which mesh with S_1 or S_2 . Thus $\mathscr{S} = \mathscr{T}_1 \cup \mathscr{T}_2$ (disjoint union). Further by Lemma 2.1, $\mathscr{T}_1 = \mathscr{T}_{1,1} \cup \mathscr{T}_{1,2} \cup \mathscr{T}_{1,3}$ (disjoint union) and, by Lemma 2.10, $\mathscr{T}_2 = \mathscr{T}_{2,1} \cup \mathscr{T}_{2,2} \cup \mathscr{T}_{2,3}$ (disjoint union).

The following two claims immediately follow from Lemma 2.7 (I) (see also [3; Claim 3.6]).

Claim 3.4. $|\mathscr{T}_{1,i}| \leq (2|L(S_i)| - 1)/3 \ (i = 1, 2).$

Claim 3.5. $|\mathscr{T}_{1,3}| \leq 2|V(C_1) \cap V(C_2)|/3.$

The following claim is proved in [3; Claim 3.8].

Claim 3.6.

- (i) $|\mathscr{T}_{2,1}| \le |S_1 S_2|/2.$
- (ii) $|\mathscr{T}_{2,2}| \le |S_2 S_1|/2.$
- (iii) $|\mathscr{T}_{2,3}| \le |S_1 \cap S_2|/2.$

Claim 3.7. $|S_1 \cap S_2|$ is even.

Proof. Suppose that $|S_1 \cap S_2|$ is odd. Then it follows from Claim 3.6 that $|\mathscr{T}_2| \leq (|S_1 \cup S_2| - 3)/2$, and it follows from Claims 3.4 and 3.5 that $|\mathscr{T}_1| \leq (2(|V(G)| - |S_1 \cup S_2|) - 2)/3$. Hence $|\mathscr{S}| \leq (2|V(G)| - (|S_1 \cup S_2| + 13)/2)/3$. Since $|S_1 \cup S_2| \geq 7$, this contradicts (3.1). \Box

Write $|S_1 \cap S_2| = 2x$. Then $|S_1 \cup S_2| = 12 - 2x$. Hence it follows from Claim 3.6 that

$$(3.2) \qquad \qquad |\mathscr{T}_2| \le 6 - x,$$

and it follows from Claims 3.4 and 3.5 that

(3.3)
$$|\mathscr{T}_1| \le (2|V(G)| - 26 + 4x)/3.$$

By (3.2) and (3.3), $|\mathscr{S}| \leq (2|V(G)| - 8 + x)/3$. In view of (3.1), this implies that equality holds in (3.2) (note that $x \leq 2$). Thus it follows from Claim 3.6 that

$$(3.4) \qquad |\mathcal{T}_{2,1}| = 3 - x, |\mathcal{T}_{2,2}| = 3 - x, |\mathcal{T}_{2,3}| = x.$$

By Lemma 2.17, this implies that

(3.5)
$$|\mathscr{T}_{1,i}| \le (2|L(S_i)| - 2)/3 \text{ for each } i = 1, 2.$$

Now it follows from (3.2), (3.5) and Claim 3.5 that $|\mathscr{S}| \leq (2|V(G)|-10+x)/3$. In view of (3.1), this implies that x = 2 and equality holds in (3.5), i.e.,

(3.6)
$$|\mathscr{T}_{1,i}| = (2|L(S_i)| - 2)/3$$
 for each $i = 1, 2$.

Having (3.4) in mind, write $\mathscr{T}_{2,1} = \{P_1\}$, $\mathscr{T}_{2,2} = \{P_2\}$ and $\mathscr{T}_{2,3} = \{P_3, P_4\}$. It follows from Lemma 2.10 and Claims 3.2 and 3.3 that $|L(P_j)| = 2$ for each $1 \leq j \leq 4$.

Claim 3.8. Let j = 3 or 4. Then $|P_j \cap L(S_1)| = |P_j \cap L(S_2)| = 3$.

Proof. By Lemma 2.14, $|P_j \cap L(S_1)|, |P_j \cap L(S_2)| \ge 3$. Since $|P_j| = 6$ and $L(S_1) \cap L(S_2) = \emptyset$, this implies $|P_j \cap L(S_1)| = |P_j \cap L(S_2)| = 3$. \Box

In what follows, we mainly consider S_1 . As in Lemma 2.13, write $\mathscr{L}(S_1) = \{F_1, \dots, F_p\}$ $(p = |\mathscr{L}(S_1)|)$ with $|V(F_1)| \leq |V(F_2)| \leq \dots \leq |V(F_p)|$.

