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On conformal equivalence of Berwald manifolds all
of whose indicatrices have positive curvature
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Abstract. The problem given by M. Matsumoto in his paper [10] is that
whether there exist conformally equivalent Berwald, or locally Minkowski man-
ifolds. In this paper we are interested in case of positive definite Berwald man-
ifolds of dimension n ≥ 3 solving the problem under a further condition: we
shall suppose that one, and therefore all indicatrices have positive curvature.
Then the conformal change must be homothetic unless the Berwald manifolds
are Riemannian.
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§1. Preliminaries

1.1. Throughout the paper we use the terminology and conventions described
in [13]. Now we briefly summarize the basic notations.

(i) M is an n (> 1)-dimensional, C∞, connected, paracompact manifold;
C∞(M) is the ring of real-valued smooth functions on M .

(ii) π : TM → M is the tangent bundle of M , π0 : TM → M is the bundle
of nonzero tangent vectors.

(iii) X(M) denotes the C∞(M)-module of vector fields on M .

(iv) Ωk(M) is the module of scalar k-forms on M ; Ω0(M) := C∞(M).

(v) ψk(M) is the module of vector k-forms on M; ψ0(M) := X(M).
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(vi) ιX , LX are the insertion operator and the Lie-derivative with respect
to the vector field X ∈ X(M), respectively. The exterior derivative is
denoted by d as usual. It is well-known that

LX = ιX ◦ d+ d ◦ ιX , LX ◦ d = d ◦ LX .

1.2. Vertical apparatus. ([13]; see also [9] and [19]) Consider the tangent bun-
dle π : TM → M . Xv(TM) denotes the C∞(M)-module of vertical vector
fields on TM . C ∈ Xv(TM) and J ∈ ψ1(TM) are the Liouville vector field
and the vertical endomorphism, respectively. We have:

Im J = Ker J = Xv(TM), J2 = 0,(1)

dJϕ = dϕ ◦ J,(2)

where ϕ ∈ C∞(TM) and dJ is the derivation induced by J . The vertical
and complete lifts of a vector field X ∈ X(M) are denoted by Xv and Xc,
respectively. As it is well-known

[J,Xv ] = 0 ⇒ dJ ◦ LXv = LXv ◦ dJ(3)

and, furthermore, the collection (Xv
1 , . . . ,X

v
n,X

c
1, . . . ,X

c
n) is a local basis for

X(TM) provided that (X1, . . . ,Xn) is a local basis of X(M).

1.3. Horizontal endomorphisms. ([3], [4]; see also [13]) A vector 1-form h ∈
ψ1(TM) is said to be a horizontal endomorphism on M if the following con-
ditions are satisfied:

(HE 1) h is smooth on TM ,

(HE 2) h is a projector, i.e. h2 = h,

(HE 3) Ker h = Xv(TM).

J and h are obviously related as follows:

h ◦ J = 0, J ◦ h = J(4)

and, furthermore, any horizontal endomorphism h determines an almost com-
plex structure F ∈ ψ1(TM) (F 2 = −1, F is smooth on TM) such that

F ◦ J = h, F ◦ h = −J and J ◦ F = ν,(5)
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where ν := 1 − h is the so-called vertical projector. The horizontal lift of a
vector field X ∈ X(M) is given by the formula

Xh = FXv;(6)

as it is well-known the collection (Xv
1 , . . . ,X

v
n,X

h
1 , . . . ,X

h
n) is a local basis for

X(TM) provided that (X1, . . . ,Xn) is a local basis of X(M).
Let a Riemannian metric g on the vertical subbundle be given. The map-

ping

gh : X(TM) × X(TM) → C∞(TM),
gh(X,Y ) := g(JX, JY ) + g(νX, νY )

(7)

is said to be the prolongation of g along h. (Note that gh is generally smooth
only over TM !)

1.4. Finsler manifolds. (for the details see [13]) Let a function E : TM → R

be given. The pair (M,E) is said to be a Finsler manifold if the following
conditions are satisfied:

(FM 1) ∀v ∈ TM : E(v) > 0; E(0) = 0,

(FM 2) E is of class C1 on TM and smooth over TM ,

(FM 3) CE = 2E, i.e. E is homogeneous of degree 2,

(FM 4) the fundamental form ω := ddJE ∈ Ω2(TM) is symplectic.

Under these conditions the mapping

g : Xv(TM) × Xv(TM) → C∞(TM), g(JX, JY ) := ω(JX,Y )(8)

is a well-defined, nondegenerate symmetric bilinear form which is said to be
the Riemann-Finsler metric of (M,E). The Finsler manifold is called positive
definite if g is positive definite.

Let h be the canonical horizontal endomorphism (the so-called Barthel
endomorphism) associated with the canonical spray S, i.e.

ιSω = −dE.

The tensor field C satisfying the condition

ω(C(X,Y ), Z) =
1
2
(LJXJ

∗gh)(Y,Z)(9)
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is called the first Cartan tensor of the Finsler manifold. C̃ denotes its semiba-
sic trace:

C̃(X) := trace(F ◦ ιXC);(10)

for a general definition see [5]. It is easy to check that the first Cartan tensor
is semibasic and its lowered tensor C� is totally symmetric. Moreover, for any
vector field X,Y,Z ∈ X(M)

C�(X
h, Y h, Zh) =

1
2
Xvg(Y v, Zv) and Co := ιSC = 0,(11)

where S is an arbitrary semispray on M , i.e. JS = C. The second Cartan
tensor C′ is defined by the formula

ω(C′(X,Y ), Z) =
1
2
(LhXgh)(JY, JZ);(12)

the vanishing of the second Cartan tensor characterizes the so-called Landsberg
manifolds.

