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Abstract Let {Xj = (Xj
t ,Ft), j ≥ 1} be a sequence of continuous local mar-

tingales and {〈Xj〉} the corresponding sequence of their quadratic variation
processes and let Hn(x, y), n = 1, 2, . . . be the Hermite polynomials with para-
metric variable y.

In this paper, we consider the series
∞�

j=1

H2
n(Xj , 〈Xj〉) of the continuous local

martingales

Hn(Xj , 〈Xj〉) =
�
Hn(Xj

t , 〈Xj〉t),Ft

�
t≥0

, j = 1, 2, . . . ,

and its discrete analogue, and obtain some maximal inequalities.
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§1. Introduction

Consider the Hermite polynomials Hn(x, y), n ≥ 1 with parameter y. As is
well-known, for every n = 1, 2, . . .

Hn(x, y) =
(y
2
)n

2 hn

(
x√
2y

)
(y > 0)(1.1)

where hn(x) = (−1)nex2 dn

dxn e−x2
. More generally, Hn(x, y) can be defined as

Hn(x, y) = (−y)ne
x2

2y
∂n

∂xn
e
−x2

2y (n = 1, 2, . . . )(1.2)
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with H0(x, y) = 1.
Now, let X = (Xt,Ft) be a continuous local martingale with the quadratic

variation process 〈X〉. Then the process (see [9, p.151])

Hn(X, 〈X〉) = (Hn(Xt, 〈X〉t),Ft)

is a continuous local martingale for every n = 1, 2, . . . and

Hn(Xt, 〈X〉t) = n

∫ t

0
Hn−1(Xs, 〈X〉s)dXs, n = 1, 2, . . . .(1.3)

For the process Hn(X, 〈X〉) (n = 1, 2, . . . ), as an analog of the celebrated
Burkholder-Davis-Gundy inequalities

cp

∥∥〈X〉1/2
T

∥∥
p
≤ ∥∥XT

∥∥
p

(1 < p < ∞)

and ∥∥XT

∥∥
p
≤ Cp

∥∥〈X〉1/2
T

∥∥
p

(1 ≤ p < ∞)

for all (Ft)-stopping times T , where cp and Cp are some positive constants
depending only on p, E.Carlen and P.Krée obtained in [3] Lp–estimates (see
also [11]):

cp,n

∥∥∥〈X〉n/2
T

∥∥∥
p
≤ ‖Hn(XT , 〈X〉T )‖p ≤ Cp,n

∥∥∥〈X〉n/2
T

∥∥∥
p

(1.4)

with some positive constants cp,n and Cp,n depending only on n and p for all
stopping times T , where the right side holds for p ≥ 1 and the left side for
p > 1. In the present paper, we shall investigate the Lp–norm for the series
∞∑

j=1

H2
n(Xj , 〈Xj〉), where {Xj = (Xj

t , (Ft)), j ≥ 1} is a sequence of continuous

local martingales with their quadratic variation processes 〈Xj〉, j ≥ 1. For
simplicity, we denote Hn(t, j) ≡ Hn(Xj

t , 〈Xj〉t) and Hn(j) = (Hn(t, j),Ft) for
n, j = 1, 2, . . . .

Throughout this paper, we shall work with a filtered complete probability
space (Ω,F , (Ft), P ) with the usual conditions. Let C stand for some positive
constant depending only on the subscripts and its value may be different in
different appearance, and this assumption is also adaptable to c. Denote by
R the set of real numbers.

Our main theorem is the following

Theorem 1.1. Let {Xj , j ≥ 1} be a sequence of continuous local martingales
with their quadratic variation processes 〈Xj〉, j ≥ 1 and let 0 < p < ∞. Then
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the inequalities

cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

≤
∥∥∥∥(sup

t≥0

∞∑
j=1

H2
n(t, j)

)1/2
∥∥∥∥

p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

(1.5)

hold for all n ≥ 1, where cn,p and Cn,p are some positive constants depending
only on n and p.

§2. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1.

Lemma 2.1. Let A and B be two continuous, (Ft)–adapted, increasing pro-
cesses, with A0 = 0 and B0 = 0, and let there exist some constants α, β > 0
such that

E
[
(Aβ

T − Aβ
S)α
]
≤ Cα,β ‖BT ‖αβ

∞ P (S < T )

holds for all couples (S, T ) of stopping times S, T with S ≤ T . Then, for any
0 < p < ∞, we have

E [Ap
∞] ≤ Cp,α,βE [Bp

∞] .

The proof of the lemma above can be found in [5]. By using the lemma, S.
D. Jacka and M. Yor proved in [5] (Theorem 10 and Theorem 11) (see also [8])
that the inequalities

cp

∥∥∥∥(
∞∑

j=1

〈Xj〉∞
)1/2

∥∥∥∥
p

≤
∥∥∥∥(sup

t≥0

∞∑
j=1

(Xj
t )2
)1/2

∥∥∥∥
p

≤ Cp

∥∥∥∥(
∞∑

j=1

〈Xj〉∞
)1/2

∥∥∥∥
p

(2.1)

hold for all 0 < p < ∞ and all sequences {Xj} of continuous local martingales
with their quadratic variation processes {〈Xj〉}, and furthermore, they gave
also estimates on the constants cp and Cp. In fact, more generally we have

Lemma 2.2. Under the conditions of Theorem 1.1, we have

cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

≤
∥∥∥∥(sup

t≥0

∞∑
j=1

(Xj
t )2n

)1/2
∥∥∥∥

p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

(2.2)

for all n ≥ 1.
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Proof. Let

Mt =


 ∞∑

j=1

(Xj
t )2n




1/2

and Nt =


 ∞∑

j=1

〈Xj〉nt




1/2

.

For any pair (S, T ) of stopping times with S ≤ T , we have

E
[
(M∗

T )2 − (M∗
S)2
]

= E

[
sup

0≤t≤T

∞∑
j=1

(Xj
t )2n − sup

0≤t≤S

∞∑
j=1

(Xj
t )2n

]

≤ E

[
sup

S≤t≤T

∞∑
j=1

(Xj
t )2n1{S<T}

]

≤ E

[ ∞∑
j=1

(
sup

S≤t≤T
|Xj

t |1{S<T}
)2n
]

≤ E

[ ∞∑
j=1

(
sup

0≤t<∞
|Xj

(t+S)∧T |1{S<T}
)2n
]
.

Noting that {Xj
(t+S)∧T 1{S<T},F(t+S)} is a continuous local martingale, we

get

E
[
(M∗

T )2 − (M∗
S)2
] ≤ CnE

[ ∞∑
j=1

〈Xj〉nT 1{S<T}

]

≤ Cn

∥∥∥∥∥
∞∑

j=1

〈Xj〉nT
∥∥∥∥∥
∞

P (S < T )

= Cn ‖NT ‖2
∞ P (S < T ).

It follows from Lemma 2.1 with α = 1 and β = 2 that the right inequality
in (2.2). Similarly, one can give the left inequality in (2.2). This completes
the proof.

From the proof of the lemma, we also have for all 0 < p < ∞∥∥∥∥
∞∑

j=1

(Xj)∗2n

∥∥∥∥
p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

,

which yields

cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

≤
∥∥∥∥(

∞∑
j=1

(Xj)∗2n
)1/2

∥∥∥∥
p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

.
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Now, let X = (Xt,Ft)t≥0 be a continuous local martingale with quadratic
variation process 〈X〉t. From (1.1) and the property of Hermite polynomials,
we have

Hn(Xt, 〈X〉t) =
[n/2]∑
i=0

C(i)
n Xn−2i

t 〈X〉it(2.3)

for all n ≥ 0, where [x] stands for the integer part of x and

C(i)
n = (−1)i

n!
(n − 2i)!i!2i

.

On the other hand, it is also known that {Hn(X, 〈X〉), n ≥ 2} satisfies the
following identity

Hn(Xt, 〈X〉t)Hn−2(Xt, 〈X〉t)(2.4)

=
n

n − 1
H2

n−1(Xt, 〈X〉t) −
n∑

k=1

(n − 2)!
(n − k)!

H2
n−k(Xt, 〈X〉t)〈X〉k−1

t .

This is proved in [3] by applying the Kailath-Segall identity

Hn(Xt, 〈X〉t) = XtHn−1(Xt, 〈X〉t) − (n − 1)〈X〉tHn−2(Xt, 〈X〉t).
In fact, we may obtain (2.4) by applying the representation (2.3). Thus,

from (2.4) we get

(n − 2)!〈X〉n−1
t ≤ H2

n−1(Xt, 〈X〉t) − Hn(Xt, 〈X〉t)Hn−2(Xt, 〈X〉t).
Integrating both sides of the inequality above on [0, t] with respect to the
measure d〈X〉t, we get

(n − 2)!〈X〉nt ≤ 1
n

〈
Hn(Xt, 〈X〉t)

〉
t
− n

∫ t

0
Hn(Xs, 〈X〉s)Hn−2(Xs, 〈X〉s)d〈X〉s

(2.5)

for all n ≥ 2, since

〈
Hn(Xt, 〈X〉t)

〉
t
= n2

∫ t

0
H2

n−1(Xs, 〈X〉s)d〈X〉s

from (1.3).

Proposition 2.1. Under the conditions of Theorem 1.1, we have∥∥∥∥(sup
t≥0

∞∑
j=1

H
2n

n−i

n−i (t, j)
)1/2

∥∥∥∥
p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

(2.6)

for all 0 ≤ i < n and all 0 < p < ∞.
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Proof. Let 0 ≤ i < n, n ≥ 2 and 0 < p < ∞.
From (2.3) and the inequality

(
m∑

i=1

ai

)r

≤ mr−1
m∑

i=1

ar
i (ai ≥ 0, r ≥ 1),

we have

H
2n

n−i

n−i (t, j) ≤ (n − i)
2n

n−i
−1

[ n−i
2

]∑
k=0

|C(k)
n−i|

2n
n−i (Xj

t )
2n(n−i−2k)

n−i 〈Xj〉
2kn
n−i
t(2.7)

for all j ≥ 1.
On the other hand, when 1 ≤ k < n−i

2 , by applying the Hölder inequality
with exponents s = n−i

n−i−2k and r = n−i
2k and then applying Lemma 2.2 we get

∥∥∥∥(sup
t≥0

∞∑
j=1

(Xj
t )

2n(n−i−2k)
n−i 〈Xj〉

2kn
n−i

t

)1/2
∥∥∥∥

p

≤
∥∥∥∥(sup

t≥0

∞∑
j=1

(Xj
t )2n

)1/2
∥∥∥∥

n−i−2k
n−i

p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
2k

n−i

p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

for all 0 < p < ∞.
Clearly, the inequality above is also true if k = n−i

2 .
Combining these with (2.7) and Lemma 2.2, we obtain for 1 ≤ p < ∞

∥∥∥∥(sup
t≥

∞∑
j=1

H
2n

n−i

n−i (t, j)
)1/2

∥∥∥∥
p

≤ (n − i)
2n

n−i
−1

∥∥∥∥(sup
t≥0

∞∑
j=1

(Xj
t )2n

)1/2
∥∥∥∥

p

+

(n − i)
2n

n−i
−1

[ n−i
2

]∑
k=1

|C(k)
n−i|

2n
n−i

∥∥∥∥(sup
t≥0

∞∑
j=1

(Xj
t )

2n(n−i−2k)
n−i 〈Xj〉

2kn
n−i

t

)1/2
∥∥∥∥

p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p
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and for 0 < p < 1
∥∥∥∥(sup

t≥

∞∑
j=1

H
2n

n−i

n−i (t, j)
)1/2

∥∥∥∥
p

p

≤ (n − i)p( 2n
n−i

−1)

∥∥∥∥(sup
t≥0

∞∑
j=1

(Xj
t )2n

)1/2
∥∥∥∥

p

p

+

(n − i)p( 2n
n−i

−1)

[ n−i
2

]∑
k=1

|C(k)
n−i|

2np
n−i

∥∥∥∥(sup
t≥0

∞∑
j=1

(Xj
t )

2n(n−i−2k)
n−i 〈Xj〉

2kn
n−i
t

)1/2
∥∥∥∥

p

p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

p

.

This completes the proof.

Proof of Theorem 1.1
Let 0 < p < ∞ and n ≥ 2.
The right inequality in (1.5) follows from Proposition 2.1 with i = 0.
Now, let us prove the left inequality in (1.5). By (2.5) and the Cauchy-

Schwarz inequality we have

(
(n − 2)!

∞∑
j=1

〈Xj〉n∞
)1/2 ≤ 1√

n

( ∞∑
j=1

〈Hn(j)〉∞
)1/2

(2.8)

+
√

n
(
sup
t≥0

∞∑
j=1

H2
n(t, j)

)1/4(
sup
t≥0

∞∑
j=1

H2
n−2(t, j)〈Xj〉2t

)1/4
.

On the other hand, for n > 2, from (2.6) we have

∥∥∥∥(sup
t≥0

∞∑
j=1

H
2n

n−2

n−2 (t, j)
)1/2

∥∥∥∥
p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

.

It follows that∥∥∥∥(sup
t≥0

∞∑
j=1

H2
n−2(t, j)〈Xj〉2t

)1/2
∥∥∥∥

p

≤
∥∥∥∥(sup

t≥0

∞∑
j=1

H
2n

n−2

n−2 (t, j)
)1/2

∥∥∥∥
(n−2)/n

p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
2/n

p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

by applying the Hölder inequality with exponents s = n
n−2 and r = n

2 . Clearly,
the inequality above is also valid for n = 2.
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Combining these with (2.8) and (2.2), we get for 0 < p < 1(√
(n − 2)!

)p
∥∥∥∥(

∞∑
j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

p

≤ cn,p

∥∥∥∥(sup
t≥0

∞∑
j=1

H2
n(t, j)

)1/2
∥∥∥∥

p

p

+ Cn,p

∥∥∥∥(sup
t≥0

∞∑
j=1

H2
n(t, j)

)1/2
∥∥∥∥

p/2

p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p/2

p

and for 1 ≤ p < ∞
√

(n − 2)!
∥∥∥∥(

∞∑
j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

≤ cn,p

∥∥∥∥(sup
t≥0

∞∑
j=1

H2
n(t, j)

)1/2
∥∥∥∥

p

+ Cn,p

∥∥∥∥(sup
t≥0

∞∑
j=1

H2
n(t, j)

)1/2
∥∥∥∥

1/2

p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
1/2

p

.

Solving these quadratic inequalities above, we obtain the left inequality
in (1.5). This completes the proof of Theorem 1.1.

As is well-known, for any continuous semimartingale X the Meyer–Tanaka
formula

|Xt − x| − |X0 − x| =
∫ t

0
sgn(Xs − x)dXs + Lx

t (X)

may be considered as a definition of the local time {Lx
t (X), t ≥ 0} of X at

x ∈ R. In particular, if X is a continuous local martingale, then Lx
t (X) has a

continuous version in both variables. Here, we shall use such a version of local
time.

The fundamental formula of occupation density for a continuous semi-
martingale is ∫ t

0
Φ(Xs)d〈X〉s =

∫ ∞

−∞
Φ(x)Lx

t (X)dx

for all bounded, Borel functions Φ : R → R, which gives

〈X〉∞ ≤ 2X∗
∞L∗

∞(X).(2.9)

For any continuous local martingale X, M.T. Barlow and M. Yor obtained
in [2] the well-known inequalities (the Barlow-Yor inequalities)

cp

∥∥∥〈X〉1/2
∞
∥∥∥

p
≤ ‖L∗

∞(X)‖p ≤ Cp

∥∥∥〈X〉1/2
∞
∥∥∥ (0 < p < ∞),(2.10)

where L∗
t (X) = supx∈� Lx

t (X). It follows that

cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

≤
∥∥∥∥(

∞∑
j=1

L∗2n
∞ (Xj)

)1/2
∥∥∥∥

p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

(2.11)
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for all n ≥ 1. Indeed, the right inequality in (2.11) follows from Lemma 2.2
and (2.9), and the left inequality (2.11) can be proved by applying Lemma 2.1
and the Barlow-Yor inequalities (2.10).