Claim 3.9. p = 2, $|V(F_1)| = 1$, and $|P_3 \cap V(F_2)| = |P_4 \cap V(F_2)| = 2$.

Proof. In view of Claim 3.8, this follows from Lemma 2.13. \Box Since $|L(S_1)| \ge 17$, it follows from Claim 3.9 that

$$(3.7) |V(F_2)| \ge 16$$

Set $\mathscr{T} = \{T \in \mathscr{S} | L(T) \subseteq V(F_2)\}$. Since $|V(F_1)| = 1$ by Claim 3.9, we clearly have $|\{T \in \mathscr{S} | L(T) \subseteq V(F_1)\}| = 0 = (2|V(F_1)| - 2)/3$. Hence by (3.6) and Lemma 2.7 (III),

(3.8)
$$|\mathscr{T}| = (2|V(F_2)| - 3)/3.$$

As in Lemma 2.15, let T_1, \dots, T_s be the maximal members of \mathscr{T} .

Claim 3.10. F_2 is saturated.

Proof. Suppose that F_2 is not saturated. Then by (3.8) and Lemma 2.6 (III), s = 1 and $|V(F_2) - L(T_1)| = 1$. Let \mathscr{S}_0 be as in Lemma 2.15 (iii) with $S = S_1$ and $F = F_2$. Then by Claim 3.9, $P_3, P_4 \in \mathscr{S}_0$, and hence $|\mathscr{S}_0| \geq 2$. But since we clearly have $|\{i|1 \leq i \leq s, |L(T_i)| = 2\}| \leq s = 1$, this contradicts Lemma 2.15 (iii). \Box

We are now in a position to complete the proof of the Theorem. By Claim 3.10, $V(F_2) = L(T_1) \cup \cdots \cup L(T_s)$. By (3.8) and Lemma 2.6 (III), $s \leq 3$. Set $I = \{i \mid |L(T_i)| = 2\}$. By (3.7), $|I| \leq s - 1$. Let \mathscr{S}_0 be again as in Lemma 2.15 (iii) with $S = S_1$ and $F = F_2$. Then $P_3, P_4 \in \mathscr{S}_0$ by Claim 3.9, and hence $|I| \geq |\mathscr{S}_0| \geq 2$ by Lemma 2.15 (iii). This forces s = 3, |I| = 2 and $\mathscr{S}_0 = \{P_3, P_4\}$. We may assume $|L(T_1)| = |L(T_2)| = 2$. We have $|L(T_3)| \geq 12$ by (3.7), and

(3.9)
$$|\{T \in \mathscr{S} | L(T) \subseteq L(T_3)\}| = (2|L(T_3)| - 1)/3$$

by Lemma 2.6 (III). By (i) (b) and (ii) of Lemma 2.15, we may assume that P_3 meshes with T_1 , and P_4 meshes with T_2 . By (i) (a) and (ii) of Lemma 2.15, P_1 meshes with T_3 . If T_1 meshes with T_2 and T_3 , then we have $T_1 \supseteq L(P_3), L(T_2)$ because $|L(P_3)| = |L(T_2)| = 2$, and we also have $|T_1 \cap L(T_3)| \ge 3$ by Lemma 2.14, and hence $6 = |T_1| \ge |L(P_3)| + |L(T_2)| + |T_1 \cap L(T_3)| \ge 7$, which is absurd. Thus T_1 does not mesh with at least one of T_2 and T_3 . Similarly T_2 does not mesh with at least one of T_1 and T_3 . In view of Lemma 2.6 (III), this implies that T_3 meshes with T_1 and T_2 ; that is to say, T_3 meshes with P_1 , T_1 and T_2 . Therefore applying Lemma 2.17 with S replaced by T_3 , we obtain $|\{T \in \mathscr{S} | L(T) \subseteq L(T_3)\}| \le (2|L(T_3)| - 2)/3$, which contradicts (3.9). This completes the proof of the Theorem.

Acknowledgement

I would like to thank Professor Yoshimi Egawa for his assistance in the preparation of this paper.

References

- J.Cheriyan and R.Thurimella, Fast algorithms for k-shredders and k-node connectivity augumentation, Proc. 28th ACM STOC, 1996, pp. 37–46.
- [2] Y.Egawa, k-Shredders in k-connected graphs, preprint.
- [3] Y.Egawa and Y.Okadome, 5-Shredders in 5-connected graphs, preprint.
- [4] T.Jordán, On the number of shredders, J. Graph Theory 31(1999), 195–200.

Masao Tsugaki

Department of Mathematical Information Science, Science University of Tokyo 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan