(p, q, r)-Generations and $n X$-Complementary Generations of the Thompson Group $T h$

Ali Reza Ashrafi
(Received October 30, 2002; Revised June 8, 2003)

Abstract

A group G is said to be (l, m, n)-generated if it is a quotient group of the triangle group $T(l, m, n)=\left\langle x, y, z \mid x^{l}=y^{m}=z^{n}=x y z=1\right\rangle$. In 1993 J . Moori posed the question of finding all triples (l, m, n) such that a given non-abelian finite simple group is (l, m, n)-generated. In this paper we partially answer this question for the Thompson group $T h$. In fact we study (p, q, r)-generation, where p, q and r are distinct primes, and $n X$-complementary generations of the Thompson group Th

AMS 2000 Mathematics Subject Classification. 20D08, 20F05.
Key words and phrases. Thompson group, (p, q, r)-generation, $n X$-complementary generation, sporadic group, triangle group.

§1. Introduction

Let G be a group and $n X$ a conjugacy class of elements of order n in G. Following Woldar [26], the group G is said to be $n X$-complementary generated if, for any arbitrary non-identity element $x \in G$, there exists a $y \in n X$ such that $G=\langle x, y\rangle$. The element $y=y(x)$ for which $G=\langle x, y>$ is called complementary. Furthermore, a group G is said to be $(l X, m Y, n Z)$-generated (or (l, m, n)-generated for short) if there exist $x \in l X, y \in m Y$ and $z \in n Z$ such that $x y=z$ and $G=<x, y>$. If G is (l, m, n)-generated, then we can see that for any permutation π of S_{3}, the group G is also $((l) \pi,(m) \pi,(n) \pi)$-generated. Therefore we may assume that $l \leq m \leq n$. By [3], if the non-abelian simple group G is (l, m, n)-generated, then either $G \cong A_{5}$ or $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}<1$. Hence for a non-abelian finite simple group G and divisors l, m, n of the order of G such that $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}<1$, it is natural to ask if G is a (l, m, n)-generated group. The motivation for this question came from the calculation of the genus of finite simple groups [27]. It can be shown that the problem of finding the genus of a finite simple group can be reduced to one of generations.

Moori in [20], posed the problem of finding all triples (l, m, n) such that a given non-abelian finite simple group G is (l, m, n)-generated. In a series of papers [13-17] and [20,21], Moori and Ganief established all possible (p, q, r)generations and $n X$-complementary generations of the sporadic groups J_{1}, J_{2}, $J_{3}, J_{4}, H S, M c L, C o_{2}, C o_{3}$, and F_{22}, for distinct primes p, q, r and element orders n of $|G|$. Also, the author in [2] and [6-12](joint work) did the same work for the sporadic groups $C o_{1}, O N, R u$ and $L y$. The motivation for this study is outlined in these papers and the reader is encouraged to consult these papers for background material as well as basic computational techniques.

Throughout this paper we use the same notation as in the mentioned papers. In particular, $\Delta(G)=\Delta(l X, m Y, n Z)$ denotes the structure constant of G for the conjugacy classes $l X, m Y, n Z$, whose value is the cardinality of the set $\Lambda=\{(x, y) \mid x y=z\}$, where $x \in l X, y \in m Y$ and z is a fixed element of the conjugacy class $n Z$. In Table IV, we list the values $\Delta(p X, q Y, r Z)$, where p, q and r are distinct prime divisors of $|T h|$, using the character table $T h$. Also, $\Delta^{\star}(G)=\Delta_{G}^{\star}(l X, m Y, n Z)$ and $\Sigma\left(H_{1} \cup H_{2} \cup \cdots \cup H_{r}\right)$ denote the number of pairs $(x, y) \in \Lambda$ such that $G=\langle x, y\rangle$ and $\langle x, y\rangle \subseteq H_{i}$ (for some $1 \leq i \leq r$), respectively. The number of pairs $(x, y) \in \Lambda$ generating a subgroup H of G will be given by $\Sigma^{\star}(H)$ and the centralizer of a representative of $l X$ will be denoted by $C_{G}(l X)$. A general conjugacy class of a subgroup H of G with elements of order n will be denoted by $n x$. Clearly, if $\Delta^{\star}(G)>0$, then G is $(l X, m Y, n Z)$-generated and $(l X, m Y, n Z)$ is called a generating triple for G. The number of conjugates of a given subgroup H of G containing a fix element z is given by $\chi_{N_{G}(H)}(z)$, where $\chi_{N_{G}(H)}$ is the permutation character of G with action on the conjugates of H (cf. [25]). In most cases we will calculate this value from the fusion map from $N_{G}(H)$ into G stored in GAP, [22].

Now we discuss techniques that are useful in resolving generation type questions for finite groups. We begin with a theorem that, in certain situations, is very effective at establishing non-generations.

Theorem 1.1. ([4]) Let G be a finite centerless group and suppose $l X, m Y$ and $n Z$ are G-conjugacy classes for which $\Delta^{\star}(G)=\Delta_{G}^{\star}(l X, m Y, n Z)<\left|C_{G}(z)\right|, z$ $\in n Z$. Then $\Delta^{\star}(G)=0$ and therefore G is not $(l X, m Y, n Z)$-generated.

A further useful result that we shall often use is a result from Conder, Wilson and Woldar [4], as follows:

Lemma 1.2. If G is $n X$-complementary generated and $(s Y)^{k}=n X$, for some integer k, then G is s Y-complementary generated.

Further useful results that we shall use are:
Lemma 1.3.([15]). If G is $(2 X, s Y, t Z)$-generated simple group then G is
$\left(s Y, s Y,(t Z)^{2}\right)$-generated.
Lemma 1.4. Let G be a finite simple group and H a maximal subgroup of G containing a fixed element x. Then the number h of conjugates of H containing x is $\chi_{H}(x)$, where χ_{H} is the permutation character of G with action on the conjugates of H. In particular,

$$
h=\sum_{i=1}^{m} \frac{\left|C_{G}(x)\right|}{\left|C_{H}\left(x_{i}\right)\right|}
$$

where $x_{1}, x_{2}, \cdots, x_{m}$ are representatives of the H-conjugacy classes that fuse to the G-conjugacy class of x.

In the present paper we investigate the (p, q, r)-generation and $n X$-complementary generation for the Thompson group $T h$, where p, q and r are distinct primes and n is an element order. We prove the following results:

Theorem A. The Thompson group Th is (p, q, r)-generated if and only if $(p, q, r) \neq(2,3,5)$.

Theorem B. The Thompson group $T h$ is $n X$-complementary generated if and only if $n X \notin\{1 A, 2 A\}$.

§2. ($p, q, r)$-Generations of $T h$

In this section we obtain all the $(p X, q Y, r Z)$-generations of the Thompson group $T h$, which is a sporadic group of order $2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13 \cdot 19 \cdot 31$. Since $31 A^{-1}=31 B$, hence, the group $T h$ is $(p X, q Y, 31 A)$-generated if and only if it is $(p X, q Y, 31 B)$-generated. Therefore, it is enough to investigate the ($p X, q Y, 31 A$)-generation of $T h$.

We will use the maximal subgroups of $T h$ listed in the ATLAS extensively, especially those with order divisible by 13 (for details see [18] and [19]). We listed in Table I, all the maximal subgroups of $T h$ and in Table V, the partial fusion maps of these maximal subgroups into $T h$ (obtained from GAP) that will enable us to evaluate $\Delta_{T h}^{\star}(p X, q Y, r Z)$, for prime classes $p X, q Y$ and $r Z$. In this table h denotes the number of conjugates of the maximal subgroup H containing a fixed element z (see Lemma 1.4). For basic properties of the Thompson group $T h$ and information on its maximal subgroups the reader is referred to [5]. It is a well known fact that $T h$ has exactly 16 conjugacy classes of maximal subgroups, as listed in Table I.

If the group $T h$ is $(2,3, p)$-generated, then by the Conder's result [3], $\frac{1}{2}+$ $\frac{1}{3}+\frac{1}{p}<1$. Thus we only need to consider the cases $p=7,13,19,31$.

Table I
The Maximal Subgroups of $T h$

Group	Order	Group	Order
${ }^{3} D_{4}(2) \cdot 3$	$2^{12} \cdot 3^{5} \cdot 7^{2} \cdot 13$	$2^{5} \cdot P S L(5,2)$	$2^{15} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$
$2^{1+8} \cdot A_{9}$	$2^{15} \cdot 3^{4} \cdot 5 \cdot 7$	$U_{3}(8) \cdot 6$	$2^{10} \cdot 3^{5} \cdot 7 \cdot 19$
$\left(3 \times G_{2}(3)\right): 2$	$2^{7} \cdot 3^{7} \cdot 7 \cdot 13$	$T h N 3 B$	$2^{4} \cdot 3^{10}$
$T h M 7$	$2^{4} \cdot 3^{10}$	$3^{5}: 2 S_{6}$	$2^{5} \cdot 3^{7} \cdot 5$
$5^{1+2} .4 S_{4}$	$2^{5} \cdot 3 \cdot 5^{3}$	$5^{2}: 4 S_{5}$	$2^{5} \cdot 3 \cdot 5^{3}$
$7^{2}:\left(3 \times 2 S_{4}\right)$	$2^{4} \cdot 3^{2} \cdot 7^{2}$	$L_{2}(19) \cdot 2$	$2^{3} \cdot 3^{2} \cdot 5 \cdot 19$
$L_{3}(3)$	$2^{4} \cdot 3^{3} \cdot 13$	$A_{6} \cdot 23$	$2^{4} \cdot 3^{2} \cdot 5$
$31: 15$	$3 \cdot 5 \cdot 31$	$A_{5} \cdot 2$	$2^{3} \cdot 3 \cdot 5$

Woldar, in [27] determined which sporadic groups other than $F_{22}, F_{23}, F_{24}^{\prime}$, $T h, J_{4}, B$ and M are Hurwitz groups, i.e. generated by elements x and y with order $o(x)=2, o(y)=3$ and $o(x y)=7$. In fact, G is a Hurwitz group if and only if G is $(2,3,7)$-generated. Next, Linton [18], proved that the Thompson group $T h$ is Hurwitz.

For the sake of completeness, in the following lemma, we prove that $T h$ is a Hurwitz group. Therefore, $T h$ is $(2,3,7)$-generated.

Lemma 2.1. The Thompson group Th is not $(2 A, 3 A, 7 A)$ - and $(2 A, 3 B, 7 A)$ generated, but it is $(2 A, 3 C, 7 A)$-generated.