1.5. Further formulas (a practical summary). Let (M,E) be a Finsler man-
ifold. The covariant derivatives with respect to the Cartan connection can be
explicitly calculated by the following formulas:

(C1) DJXJY = J [JX,Y ] + C(X,Y ) =
◦
DJX JY + C(X,Y ),

(C2) DhXJY = ν[hX,JY ] + C′(X,Y ) =
◦
DhX JY + C′(X,Y ),

(C3) DJXhY = h[JX,Y ] + FC(X,Y ) =
◦
DJX hY + FC(X,Y ),

(C3) DhXhY = hF [hX,JY ] + FC′(X,Y ) =
◦
DhX hY + FC′(X,Y ),

where
◦
D denotes the Berwald connection on the Finsler manifold. The vertical

covariant differential of the first Cartan tensor is totally symmetric:

(DJXC)(Y,Z) = (DJY C)(X,Z);(13)

for a proof see [4]. The v-curvature tensor Q of the Cartan connection can be
calculated by the formula

Q(X,Y )Z = C(FC(X,Z), Y ) − C(X,FC(Y,Z)).(14)

It is well-known that the vanishing of the hv-curvature tensor
◦
P characterizes

the so-called Berwald manifolds and, consequently, the Barthel endomorphism
is just the horizontal lift of a linear connection on the underlying manifold M .
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Let a smooth function ϕ : TM → R (or ϕ : TM → R) be given. Since the
fundamental form ω is symplectic, there exists a unique vector field gradϕ ∈
X(TM) such that

ιgrad ϕω = dϕ⇒ ιJ grad ϕω = −dJϕ;(15)

this vector field is called the gradient of ϕ.

Lemma 1. Consider the vertical lift αv := α ◦ π of a function α ∈ C∞(M);
then gradαv is a vertical vector field with the following properties:

(i) [C, gradαv ] = − gradαv,

(ii) gradαv(E) = αc, where αc := Sαv is the complete lift of α,

(iii) ιF grad αvC = −1
2 [J, gradαv].

If gradαv = µC, where µ ∈ C∞(TM), then µ = 0 and, consequently, the
function α is constant.

For the proof see [12] and [17].

Lemma 2. Let (M,E) be a positive definite Berwald manifold of dimension
n ≥ 3. Then the following assertions are equivalent:

(i) The indicatrix hypersurface

Sp := {v ∈ TpM | L(v) = 1,where E = 1
2L

2} ⊂ TpM

has positive curvature with respect to the Riemann-Finsler metric re-
stricted on the punctured vector space TpM \ {0};

(ii) for any q ∈M the indicatrix hypersurface Sq ⊂ TqM has positive curva-
ture.

Proof. Since (M,E) is a Berwald manifold we have a unique linear connec-
tion ∇ on the underlying manifold M such that the canonical Barthel endo-
morphism h coincides the horizontal structure induced by ∇. The Barthel
endomorphism is conservative, i.e. the h-covariant derivatives of the energy
function E vanish. This means that the linear isomorphisms induced by the
parallel transport between the different tangent spaces preserve the Finslerian
norm L(v) of any tangent vector v ∈ TM . Therefore the indicatrices are in-
variant under these isomorphisms. On the other hand, as an easy calculation
shows,

τ∗g |TqM= g |TpM ,
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where TpM := TpM \{0} and τ : TpM → TqM is the corresponding linear iso-
morphism induced by the parallel transport with respect to ∇ along a curve
joining p and q. Taking into account the fact that M is connected, the non-
trivial implication (i) ⇒ (ii) follows immediately. �

Remark 1. Note that this argumentation holds without any modification in
case of Finsler manifolds which have a linear connection on the underlying
manifold M such that the induced horizontal endomorphism is conservative:
they are the so-called generalized Berwald manifolds, especially the Wagner
manifolds; see e.g. [8],[15] and [17].

Definition 1. A positive definite generalized Berwald manifold (M,E) of di-
mension n ≥ 3 is called almost spherical if one, and therefore all of its indica-
trices have positive curvature.

§2. Conformal equivalence of Riemann-Finsler metrics

Definition 2. Consider the Finsler manifolds (M,E) and (M, Ẽ) with Riemann-
Finsler metrics g and g̃, respectively; g and g̃ are said to be conformally equiv-
alent if there exists a positive smooth function ϕ : TM → R such that g̃ = ϕg.
The function ϕ is called the scale function or the proportionality function.
If the scale function is constant, then we say that the conformal change is
homothetic

Remark 2. If g̃ = ϕg then

Ẽ =
1
2
g̃(C,C) =

1
2
ϕg(C,C) = ϕE.(16)

It is also well-known due to M.S. Knebelman, that the scale function between
conformally equivalent Finsler manifolds is a vertical lift, i.e. ϕ can always be
written in the form

ϕ = exp ◦ αv := exp ◦ α ◦ π.(17)