Corollary 2.1. Let {Lx
t (n,Xj)} be the local time of Hn(j) at x ∈ R. Then

under the condition of Theorem 1.1, we have

cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

≤
∥∥∥∥(

∞∑
j=1

L∗2n
∞ (n,Xj)

)1/2
∥∥∥∥

p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈Xj〉n∞
)1/2

∥∥∥∥
p

(2.12)

for all n ≥ 1.

Now, let B = (Bt)t≥0 be a d-dimensional Brownian motion and let N j =
(N j

t ) be a predictable process on R
d satisfying

E

[(∫ ∞

0

∣∣N j
s

∣∣2 ds

)2
]

< ∞

for every j = 1, 2, 3, · · · , where | · | stands for the Euclidean norm on R
d.

Denote for every j = 1, 2, 3, . . .

M j
t ≡

∫ t

0
N j

s · dBs and 〈M j〉∞ ≡
∫ ∞

0
|N j

t |2dt.

Then the following corollary extends the result in [1].

Corollary 2.2. Let 0 < p < ∞ and let M j (j = 1, 2, 3, . . . ) be defined as
above. Then the inequalities

cn,p

∥∥∥∥(
∞∑

j=1

〈M j〉n∞
)1/2

∥∥∥∥
p

≤
∥∥∥∥(sup

t≥0

∞∑
j=1

H2
n(M j

t , 〈M j〉t)
)1/2

∥∥∥∥
p

and ∥∥∥∥(sup
t≥0

∞∑
j=1

H2
n(M j

t , 〈M j〉t)
)1/2

∥∥∥∥
p

≤ Cn,p

∥∥∥∥(
∞∑

j=1

〈M j〉n∞
)1/2

∥∥∥∥
p

hold for all n ≥ 1.

§3. A discrete analogue

In this section, we consider the discrete analogue of Hn(X, 〈X〉).
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Let f = (fn,Fn) be a martingale with its difference d = (dk) and f0 =
d0 = 0. Define the iteration I(m)(f) = (I(m)

n (f), (Fn)) (m ≥ 0) of martingale
transforms inductively by

I(m)
n (f) = m

n∑
k=0

I
(m−1)
k−1 (f)dk and I

(m)
−1 = 0 (m ≥ 0)(3.1)

with

I(0)
n (f) = 1 and I(1)

n (f) = fn for n = 0, 1, 2, . . . ,

which are the discrete analogue of the iterated stochastic integrals. It is clear
that the identity (3.1) is equivalent to

I(m)
n (f) − I

(m)
n−1(f) = mI

(m−1)
n−1 (f)dn and I

(m)
−1 = 0 (m ≥ 0).

The next lemma is the discrete analogue of Lemma 2.1 with β = α = 1.

Lemma 3.1. Let A and B be two non-negative, (Fn)–adapted, increasing ran-
dom sequence with A0 = 0 and B0 = 0. If

E [A∞ − AT−1] ≤ CE
[
B∞1{T<∞}

]
holds for all stopping times T , then, for any 1 ≤ p < ∞, we have

E [Ap
∞] ≤ cpE [Bp

∞] .

For the proof of the lemma, see [6] or Remark 1 in [7, p.87]. By using the
lemma above, similar to the proof of Lemma 2.2, we can give the following.

Lemma 3.2. Let {f j = (f j
n,Fn), j = 1, 2, . . . } be a sequence of martingales

with their differences {d(j) = (dk,j), j = 1, 2, . . . } and 1 ≤ p < ∞. Then the
inequality ∥∥∥∥sup

n≥0

∞∑
j=1

|f j
n|m
∥∥∥∥

p

≤ Cm,p

∥∥∥∥
∞∑

j=1

Sm(f j)
∥∥∥∥

p

(3.2)

holds for all m ≥ 1, where

S2
n(f j) =

n∑
k=0

d2
k,j and S2(f j) = S2

∞(f j).