Proof. From the structure constants, Table iV, we can see that $\Delta_{T h}(2 A, 3 A$, $7 A)<\left|C_{T h}(7 A)\right|$. So, by Theorem 1.1, $\Delta^{\star}(G)=0$ and therefore $T h$ is not ($2 A, 3 A, 7 A$)-generated. We now consider two cases.

Case $(2 A, 3 B, 7 A)$. The maximal subgroups of $T h$ that may contain $(2 A, 3 B, 7 A)$-generated proper subgroups are isomorphic to ${ }^{3} D_{4}(2) .3,2^{1+8} . A_{9}$, $U_{3}(8) .6$ and $\left(3 \times G_{2}(3)\right): 2$. We calculate that $\Delta(T h)=1372$ and $\Sigma\left({ }^{3} D_{4}(2) .3\right)$ $=343$. Our calculations give:

$$
\Delta^{\star}(T h) \leq \Delta(T h)-343=1029<1176=\left|C_{T h}(7 A)\right| .
$$

Thus, by Theorem 1.1, $\Delta^{\star}(T h)=0$, which shows the non-generation of this triple.

Case $(2 A, 3 C, 7 A)$. From the list of maximal subgroups of $T h$, Table I, we observe that, up to isomorphisms, ${ }^{3} D_{4}(2) .3,2^{5} . P S L(5,2), 2^{1+8} . A_{9}, U_{3}(8) .6$, $\left(3 \times G_{2}(3)\right): 2$ and $7^{2}:\left(3 \times 2 S_{4}\right)$ are the only maximal subgroups of $T h$ that admit $(2 A, 3 C, 7 A)$-generated subgroups. From the structure constants, Table IV, we calculate $\Delta(T h)=4704, \Sigma\left({ }^{3} D_{4}(2) \cdot 3\right)=\Sigma\left(2^{5} . \operatorname{PSL}(5,2)\right)=$ $\Sigma\left(2^{1+8} . A_{9}\right)=\Sigma\left(U_{3}(8) .6\right)=\Sigma\left(7^{2}:\left(3 \times 2 S_{4}\right)\right)=0$ and $\Sigma\left(\left(3 \times G_{2}(3)\right): 2\right)=42$. Thus, $\Delta^{\star}(T h) \geq 4704-28.42>0$. This shows that the Thompson group $T h$ is $(2 A, 3 C, 7 A)$-generated, proving the lemma.

By the previous lemma, $T h$ is a Hurwits group. In the following results we not only prove for certain triples (p, q, r) that $T h$ is (p, q, r)-generated, but we also find all generating triples $(p X, q Y, r Z)$. We will use some of these generating triples later to find conjugacy classes $n X$ for which $T h$ is $n X$ complementary generated.

Lemma 2.2. The Thompson group Th is $(2 A, 3 X, p Y)$-generated if and only $p \geq 7$ and $(3 X, p Y) \notin\{(3 A, 7 A),(3 B, 7 A),(3 A, 13 A)\}$.

Proof. As we mentioned above, $T h$ is not $(2,3,5)$-generated. Also, by Lemma 2.1, $T h$ is not $(2 A, 3 A, 7 A)$ - and $(2 A, 3 B, 7 A)$-generated. We now prove the non-generation of the triple $(2 A, 3 A, 13 A)$. Amongst the maximal subgroups of $T h$ with order divisible by $2 \times 3 \times 13$, the only maximal subgroups with nonempty intersection with any conjugacy class in this triple are isomorphic to ${ }^{3} D_{4}(2) .3$ and $\left(3 \times G_{2}(3)\right): 2$. We can see that $\Delta(T h)=156, \Sigma\left({ }^{3} D_{4}(2) .3\right)=39$ and $\Sigma\left(\left(3 \times G_{2}(3)\right): 2\right)=39$. Furthermore, a fixed element of order 13 is contained in three conjugate subgroups of $\left.{ }^{3} D_{4}(2) .3\right)=39$ and one conjugate copy of $\left(3 \times G_{2}(3)\right): 2($ see Table V).

Table II

Partial Fusion Maps of ${ }^{3} D_{4}(2)$ into ${ }^{3} D_{4}(2) .3$ and ${ }^{3} D_{4}(2) .3$ into $T h$

${ }^{3} D_{4}(2)$-classes	$2 a^{\prime}$	$2 b^{\prime}$	$3 a^{\prime}$	$3 b^{\prime}$	$7 a^{\prime}$	$7 b^{\prime}$	$7 c^{\prime}$	$7 d^{\prime}$	$13 a^{\prime}$	$13 b^{\prime}$	$13 c^{\prime}$
$\rightarrow{ }^{3} D_{4}(2) .3$	2 a	2 b	3 a	3 b	7 a	7 a	7 a	7 b	13 a	13 a	13 a
$\rightarrow T h$	2 A	2 A	3 A	3 B	7 A	7 A	7 A	7 A	13 A	13 A	13 A