Moreover, if a Finsler manifold (M,E) with Riemann-Finsler metric g and a
function α ∈ C∞(M) are given, then

gα := ϕg (ϕ = exp ◦ αv)(18)

is the Riemann-Finsler metric of the Finsler manifold (M,Eα), where the
energy function Eα is defined by the formula Eα := ϕE. According to these
elementary facts we also speak of a conformal change gα = ϕg of the metric
g; for the details see [11], [12] and [17].
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In what follows, we summarize some of the basic transformation formulas;
for the proof and notations we can refer to Hashiguchi’s fundamental work [7]
and [17], [18]. Let us define first of all the tensor fields B1

i (1 ≤ i ≤ 4),V and H

in the following way:

B1
1(X) = dJE ⊗ C(X) − EJX,

B1
2(X,Y ) = EC(X,Y ) +

1
2

(
dJE ∧ J(X,Y ) + g(JX, JY )C

)
,

B1
3(X,Y,Z) = E

(
(DJXC)(Y,Z) − C(FC(X,Y ), Z) − Q(X,Y )Z

)
+

+
1
2

(
g(JX, JY )JZ + g(JX, JZ)JY − g(JY, JZ)JX

)
+

+ dJE ⊗ ιXC(Y,Z) + dJE ⊗ ιXC(Z,Y ),

V(X,Y,Z) =
1
2

(
dJE ⊗ C(X,Y,Z) + dJE ⊗ C(Z,X, Y ) +

+ dJE ⊗ C(Y,Z,X) + C�(X,Y,Z)C
)

+

+ E(DJXC)(Y,Z),

B1
4(X,Y,Z,W ) = (DJW B1

3)(X,Y,Z) − B1
3(FC(X,W ), Y, Z) +

+ B1
3(X,FC(Y,W ), Z) + B1

3(X,Y, FC(Z,W )) −

− C(FB1
3(X,Y,Z),W ),

H(X,Y,Z,W ) = B1
4(X,Y,Z,W ) + C(FB1

3(X,Y,Z),W ).

Lemma 3. Let (M,E) and (M,Eα) be conformally equivalent Finsler mani-
folds; then

Sα = S − ιF gradαvB1
1,(19)

hα = h− ιF grad αvB1
2,(20)

C′
α = C′ − ιF grad αvV,(21)

◦
Pα =

◦
P −ιF grad αvB1

4.(22)

Definition 3. Let (M,E) be a Finsler manifold; the change

gα = ϕg
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is called a Landsberg-, Berwald-, or locally Minkowski-type conformal change of
the metric g if the resulting Finsler manifold (M,Eα) is a Landsberg, Berwald,
or a locally Minkowski manifold. The manifold (M,E) is also said to be a con-
formally Landsberg, a conformally Berwald manifold (in an equivalent termi-
nology: a Wagner manifold), or conformally flat Finsler manifold, respectively.
We set

L := {α ∈ C∞(M) | gα = ϕg is Landsberg-type},
B := {α ∈ C∞(M) | gα = ϕg is Berwald-type},
M := {α ∈ C∞(M) | gα = ϕg is locally Minkowski-type}

and, for any p ∈M

Lp := {dpα | α ∈ L}, Bp := {dpα | α ∈ B}, Mp := {dpα | α ∈ M}.

Lemma 4. For any p ∈ M the sets Lp and Bp are affine subspaces of the
dual vector space T ∗

pM ; they are linear subspaces provided that (M,E) is a
Landsberg, or a Berwald manifold, respectively.

For a proof see [18].

Definition 4. We set

l(p) := dim Lp, b(p) := dim Bp, m(p) := dim Aff(Mp),

where Aff(Mp) denotes the affine hull of the set Mp.

§3. An observation on the existence of nontrivial conformal
changes preserving the (hv)-curvature tensor of the Berwald

connection

Lemma 5. Let (M,E) and (M,Eα) be conformally equivalent Finsler mani-
folds, i.e.

gα = ϕg (ϕ = exp ◦ αv)

and X := F gradαv. Suppose that the second Cartan tensor is invariant under
this conformal change; then

−1
3
g

(
B1

4(X,FC(X,X),X,X), JX
)

=

=
1
2

(
‖C(X,X)‖2

(
‖JX‖2 − (αc)2

2E
)
− g2(C(X,X), JX)

)
+

+ Eg(Q(X,FC(X,X))FC(X,X), JX).

(23)
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Proof. Since C′
α = C′, it follows by (21) that ιXV vanishes and, consequently,

E(DJXC)(Y,Z) = −1
2

(
αcC(Y,Z) + dJE ⊗ ιXC(Y,Z) +

+ dJE ⊗ ιXC(Z,Y ) + C�(X,Y,Z)C
)
.