Theorem 3.1. Let 1 ≤ p < ∞ and m ≥ 1. Then the inequality∥∥∥∥sup
n≥0

∞∑
j=1

(
I(m−i)
n (f j)

)m/(m−i)
∥∥∥∥

p

≤ Cm,p

∥∥∥∥
∞∑

j=1

Sm(f j)
∥∥∥∥

p

(3.3)

holds for all 0 ≤ i < m.
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Proof. Let m ≥ 1, 0 ≤ i < m and 1 ≤ p < ∞. From the definition of I(m)(f j),
we see that there are some constants Ck ≥ 0, k = 0, 1, . . . ,m − i such that

I(m−i)
n (f j) ≤

m−i∑
k=0

Ck|f j
n|m−i−kSk

n(f j)

and so (
I(m−i)
n (f j)

) m
m−i ≤ (m − i)

m
m−i

−1
m−i∑
k=0

(Ck)
m

m−i |f j
n|

m(m−i−k)
m−i S

mk
m−i
n (f j)(3.4)

for all j.
On the other hand, for all 1 ≤ k < m− i by applying the Hölder inequality

with exponents s = m−i
m−i−k and r = m−i

k and Lemma 3.2, we get

∥∥∥∥sup
n≥0

∞∑
j=1

|f j
n|

m(m−i−k)
m−i S

km
m−i
n (f j)

∥∥∥∥
p

≤
∥∥∥∥sup

n≥0

∞∑
j=1

|f j
n|m
∥∥∥∥

m−i−k
m−i

p

∥∥∥∥
∞∑

j=1

Sm(f j)
∥∥∥∥

k
m−i

p

≤ Cm,p

∥∥∥∥
∞∑

j=1

Sm(f j)
∥∥∥∥

p

.

It follows from (3.4) that∥∥∥∥sup
n≥0

∞∑
j=1

(
I(m−i)
n (f j)

) m
m−i

∥∥∥∥
p

≤ (m − i)
m

m−i
−1

∥∥∥∥sup
n≥0

∞∑
j=1

|f j
n|m
∥∥∥∥

p

+

(m − i)
m

m−i
−1

m−i∑
k=1

(Ck)
m

m−i

∥∥∥∥sup
n≥0

∞∑
j=1

|f j
n|

m(m−i−k)
m−i S

km
m−i
n (f j)

∥∥∥∥
p

≤ Cm,p

∥∥∥∥
∞∑

j=1

Sm(f j)
∥∥∥∥

p

.

This completes the proof.

Corollary 3.1. Under the conditions of Theorem 3.1, we have∥∥∥∥sup
n≥0

∞∑
j=1

(
I(m)
n (f j)

)∥∥∥∥
p

≤ Cm,p

∥∥∥∥
∞∑

j=1

Sm(f j)
∥∥∥∥

p

for all m ≥ 1.

Now, as usual, denote

s2
n(f) =

n∑
k=1

E
[
(fk − fk−1)2 | Fk−1

]
and s(f) = s∞(f)

for a martingale f = (fn,Fn) with f0 = 0. Then we have
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Corollary 3.2. Under the conditions of Theorem 3.1, the inequalities

∥∥∥∥
∞∑

j=1

s
(
I(m)(f j)

)∥∥∥∥
p

≤ Cm,p

∥∥∥∥
∞∑

j=1

Sm(f j)
∥∥∥∥

(m−1)/m

p

∥∥∥∥
∞∑

j=1

sm(f j)
∥∥∥∥

1/m

p

(3.5)

holds for all 1 ≤ p < ∞ and m = 1, 2, 3, . . . .

Proof. Let m ≥ 1 and 1 ≤ p < ∞.
Observe that I

(m)
k (f j) is Fk–measurable for every j ≥ 1, we have

sn

(
I(m)(f j)

)
=

(
n∑

k=1

E

[(
I
(m)
k (f j) − I

(m)
k−1(f

j)
)2 ∣∣∣ Fk−1

])1/2

=

(
n∑

k=1

E

[(
I
(m−1)
k−1 (f j)

)2
d2

k,j

∣∣∣ Fk−1

])1/2

=

(
n∑

k=1

(
I
(m−1)
k−1 (f j)

)2
E
[
d2

k,j

∣∣∣ Fk−1

])1/2

≤ sup
0≤k≤n

I
(m−1)
k (f j)sn(f j),

which gives (3.5) by applying the Hölder inequality with exponents r = m and
s = m/(m − 1) and Theorem 3.1.
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