Consider the subgroup $H={ }^{3} D_{4}(2)$ of $T h$. In Table I, we obtain the partial fusion map of this subgroup into ${ }^{3} D_{4}(2) .3$ and ${ }^{3} D_{4}(2) .3$ into $T h$. From the character table of $T h$ [5], we can see that H is a maximal subgroup of ${ }^{3} D_{4}(2) .3$ and ${ }^{3} D_{4}(2) .3$ is a maximal subgroup of $T h$. Consider the triple $(2 b, 3 a, 13 a)$. Then H is a maximal subgroup of ${ }^{3} D_{4}(2) .3$ with order divisible by 13 and non-empty intersection with the classes $2 \mathrm{~b}, 3 \mathrm{a}$ and 13 a . We calculate that $\Delta(T h)=156, \Sigma(H)=117$. Since H does not have a maximal subgroup with order divisible by $2 \times 3 \times 13, \Delta^{\star}\left({ }^{3} D_{4}(2) .3\right)(2 b, 3 a, 13 a)=117$. On the other hand, $\Sigma\left(\left(3 \times G_{2}(3)\right): 2\right)=39$ and $\Sigma\left(\left(3 \times G_{2}(3)\right): 2\right)$ does not have a subgroup isomorphic to H. Therefore, there exists at least one pair (x, y) such that $x \in 2 A, y \in 3 A, x y \in 13 A$ and $<x, y>$ is a subgroup of $\left(3 \times G_{2}(3)\right): 2$, but it is not a subgroup of ${ }^{3} D_{4}(2) .3$. This shows that

$$
\Delta^{\star}(T h) \leq 156-117-1=38<39=\left|C_{T h}(13 A)\right|
$$

and non-generation of $T h$ by this triple follows from Theorem 1.1. We now prove the $(2 A, 3 X, p Y)$ - generations of other triples. We will treat each triple separately.

Case $(2 A, 3 A, 13 A)$. From the list of maximal subgroups of $T h$, we observe that, up to isomorphisms, $U_{3}(8) .6$ is the only maximal subgroup of $T h$ that admit $(2 A, 3 A, 13 A)$-generated subgroups. From the structure constants, we calculate $\Delta(T h)=19$ and $\Sigma\left(U_{3}(8) .6\right)=0$. Thus, $\Delta^{\star}(T h)=\Delta(T h)=19>0$. This shows that the Thompson group $T h$ is $(2 A, 3 A, 13 A)$-generated.

Case $(2 A, 3 B, 13 A)$. The maximal subgroups of $T h$ that have non-empty intersection with the classes $2 A, 3 B$ and $13 A$ are, up to isomorphism, ${ }^{3} D_{4}(2) .3$, $\left(3 \times G_{2}(3)\right): 2$ and $L_{3}(3)$. We calculate that $\Delta(T h)=1261, \Sigma\left({ }^{3} D_{4}(2) .3\right)=91$, $\Sigma\left(\left(3 \times G_{2}(3)\right): 2\right)=13$ and $\Sigma\left(L_{3}(3)\right)=52$. From Table V it follows that

$$
\Delta^{\star}(T h) \geq 1261-3(91)-13-12(52)=351
$$

and hence $T h$ is $(2 A, 3 B, 13 A)$-generated.
Using similar argument as in above, we can prove the generation of other triples.

Lemma 2.3. Let $5 \leq p<q$ are prime divisors of $|T h|$. Then the Thompson group Th is (2A, $p X, q Y)$-generated.

Proof. Set $K=\{(5 A, 13 A),(13 A, 19 A),(13 A, 31 A),(19 A, 31 A)\}$. From Table V, we can see that for every pairs $(p X, q Y)$ in the set K, there is no maximal subgroups that contains ($2 A, p X, q Y$)-generated proper subgroups. Therefore, $\Delta^{\star}(T h)=\Delta(T h)>0$, and so $T h$ is $(2 A, p X, q Y)$-generated. On the other hand, we can see that $2^{5} . \operatorname{PSL}(5,2)$ is, up to isomorphism, the only maximal subgroup of $T h$ which intersects the conjugacy classes $2 A, 7 A$ and $31 A$. Since $\Sigma\left(2^{5} . P S L(5,2)\right)=0, T h$ is $(2 A, 7 A, 31 A)$-generated. We investigate another triples case by case.

Case $(2 A, 5 A, 7 A)$. The only maximal subgroups that may contain $(2 A$, $5 A, 7 A)$ - generated subgroups are isomorphic to $2^{5} . P S L(5,2)$ and $2^{1+8} . A_{9}$. We calculate that

$$
14 \Sigma\left(2^{5} \cdot P S L(5,2)\right)+21 \Sigma\left(2^{1+8} \cdot A_{9}\right)=14(672)+21(224)=14112
$$

Since $\Delta(T h)=362208$, we have $\Delta^{\star}(T h)>0$. This proves generation by this triple.

Case $(2 A, 5 A, 19 A)$. From the list of maximal subgroups of $T h$ we observe that, up to isomorphisms, $L_{2}(19) .2$ is the only maximal subgroup of $T h$ that admit $(2 A, 5 A, 19 A)$-generated subgroups. From the structure constants, Table IV, we calculate $\Delta(T h)=342304$ and $\Sigma\left(L_{2}(19) .2\right)=38$. Thus, $\Delta^{\star}(T h) \geq \Delta(T h)-38>0$. This shows that the Thompson group $T h$ is ($2 A, 5 A, 19 A$)-generated.