(24)

On the other hand, for any vector field W ∈ X(M) we have that

g(B1
4(X,W

c,X,X), JX) =

= g((DJXB1
3)(X,W

c,X), JX) − g(B1
3(FC(X,X),W c,X), JX) +

+ g(B1
3(X,FC(W c,X),X), JX) + g(B1

3(X,W
c, FC(X,X)), JX) −

− g(B1
3(X,W

c,X),C(X,X)),

(25)

where, according to (C1), DJXW
v = C(W c,X) and, by Lemma 1. (iii)

DW vJX = −C(W c,X) ⇒ DJXJX = −C(X,X).(26)

Using the metrical property of the classical Cartan connection, (25) reduces
to the following simple form

g(B1
4(X,W

c,X,X), JX) =

= JXg(B1
3(X,W

c,X), JX) + 2g(B1
3(X,W

c, FC(X,X)), JX).
(27)

Since the v-covariant differential DJXC can be expressed in a specil way, we
have from the definition of B1

3 the relations

B1
3(X,W

c,X) =

=
1
2

(
W vE C(X,X) + ‖JX‖2 W v − g(C(X,X),W v) C

)
−

−E
(
C(FC(X,W c),X) + Q(X,W c)X

)
,

B1
3(X,W

c, FC(X,X)) =

=
1
2

(
W vE C(X,FC(X,X)) + g(C(X,X), JX)W v + g(JX,W v)C(X,X) −

−αcC(W c, FC(X,X)) − g(C(X,X),W v)JX − g(C(X,X),C(X,W c)) C
)
−

−E
(
C(FC(X,X), FC(X,W c)) + Q(X,W c)FC(X,X)

)
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and, consequently,

JXg(B1
3(X,W

c,X), JX) =

= −1
2

(
g(JX,W v)g(C(X,X), JX) + ‖JX‖2g(C(X,X),W v) +

+3W vE ‖C(X,X)‖2 + αcg(C(X,X),C(X,W c))
)

+

+E
(
g(C(X,FC(X,W c)),C(X,X)) + g(C(FC(X,X),W c),C(X,X))

)
+

+
1
2

(
W vE g((DJXC)(X,X), JX) − αcg((DJXC)(X,X),W v)

)
−

−E
(
g((DJXC)(X,X),C(X,W c)) + g((DJXC)(X,W c),C(X,X))

)
.

By the help of (24) we can set this formula free from the v-covariant differential
of the first Cartan tensor C. Together with our previous result (27) this process
gives the following expression:

−1
3
g(B1

4(X,W
c,X,X), JX) =

=
1
2

(
‖JX‖2g(C(X,X),W v) − g(JX,W v)g(C(X,X), JX)

)
+

+
αc

4E

(
W vEg(C(X,X), JX) − αcg(C(X,X),W v)

)
+

+ Eg(Q(X,W c)FC(X,X), JX).

(28)

Since it has a tensorial character in the second argument, we get the desired
relation by the substitution of the vector field FC(X,X) into (28). �

Definition 5. Let (M,ER) be a Riemannian manifold, α ∈ C∞(M) such that

(i) dpα = 0 and α(p) = 0; this means that α is regular on a connected open
neighbourhood U of the point p ∈M .

(ii) The gradient of α with respect to the Riemannian structure has a con-
stant unit length on the neighbourhood U , i.e.

LR(gradR α) |U≡ 1,

where the fundamental function LR is defined by the conditions

ER =
1
2
L2

R and LR ≥ 0
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as usual. Consider a smooth function

K : M → R such that − 4 < K(q) < 4 (q ∈ U)

and let ṽ ∈ TqM be an arbitrary tangent vector. Then, of course,

ṽ = v + t gradR α(q),

where v ∈ TqM is tangential to the level hypersurface Nr := α−1(r) ∩ U
containing the point q ∈ U ; r := α(q). The energy function

E(ṽ) := (ER(ṽ) +K(q)LR(v)
t

4
)(29)

exp
2K(q)√

16 −K2(q)
( arctan

4t+K(q)LR(v)
LR(v)

√
16 −K2(q)

− arctan
K(q)√

16 −K2(q)
)

constructed on the neighbourhood U is called an Asanov-type Finslerian met-
ric function; for the terminology see [2]. Furthermore,

E(0) := 0,

E(gradR α) :=
1
2
exp

{
2K√

16 −K2

(
π

2
− arctan

K√
16 −K2

)}
,

E(− gradR α) :=
1
2
exp

{
−2K√
16 −K2

(
π

2
+ arctan

K√
16 −K2

)}
.

(30)

Remark 3. As a special case of our definition a similar, but not exactly
the same construction can be found in Asanov’s paper [2], see also [1]; now
we briefly summarize the basic ideas. Finslerian metric functions proposed by
G.S. Asanov to study are given first of all on the product manifoldM := N×R;
for brevity let us set

α : N × R → R, α(p, r) := r ⇒ N ∼= α−1(0).

The Riemannian structures on the different level hypersurfaces with respect to
the function α are induced by the help of a Riemannian energy function ER

on the manifold N . This means that they are isometric to each other under
the natural identification

p ∈ N −→ (p, r) ∈ Nr, where Nr := α−1(r).

Moreover, the function K does not depend on the value of r, i.e. for any scalars
r, s ∈ R

K(q, r) = K(q, s) ⇒ K(q) := K(q, r);
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the function E is given by the formula

E(ṽ) := (ER(ṽ) +K(q)LR(v)
| t |
4

)(31)

exp
2K(q)√

16 −K2(q)
(arctan

√
16 −K2(q) | t |

K(q) | t | +4LR(v)
− arctan

√
16 −K2(q)
K(q)

),

where

ṽ = v + t
∂

∂r
∈ T(q,r)M and v ∈ T(q,r)Nr

∼= TqN.