Case $(2 A, 5 A, 31 A)$. In this case, $\Delta(T h)=320447$ and the only maximal subgroup with non-empty intersection with any conjugacy class in this triple
is isomorphic to $2^{5} . P S L(5,2)$. We calculate, $\Sigma\left(2^{5} . P S L(5,2)\right)=744$. Our calculations give, $\Delta^{\star}(T h) \geq \Delta(t h)-3(744)>0$. Therefore, $T h$ is $(2 A, 5 A, 31 A)$ generated.

Case $(2 A, 7 A, 13 A)$. Amongst the maximal subgroups of $T h$ with order divisible by $2 \times 7 \times 13$, the only maximal subgroups with non-empty intersection with any conjugacy class in this triple are isomorphic to ${ }^{3} D_{4}(2) .3$ and $(3 \times$ $\left.G_{2}(3)\right): 2$. Using Table I, we can see that $\Delta(T h)=819754, \Sigma\left({ }^{3} D_{4}(2) .3\right)=$ 1430 and $\Sigma\left(\left(3 \times G_{2}(3)\right): 2\right)=1066$. Our calculations give,

$$
\Delta^{\star}(T h) \geq \Delta(T h)-3(1430)-1066>0
$$

proving the generation of $T h$ by this triple.
Case $(2 A, 7 A, 19 A)$. We have $\Delta(T h)=753730$. The $(2 A, 7 A, 19 A)$ generated proper subgroups of $T h$ are contained in the maximal subgroups isomorphic to $U_{3}(8) .6$. We calculate further that $\Sigma\left(U_{3}(8) .6\right)=513$. From Table V we conclude that $\Delta^{\star}(T h) \geq 753730-513>0$ and the generation of Th by this triple follows. This completes the proof.

In the following lemma we determine all the generating triples $(p X, q Y$, $r Z$) for the group $T h$, where p, q, r are distinct odd primes.

Lemma 2.4. If p, q and r are odd primes, then the Thompson group $T h$ is ($p X, q Y, r Z$)-generated.

Proof. The proof is similar to Lemma 2.2 and 2.3 and it omitted.
We are now ready to state one of main results of this paper.
Theorem A. The Thompson group Th is (p, q, r)-generated if and only if $(p, q, r) \neq(2,3,5)$.

Proof. The proof follows from the Lemmas 2.1, 2.2, 2.3 and 2.4.

§3. $n X$-Complementary Generations of $T h$

In this section we investigate the $n X$-complementary generations of the Thompson group $T h$. Let G be a group and $n X$ be a conjugacy class of elements of order n in G. In [25], Woldar proved that every sporadic simple group is $p X$-complementary generated, for the greatest prime divisor p of the order of the group. Therefore, $T h$ is $31 X$-complementary generated.

As a consequence of a result in [26], a group G is $n X$-complementary generated if and only if G is $\left(p Y, n X, t_{p} Z\right)$-generated, for all conjugacy classes $p Y$ with representatives of prime order and some conjugacy class $t_{p} Z$ (depending
on $p Y$). Using this result, we obtain all of the conjugacy class $n X$ such that $T h$ is $n X$-complementary generated.

First of all, we show that $T h$ is not $2 X$-complementary generated. To see this, we notice that for any positive integer $n, T(2,2, n) \cong D_{2 n}$, the dihedral group of order $2 n$. Thus if G is a finite group which is not isomorphic to some dihedral group, then G is not $(2 X, 2 X, n Y)$-generated, for all classes of involutions and any G-class $n Y$. Thus, $T h$ is not $2 X$-complementary generated.

In [26], Woldar proved that every sporadic simple group is $p X$ - complementary generated, for the greatest prime divisor p of the order of the group. So, $T h$ is $31 A$ - and $31 B$-complementary generated.

Lemma 3.1. The Thompson group Th is $3 X$-complementary generated.
Proof. By Lemmas 1.3, 2.1, 2.2 and 2.3, it is enough to show that there are the conjugacy classes $t_{1} Z, t_{2} Z$ and $t_{3} Z$ such that $T h$ is $\left(3 A, 3 B, t_{1} Z\right)-$, $\left(3 A, 3 C, t_{2} Z\right)-$, and $\left(3 B, 3 C, t_{3} Z\right)$-generated. Suppose $t_{1} Z=31 A, t_{2} A=$ $t_{3} Z=19 A$. From Table V, we can see that there is no maximal subgroups contains the triple $\left(3 A, 3 B, t_{1} Z\right)$. Since $\Delta_{T h}\left(3 A, 3 B, t_{1} Z\right)=14880, \Delta^{\star}(T h)=$ $\Delta(T h)>0$. This proves the generation by this triple. For other triples, $\Delta_{T h}(3 A, 3 C, 19 A)=39990, \Delta_{T h}(3 B, 3 C, 19 A)=1072848$ and the only maximal subgroups that may contain $(3 A, 3 C, 19 A)-$ or $(3 B, 3 C, 19 A)$-generated subgroups is isomorphic to $U_{3}(8) .6$. Next we calculate

$$
\begin{aligned}
\Delta_{T h}^{\star}(3 A, 3 C, 19 A) & \geq \Delta_{T h}(3 A, 3 C, 19 A)-\Sigma\left(U_{3}(8) .6\right) \\
& =39990-380>0 \\
\Delta_{T h}^{\star}(3 B, 3 C, 19 A) & \geq \Delta_{T h}(3 B, 3 C, 19 A)-\Sigma\left(U_{3}(8) .6\right) \\
& =1072848-0>0
\end{aligned}
$$

proving the generation of $T h$ by these triples.
Lemma 3.2. The Thompson group $T h$ is $p X$-complementary generated, for every prime class $p X$ with $p \geq 5$.