As we can see, Asanov’s energy function (31) is reversible and, consequently,
it has lots of singularities along the equatorial section defined by the equation
t = 0 unless the metric is Riemannian, i.e. K ≡ 0: ... At the points of the
equatorial section, the generatrix of the indicatrix has a corner whose angle
is β∗ = 180◦ − 2arctgK

2 ... this angle may be regarded as ”the parameter of
non-Riemannianity”... (cf. Theorem 7; [1]).

Suppose that dimM ≥ 3; Asanov proved that the indicatrices of the Finsler
manifold (N × R, E) have constant curvature 1 − K2

16 with respect to the
Riemann-Finsler metric restricted on the tangent spaces (except, of course, at
the origin). Now we are going to show that the metric (29) in Definition 5 also
has this property; the argumentation is based on the fact that the sectional cur-
vature of the indicatrices with respect to their own restricted Riemann-Finsler
metric is invariant under any conformal change. Indeed, due to Knebelman’s
observation, the conformal change works as a scalar multiplication for the
tangent spaces as Riemannian manifolds; notations as above.

Proposition 1. Suppose that dimM ≥ 3; for any q ∈ U the indicatrix hyper-
surface Sq of an Asanov-type Finslerian metric function has constant curva-
ture.

Proof. It is enough to prove our statement at the point p ∈ M ; the proof
is similar in case of any other point. Let N := α−1(0) ∩ U be the level
hypersurface cointaining p. First of all we investigate the upper half indicatrix

S+
p := Sp ∩ {ṽ = v + t gradR α(p) ∈ TpM | t > 0}

of the metric (29) by the help of the function

Θ+(t) := arctan

√
16 −K2(p) | t |

K(p) | t | +4LR(v)
− arctan

4t+K(p)LR(v)
LR(v)

√
16 −K2(p)

,

where v ∈ TpN \ {0} is an arbitrarily fixed tangent vector. Differentiating
with respect to t, an easy calculation shows that Θ+

′(t) = 0 for any positive
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real number t ∈ R. Therefore, for example

Θ+(t) = lim
t→0+

Θ+(t) = − arctan
K(p)√

16 −K2(p)
,

provided that K(p) > 0; if K(p) < 0 then the domain of parameters t ∈
R+ must be divided into connected parts! This means that the upper half
indicatrix of an Asanov-type Finslerian metric function (29) consists of such
parts which are homothetic to the upper half indicatrix of the metric (31) at
the point p. For the lower half indicatrix S−

p let us form the auxiliary metric
(31) by the help of −K instead of K, i.e.

E(ṽ) := (ER(ṽ) −K(p)LR(v)
| t |
4

)(32)

exp
−2K(p)√
16 −K2(p)

(arctan

√
16 −K2(p) | t |

−K(p) | t | +4LR(v)
− arctan

√
16 −K2(p)
−K(p)

).

Differentiating the function

Θ−(t) := arctan

√
16 −K2(p) | t |

−K(p) | t | +4LR(v)
+ arctan

4t+K(p)LR(v)
LR(v)

√
16 −K2(p)

with respect to t, an easy calculation shows that Θ−
′(t) = 0 for any real

number t < 0 and, consequently, the lower half indicatrix of an Asanov-type
Finslerian metric function (29) consists of such parts which are homothetic to
the lower half indicatrix of the metric (32) at the point p. Since the indicatrix
hypersurfaces of (31) and (32) have the same constant sectional curvature

1 − K2(p)
16

= 1 − (−K)2(p)
16

,

this means that Sp also has constant sectional curvature as was to be stated;
of course, it is just 1 − K2(p)

16 . �

Proposition 2. Let (M,E) be a positive definite Finsler manifold of dimen-
sion n ≥ 3 with an almost spherical indicatrix hypersurface at a point p ∈M ,
i.e. suppose that it has positive curvature. If there exists a conformal change

gα = ϕg (ϕ = exp ◦ αv)

of the metric such that

(i) the scale funtion is regular at the point p,
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(ii) the (hv)-curvature tensor of the classical Berwald connection is invari-
ant,

then E is conformal equivalent to an Asanov-type Finslerian metric function
on a connected open neighbourhood U of the point p.

The proof consists of more steps presented below; conditions of the theorem
are used without any further comment. Keeping in mind that our result has
a local character, consider a connected open neighbourhood U of the point
p such that dqα = 0, where q ∈ U and, for the sake of brevity, let us set
X := F gradαv ⇒ JX = gradαv as above (cf. Lemma 5).

Lemma 6. The vector fields C(X,X) and JX − αc

2EC are linearly dependent
at the points v ∈ TpM \ {0}, i.e.

Gg

(
C(X,X), JX − αc

2E
C

)
(v) = 0,(33)

where Gg forms the Gram-determinant of its arguments with respect to the
Riemann-Finsler metric g.