Proof. By a result of Woldar, mentioned above, $T h$ is $31 X$-complementary generated. Suppose $p X, 5 \leq p \leq 19$, is a conjugacy class with prime order representatives and $q Y$ is another conjugacy class with prime order representatives and $q \neq p$. We consider a conjugacy class in the form $t_{p} Z$, where t_{p} is a prime divisor of $|T h|$ different from p and q. Then by Lemmas [2.1-2.4], Th is $\left(q Y, p X, t_{p} Z\right)$-generated. Therefore, it remains to investigate the case $q=p$. Apply Lemma 1.3, we can see that $T h$ is $\left(p X, p X, t_{p} Z\right)$-generated, for some prime class $t_{p} Z$. Therefore, $T h$ is $p X$-complementary generated, proving the lemma.

Lemma 3.3. The Thompson group $T h$ is $4 X$-complementary generated.

Proof. First of all, we assume that $X=A$. For every conjugacy class $p Y$ with prime order representatives, we define $t_{p} Y=19 A$. From the list of maximal subgroups of $T h$ we observe that, up to isomorphisms, $U_{3}(8) .6$ is the only maximal subgroup of $T h$ that admit ($p Y, 4 A, 19 A$)-generated subgroups. Then we have,

$$
\Delta^{\star}(T h)=\Delta(T h)-\Sigma\left(U_{3}(8) .6\right)>0
$$

Therefore, $T h$ is $4 A$-complementary generated. We next suppose that $X=B$. In this case, for any prime class $p Y$, we define $t_{p} Y=31 A$. The $(p Y, 4 B, 31 A)-$ generated proper subgroups of $T h$ are contained in the maximal subgroups isomorphic to $2^{5} . P S L(5,2)$. Now with the tedious calculations we can see that

$$
\Delta^{\star}(T h)=\Delta(T h)-\Sigma\left(2^{5} . P S L(5,2)\right)>0
$$

This proves generation by these triples.
Lemma 3.4. The Thompson group $T h$ is $n X$-complementary generated, for every element order $n \geq 5$.

Proof. In Table III, we compute the power maps of $T h$. The lemma now follows from Lemmas 3.1-3.3 and Lemma 1.2.

We are now ready to state the second main results of this paper.
Theorem B. The Thompson group Th is $n X$-complementary generated if and only if $n X \notin\{1 A, 2 A\}$.

Proof. The result follows from Lemmas 3.1-3.4.
Acknowledgment. The author would like to thank the referee for his/her helpful remarks. He also would like to thank the University of Kashan for the opportunity of taking a sabbatical leave during which this work was done, and the Department of Mathematics of UMIST for its warm hospitality.

Table III
The Power Maps of $T h$

$(6 A)^{2}=3 C$	$(6 B)^{2}=3 A$	$(6 C)^{2}=3 B$	$(8 A)^{2}=4 A$	$(8 B)^{2}=4 B$
$(9 A)^{3}=3 B$	$(9 B)^{3}=3 B$	$(9 C)^{3}=3 C$	$(10 A)^{2}=5 A$	$(12 A)^{2}=6 B$
$(12 B)^{2}=6 B$	$(12 C)^{2}=6 C$	$(12 D)^{2}=6 A$	$(14 A)^{2}=7 A$	$(15 A)^{3}=5 A$
$(15 B)^{3}=5 A$	$(18 A)^{3}=6 C$	$(18 B)^{3}=6 C$	$(20 A)^{2}=10 A$	$(21 A)^{3}=7 A$
$(24 A)^{2}=12 A$	$(24 B)^{2}=12 B$	$(24 C)^{2}=12 C$	$(24 D)^{2}=12 C$	$(27 A)^{3}=9 B$
$(27 B)^{3}=9 B$	$(27 C)^{3}=9 B$	$(28 A)^{2}=14 A$	$(30 A)^{2}=15 A$	$(30 B)^{2}=15 B$
$(36 A)^{2}=18 A$	$(36 B)^{2}=18 A$	$(36 C)^{2}=18 A$	$(39 A)^{3}=13 A$	$(39 B)^{3}=13 A$

Table IV
The Structure Constants of $T h$

$p Y$	$\Delta(2 A, 3 A, p Y)$	$\Delta(2 A, 3 B, p Y)$	$\Delta(2 A, 3 C, p Y)$	$\Delta(2 A, 5 A, p Y)$
$7 A$	252	1372	4704	362208
$13 A$	156	1261	6240	339417
$19 A$	19	2166	6194	342304
$31 A$	62	$-\Delta 19$	5084	320447
$p Y$	$\Delta(2 A, 7 A, p Y)$	-	-	$(3 A, 5 A, p Y)$
$7 A$	-	-	-	1411200
$13 A$	819754	24015278	-	1964898
$19 A$	753730	25269867	50957738	2103528
$31 A$	795770	-	$-19 A, p Y)$	2375406
$p Y$	$\Delta(3 A, 7 A, p Y)$	-	-	$\Delta(3 A, 19 A, p Y)$
$7 A$	-	-	-	58788240
$13 A$	8386794	-	-	61977591
$19 A$	7067620	-	-	61643904
$31 A$	5965578	-	-	64174185
$p Y$	$\Delta(3 B, 7 A, p Y)$	$\Delta(3 B, 13 A, p Y)$	$\Delta(3 B, 19 A, p Y)$	$\Delta(3 C, 5 A, p Y)$
$7 A$	-	-	-	192734640
$13 A$	168499786	-	-	178301682
$19 A$	173570434	5014848258	-	177905664
$31 A$	162605974	4935510837	10083933766	172500678
$p Y$	$\Delta(3 C, 7 A, p Y)$	$\Delta(3 C, 13 A, p Y)$	$\Delta(3 C, 19 A, p Y)$	$\Delta(5 A, 7 A, p Y)$
$13 A$	421466526	-	-	24924811392
$19 A$	419563890	13084126902	-	25096768640
$31 A$	440991306	13299654348	27316460898	25723011856
$p Y$	$\Delta(5 A, 13 A, p Y)$	$\Delta(5 A, 19 A, p Y)$	$\Delta(7 A, 13 A, p Y)$	$\Delta(7 A, 19 A, p Y)$
$19 A$	769350038016	-	2002364205478	-
$31 A$	775606154625	1591873859584	1978741938906	4061042386610
$p Y$	$\Delta(13 A, 19 A, p Y)$	-	-	-
$19 A$	122473293000346	-	-	-
			-	-180

Table V
Partial Fusion Maps of Maximal Subgroups into Th

${ }^{3} D_{4}(2) .3$-classes	2a	2b	3a	3b	3c	3d	3 e	3 f	4a	4b	4c
\rightarrow Th	2A	2A	3 A	3B	3 A	3A	3 C	3 C	4A	4A	4B
${ }^{3} D_{4}(2) .3$-classes	7 a	7 b	13a								
\rightarrow Th	7A	7A	13A								
h	9	9	3								
$2^{5} . P S L(5,2)$-classes	2a	2b	3 a	3b	4 a	4b	4 c	5 a	7 a	7b	31a
$\rightarrow T h$	2A	2A	3 C	3 A	4A	4B	4 B	5A	7A	7A	31A
h									14	14	3
$2^{5} . P S L(5,2)$-classes	31b	31c	31d	31 e	31f						
$\rightarrow T h$	31B	31A	31A	31B	31B						
h	3	3	3	3	3						
$2^{1+8} \cdot A_{9}$-classes	2a	2b	2c	3 a	3b	3c	5 a	7 a			
$\rightarrow T h$	2A	2A	2A	3 C	3B	3A	5A	7A			
h								21			
$U_{3}(8) .6$-classes	2 a	2b	3 a	3b	3c	3d	3 e	3 f	4 a	4b	7a
\rightarrow Th	2A	2 A	3 A	3B	3 A	3A	3C	3C	4A	4B	7A
h											28
$U_{3}(8) .6$-classes	19a										
$\rightarrow T h$	19A										
h	1										
$\left(3 \times G_{3}(2)\right): 2$-classes	2a	2b	3 a	3b	3c	3d	3 e	3 f	3 g	3h	3 i
$\rightarrow T h$	2A	2A	3 A	3B	3 A	3A	3 B	3A	3C	3B	3 A
$\left(3 \times G_{3}(2)\right): 2$-classes	3 j	7 a	13a								
$\rightarrow T h$	3 C	7A	13A								
h		28	1								
ThN3B-classes	2a	2b	3 a	3b	3c	3d	3 e	3 f	3 g	3h	3 i
$\rightarrow T h$	2 A	2A	3B	3B	3 A	3A	3B	3C	3A	3B	3 C
ThN3B-classes	3 j	3 k	31	3 m	3 n	30	3p	3 q			
$\rightarrow T h$	3 A	3C	3B	3B	3 C	3 C	3B	3 C			

Table V (Continued)

ThM7-classes	2 a	2b	3 a	3b	3c	3d	3 e	3 f	3 g	3h	3 i
\rightarrow Th	2A	2A	3B	3C	3B	3A	3A	3B	3C	3B	3C
ThM7-classes	3 j	3 k									
\rightarrow Th	3B	3C									
L_{2} (19).2-classes	2 a	2 b	3 a	5a	5b	19a					
\rightarrow Th	2A	2A	3B	5A	5A	19A					
h						1					
$3^{5} .2 S_{6}$-classes	2 a	2b	3 a	3b	3c	3d	3 e	3 f	3 g	3h	3 i
\rightarrow Th	2A	2A	3C	3B	3C	3A	3B	3B	3B	3C	3C
$3^{5} .2 S_{6}$-classes	3 j	3 k	31	3 m	3 n	30	3 p	3 q	3 r	3 s	3 t
\rightarrow Th	3C	3B	3C	3 C	3A	3 C	3 C	3 C	3B	3B	3C
$3^{5} .2 S_{6}$-classes	5 a										
\rightarrow Th	5A										
$5^{1+2} .4 S_{4}$-classes	2a	2b	3 a	5a	5b						
\rightarrow Th	2A	2A	3C	5A	5A						
$5^{2} .4 S_{5}$-classes	2a	2 b	3 a	5a	5b	5c					
\rightarrow Th	2A	2A	3C	5A	5A	5A					
$7^{2}:\left(3 \times 2 S_{4}\right)$-classes	2 a	3 a	3 b	3c	3d	3 e	7 a				
\rightarrow Th	2 A	3C	3 C	3A	3 A	3 C	7A				
h							8				
$L_{3}(3)$-classes	2 a	3a	3b	13a	13b	13c	13d				
\rightarrow Th	2A	3B	3B	13A	13A	13A	13A				
h				12	12	12	12				
$A_{6} .2{ }_{3}$-classes	2a	3 a	5a								
\rightarrow Th	2A	3B	5A								
31: 15-classes	3 a	3b	5 a	5b	5c	5d	31a	31 b			
$\rightarrow T h$	3 C	3C	5A	5A	5A	5A	31A	31B			
h							1	1			
A_{5}.2-classes	2 a	2b	3 a	5a							
\rightarrow Th	2A	2A	3B	5A							