Proof. It is well-known (see e.g. [13], p. 44) that for any vector field Y,Z,W ∈
X(TM):

C′
�(Y,Z,W ) = −1

2
g(

◦
P (Y,Z)W,C)(34)

which implies the second Cartan tensor to be also invariant under the con-
formal change gα = ϕg. Using Lemma 5 we have from the vanishing of the
tensor field ιF grad αvB1

4 that for any v ∈ TpM \ {0}:

0 =
1
r2

(
‖C(X,X)‖2

(
‖JX‖2 − (αc)2

r2
)
− g2(C(X,X), JX)

)
(v) +

+ g(Q(X,FC(X,X))FC(X,X), JX)(v),
(35)

where r := L(v). If the plane determined by the vertical tangent vectors
C(X,X)(v) and JXv − αc

2E (v)Cv exists, then (35) shows the vanishing of the
corresponding sectional curvature for the hypersurface rSp ⊂ TpM . Since
(M,E) is almost spherical at the point p, this is a contradiction. �
Lemma 7. ER := E‖JX‖2, where the norm is taken with respect to the
Riemann-Finsler metric g is a Riemannian energy function on π−1(U). For
any vector fields Y,Z ∈ X(U) the associated Riemannian metric γ and g are
related as follows:

gR(Y v, Zv) = ‖JX‖2g(Y v, Zv) − Y v(E)g(C(X,X), Zv )−
− Zv(E)g(C(X,X), Y v) + 2αcg(C(X,Y c), Zv) +
+ 2Eg(C(X,Y c),C(X,Zc)) + 2Eg(Q(X,Y c)Zc, JX),

(36)



CONFORMAL EQUIVALENCE OF BERWALD MANIFOLDS 29

where gR(Y v, Zv) := γ(Y,Z) ◦ π. We have:

gradαv = ‖JX‖2gradv
Rα− gradv

Rα(E)C(X,X)−
− g(C(X,X), gradv

Rα)C + 2αcC(X, gradc
Rα) +

+ 2EC(X,FC(X, gradc
Rα)) − Q(X, gradc

Rα)X,
(37)

where gradR α ∈ X(U) is the Riemannian gradient of the function α, gradv
Rα

and gradc
Rα are its vertical and complete lifts, respectively.

Proof. Since the hv−curvature tensor of the Berwald connection is invariant,
we have that for any vector field Y,Z,W ∈ X(U):

0 =
◦

Pα (Y c, Zc,W c)−
◦
P (Y c, Zc,W c) =

= [[Y hα , Zv],W v] − [[Y h, Zv],W v ] = [[Y hα , Zv] − [Y h, Zv],W v],

which means that the vector field [Y hα , Zv]− [Y h, Zv] is a vertical lift (see e.g.
[13], p. 37). Therefore, as an easy local calculation shows, the components of
the difference tensor hα−h are linear on the tangent spaces and, consequently
the difference of the associated semisprays is a quadratic vector field. From
the transformation formula (19) it follows at the same time that

Sα − S = −αcC +Egradαv ;

applying both sides to the function αc:

E‖JX‖ := E‖gradαv‖2 = (Sα − S)αc + (αc)2,

where the function on the right hand side is quadratic. We have:

gR(Y v, Zv) = Y v(ZvER) = Y v

(
(ZvE)‖JX‖2 + EZv‖JX‖2

)
=

= ‖JX‖2g(Y v, Zv) + (ZvE)Y v‖JX‖2 + (Y vE)Zv‖JX‖2 +

+ EY v
(
Zv‖JX‖2

)
.

(38)

Here

Zv‖JX‖2 = 2g(DZvJX, JX)
(26)
= −2g(C(X,Zc), JX) =

= −2g(C(X,X), Zv) ⇒ Y v‖JX‖2 = −2g(C(X,X), Y v),
Y v

(
Zv‖JX‖2

)
= −2Y vg(C(X,X), Zv) =

= −2g(DY vC(X,X), Zv) − 2g(C(X,X),C(Y c, Zc))
(26)
=

= −2g((DY vC)(X,X), Zv) + 2g(C(FC(X,Y c),X), Zv) −

−2g(C(X,X),C(Y c, Zc))
(13)
= −2g((DJXC)(X,Y c), Zv) +

+2g(C(FC(X,Y c),X), Zv) − 2g(C(X,X),C(Y c, Zc))
(14)
=

= −2g((DJXC)(X,Y c), Zv) + 2g(Q(X,Y c), Zc), JX)
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taking into account the fact that the lowered first Cartan tensor is totally
symmetric. Since the vertical covariant differential DJXC has a special form
(24), by the substitution of these expressions into (38) we get immediately
the relation between the metrics; (37) is a direct consequence of the previous
formula (36). �

Lemma 8. ‖ gradR α‖2 := γ(gradR α, gradR α) ≤ 1 and for any q ∈ U the
following assertions are equivalent:

(i) ‖ gradR α‖2(q) = 1,

(ii) Gg(gradαv , C)(v) = 0,where v = ± gradR α(q), i.e. the Liouville vector
field and gradαv are linearly dependent at the points

v := ± gradR α(q).

Proof. Using the Cauchy-Schwarz inequality (with respect to the Riemann-
Finsler metric g) we have that

−‖ gradαv‖ ≤ Cαc√
g(C,C)

≤ ‖ gradαv‖;

here, as it is well-known, Cαc = αc and g(C,C) = 2E. Therefore

(αc)2

2E
≤ ‖ gradαv‖2 ⇒ (αc)2 ≤ 2ER.(39)

Evaluating both sides along one of the vector fields ± gradR α it follows that

‖ gradR α‖4 ≤ ‖ gradR α‖2 and, consequently,

0 ≤ ‖ gradR α‖2(1 − ‖ gradR α‖2) ⇒ ‖ gradR α‖2 ≤ 1;
(40)

the norm in the last formula (40) is, of course, taken with respect to the
Riemannian metric γ and equality holds if and only if the condition (ii) is
satisfied. �

Lemma 9. For any tangent vector v ∈ TpM \ {0}

Gg

(
gradαv , gradv

Rα,C
)
(v) = 0,(41)

i.e. the system of vector fields (gradαv, gradv
Rα,C) are linearly dependent at

the points of the punctured tangent space TpM \ {0}.
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Proof. Let v ∈ TpM \ {0} be an arbitrary tangent vector; we can obviously
suppose that the Liouville vector field C and gradαv are linearly independent
at the point v. In this case, according to Lemma 6 we have that

C(X,X)v = θv(JX − αc

2E
C)v, where θv :=

g(C(X,X), JX)

‖JX‖2 − (αc)2

2E

(v)(42)

is the Fourier coefficient of the tangent vector C(X,X)v with respect to (JX−
αc

2EC)v. It is clear that the formula (42) also holds on a connected open
neighbourhood W ⊂ TpM of the point v. In what follows we restrict our
investigations to the neighbourhood W without any further comment; the
sign of the restriction will be omitted. Now we are going to calculate again
the relation betwen the Riemann-Finsler metric g and γ. For the sake of
brevity let us introduce the functions

ζ := g(C(X,X), JX) and η := ‖JX‖2 − (αc)2

2E
;

then, of course, θ = ζ
η . For any vector fields Y,Z ∈ X(U) we have:

Zv‖JX‖2 = 2g(DZvJX, JX)
(26)
= −2g(C(X,Zc), JX) =

−2g(C(X,X), Zv)
(42)
= −2θ

(
(Zα) ◦ π − αc

2E
ZvE

)
,

Y v‖JX‖2 = −2θ
(

(Y α) ◦ π − αc

2E
Y vE

)
,

Y v(Zv‖JX‖2) = −2(Y vθ)
(

(Zα) ◦ π − αc

2E
ZvE

)
+

+
θ

E

(
(Y α) ◦ πZvE + αcg(Y v, Zv) − αc

E
(Y vE)(ZvE)

)
,

where

Y vθ = (Y vζ)
1
η
− ζ

η2

(
Y v‖JX‖2 − αc

E
(Y α) ◦ π +

(αc)2

2E2
Y vE

)
.
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Since the lowered first Cartan tensor is totally symmetric, (26) shows that

Y vg(C(X,X), JX) = g(DY vC(X,X), JX) − g(C(X,X),C(X,Y c)) =

= g((DY vC)(X,X), JX) − 3g(C(X,X),C(X,Y c))
(13)
=

= g((DJXC)(X,Y c), JX) − 3g(C(X,X),C(X,Y c))
(24)
=

= − 1
2E

(
(Y vE)g(C(X,X), JX) + 3αcg(C(X,X), Y v)

)
+

−3g(C(X,X),C(X,Y c))
(42)
=

= − 1
2E

(
(Y vE)g(C(X,X), JX) + 3θαc(Y α) ◦ π − 3θ

(αc)2

2E
Y vE

)
−

−3θ2

(
(Y α) ◦ π − αc

2E
Y vE

)
.

Substituting these new formulas into (38) the relation between the metrics
reduces to the following simple form:

gR(Y v, Zv) = Ag(Y v, Zv) + P (Y vE)(ZvE)+

+Q

(
(Y α) ◦ πZvE + (Zα) ◦ πY vE

)
+R(Y α) ◦ π(Zα) ◦ π,

(43)

where, after a very long calculation, the coeffitients can be given in the fol-
lowing explicite way:

P := αc θ

2E

(
1 +

αc

η
(
αc

2E
+ θ)

)
, Q := −

(
θ + αc θ

η
(
αc

2E
+ θ)

)
,

R := 2E
θ

η
(
αc

2E
+ θ)

and the ”main coefficient” A := ‖JX‖2 + θαc must be positive on the neigh-
bourhood W because the dimension of the tangent space TpM is no less than
3. As a direct consequence of (43) we get the relation between the gradient
vector fields gradαv and gradv

Rα:

Agradv
Rα =

(
1 −Qgradv

Rα(E) −R‖ gradR α‖2 ◦ π
)
gradαv −

−
(
Q‖ gradR α‖2 ◦ π + Pgradv

Rα(E)
)
C

as was to be stated. �

Lemma 10. ‖ gradR α‖2(p) = 1.
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Proof. Suppose that ‖ gradR α‖2(p) < 1; then, by Lemma 8, it follows that
the Liouville vector field C and gradαv is linearly independent at the point
v := gradR α(p). On the other hand, since gradv

Rα(v) = Cv, the relation (37)
reduces to the following simple form:

gradαv(v) = ‖JX‖2(v)Cv − 2E(v)C(X,X)v
(42)
= A(v)Cv − 2E(v)θ(v)JXv ,

where, of course, JX = gradαv . This means that the ”main coefficient” A
vanishes at the point v which is a contradiction. �

Remark 4. Without loss of generality we can suppose that α(p) = 0; consider
now the submanifold N := α−1(0) ∩ U together with the induced energy
function E |TN .

Lemma 11. The functions

‖ gradαv‖2 and Lg(C(F gradαv , F gradαv), gradαv),

where L is the fundamental function of the Finsler manifold (M,E), are con-
stant on the tangent space TpN .