References

[1] M. Aschbacher, Sporadic group, Cambridge University Press, Cambridge, U.K., 1997.
[2] A. R. Ashrafi, Generating pairs for the Held group He, J. Appl. Math. \& Computing, 10(2002), 167-174.
[3] M. D. E. Conder, Some results on quotients of triangle groups, Bull. Austral. Math. Soc. 30(1984), 73-90.
[4] M. D. E. Conder, R. A. Wilson and A. J. Woldar, The symmetric genus of sporadic groups, Proc. Amer. Math. Soc. 116(1992), 653-663.
[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford Univ. Press(Clarendon), Oxford, 1985.
[6] M. R. Darafsheh and A. R. Ashrafi, (2, $p, q)$-Generation of the Conway group $C o_{1}$, Kumamoto J. Math., 13(2000), 1-20.
[7] M. R. Darafsheh, A. R. Ashrafi and G. A. Moghani, (p, q, r)-Generations of the Conway group Co_{1}, for odd p, Kumamoto J. Math., 14(2001), 1-20.
[8] M. R. Darafsheh, A. R. Ashrafi and G. A. Moghani, (p, q, r)-Generations of the sporadic group $O N$, to appear in LMS lecture note serries.
[9] M. R. Darafsheh, G. A. Moghani and A. R. Ashrafi, $n X$-Complementary generations of the sporadic group $C o_{1}$, to be submitted.
[10] M. R. Darafsheh, A. R. Ashrafi and G. A. Moghani, $n X$-Complementary generations of the sporadic group $O N$, to appear in Southeast Asian Bulletin of Mathematics.
[11] M. R. Darafsheh, A. R. Ashrafi and G. A. Moghani, (p, q, r)-Generation and $n X$ complementary generations of the sporadic group $L y$, to appear in Kumamoto Journal of Mathematics.
[12] M. R. Darafsheh and A. R. Ashrafi, (p, q, r)-Generation generations of the sporadic group $R u$, to appear in Journal of Applied Mathematics \& Computing.
[13] S. Ganief and J. Moori, (p, q, r)-Generations of the smallest Conway group Co_{3}, J. Algebra 188(1997), 516-530.
[14] S. Ganief and J. Moori, Generating pairs for the Conway groups $C o_{2}$ and $C o_{3}$, J. Group Theory 1(1998), 237-256.
[15] S. Ganief and J. Moori, 2-Generations of the forth Janko group J_{4}, J. Algebra 212(1999), 305-322.
[16] S. Ganief and J. Moori, (p, q, r)-Generations of the smallest Conway group Co_{3}, J. Algebra 188(1997), 516-530.
[17] S. Ganief and J. Moori, (p, q, r)-Generations and $n X$-complementary generations of the sporadic groups $H S$ and $M c L$, J. Algebra 188(1997), 531-546.
[18] S. Linton, The Maximal subgroups of the sporadic groups Th, Fi24 and Fi24' and other topics, Ph. D. thesis, Cambridge, 1989.
[19] S. Linton, The maximal subgroups of the Thompson group, J. London Math. Soc., 39(2)(1989), 79-88.
[20] J. Moori, (p, q, r)-Generations for the Janko groups J_{1} and J_{2}, Nova J. Algebra and Geometry, Vol. 2, No. 3(1993), 277-285.
[21] J. Moori, $(2,3, p)$-Generations for the Fischer group F_{22}, Comm. Algebra 22(11) (1994), 4597-4610.
[22] M. Schonert et al., GAP, Groups, Algorithms and Programming, Lehrstuhl De fur Mathematik, RWTH, Aachen, 1992.
[23] L. L. Scott, Matrices and cohomology, Ann. of Math. (3) 105(1977), 473-492.
[24] A. J. Woldar, Representing M_{11}, M_{12}, M_{22} and M_{23} on surfaces of least genus, Comm. Algebra 18(1990), 15-86.
[25] A. J. Woldar, Sporadic simple groups which are Hurwitz, J. Alg. 144(1991), 443-450.
[26] A. J. Woldar, 3/2-Generation of the sporadic simple groups, Comm. Alg. 22(2)(1994), 675-685.
[27] A. J. Woldar, On Hurwitz generation and genus actions of sporadic groups, Illinois Math. J. (3) 33 (1989), 416-437.

Ali Reza Ashrafi
Department of Mathematics, Faculty of Science, University of Kashan
Kashan, Iran
E-mail: ashrafi@kashanu.ac.ir