Proof. First of all we are going to prove that the Finsler manifolds (N,E |TN )
and (N,ER |TN ) are conformally equivalent at the point p; more precisely, for
any tangent vector v ∈ TpN \ {0},

gR(Y v, Zv)(v) = ‖gradαv‖2(v)g(Y v, Zv)(v),(44)

where the vector fields Y,Z ∈ X(U) are, of course, tangential to the submani-
fold N at the point p. (Note that gR is just the vertical lift of the Riemannian
metric γ!) The following relations are trivial:

v ∈ TpN ⇐⇒ αc(v) = 0,
gradαv(v) ⊥ Cv with respect to the metric g,
C(X,X)v = ζ

‖ grad α‖2 (v) gradαv(v);
(45)

here, as above, ζ := g(C(X,X), JX) and X := F gradαv ⇒ JX = gradαv.
Since the Liouville vector field C and gradαv are perpendicular at any point
v ∈ TpN \ {0}, they are linearly independent at the same time. The formulas
in the proof of Lemma 9 shows that

Zv‖JX‖2 |TpN= 0, Y v‖JX‖2 |TpN= 0 and Y v(Zv‖JX‖2) |TpN= 0

which imply the relation (44). Using Knebelman’s observation at the point
p ∈ N , it follows that the ”scale function”

‖JX‖2 = ‖ gradαv‖2
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is constant on the tangent space TpN . On the other hand, for any point
v ∈ TpN ,

(Y v)v

(
Lg(C(X,X), JX)

)
= (Y vL)vg(C(X,X), JX)v+

+L(v)(Y v)vg(C(X,X), JX) = (Y vL)vg(C(X,X), JX)v −

− L

2E
(v)(Y vE)vg(C(X,X), JX)v = 0

using the formulas in the proof of Lemma 9 again. �

Lemma 12. Let v ∈ TpN \ {0} be an arbitrarily fixed tangent vector and
consider the integral curve

c : R → TpN, c(t) := v + t gradR α(p)

of the vector field gradv
Rα. The function

y(t) := E ◦ c(t)

satisfies the following differential equation:

2ER(v)y(t)y′′(t) + 2ty(t)y′(t) − (ER(v) +
t2

2
)(y′)2(t) − 2y2(t) = 0.(46)

Proof. The differential equation (46) can be deduced from the relation (41),
which implies that

Gg

(
gradαv , gradv

Rα,C
)
◦ c(t) = 0.

Taking into account the following simple facts

g(gradαv, gradv
Rα) ◦ c = ‖ gradR α‖2(p) = 1 (see Lemma 10),

g(gradv
Rα, gradv

Rα) ◦ c = gradv
Rα

(
gradv

Rα(E)
)
◦ c = y′′,

g(gradv
Rα,C) = gradv

Rα(E) and gradv
Rα(E) ◦ c = y′,

g(C,C) = 2E and αc ◦ c(t) = t2,

E‖ gradαv‖2 = ER and ER ◦ c(t) = ER(v) +
1
2
t2,

the proof is a straightforward calculation. �
Now we are going to solve this differential equation to complete the proof of

Proposition 2. As it can be easily seen, if z := y′
y then z satisfies the following

first order Ricatti-type differential equation:

2ER(v)z′(t) + 2tz(t) +
2ER(v) − t2

2
z2(t) − 2 = 0.(47)
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Since

y′(0) = (gradv
Rα)vE = (gradv

Rα)v(
ER

‖JX‖2
) =

=
αc

‖JX‖2
(v) − ER

‖JX‖4
(v)(gradv

Rα)v‖JX‖2 =

= − ER

‖JX‖4
(v)(gradv

Rα)v‖JX‖2 =

= −2
ER

‖JX‖4
(v)g(Dgradv

RαJX, JX)(v)
(26)
=

= 2
ER

‖JX‖4
(v)g(C(X,X), gradv

Rα)(v)
(45)
= 2

ER

‖JX‖6
(v)ζ(v) =

=
L2

R

L‖JX‖6
(v)(Lζ)(v) =

LR

‖JX‖5
(Lζ)(v),

y(0) = E(v) =
ER

‖JX‖2
(v) =

L2
R

2‖JX‖2
(v),

we have, by Lemma 11, the initial condition

z(0) = 2
Lζ

‖JX‖3
(v)

1
LR(v)

=
K(p)
LR(v)

,(48)

where K(p) ∈ R is a constant. As it can be easily seen, the function

z : I → R, z(t) := 2
2t+K(p)LR(v)

2t2 + tK(p)LR(v) + 4ER(v)
(49)

is the uniquely solution of the Cauchy-problem. Therefore

(E ◦ c)′
E ◦ c |I= z;

since the left hand side is well-defined on the whole set of real numbers it
follows that −4 < K(p) < 4 and, consequently,

(E ◦ c)′
E ◦ c (t) = 2

2t+K(p)LR(v)
2t2 + tK(p)LR(v) + 4ER(v)

(50)

for any real number t ∈ R. Integrating (50) with respect to t, we have that

y(t) = 4K∗(p)
(
ER ◦ c(t) +K(p)LR(v)

t

4

)
(51)

exp
2K(p)√

16 −K2(p)
(arctan

4t+K(p)LR(v)
LR(v)

√
16 −K2(p)

− arctan
K(p)√

16 −K2(p)
),
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where

K∗(p) :=
1

4‖gradαv‖2(v)
;

the right hand side is depend only on the ”position” as we have proved in
Lemma 11. In view of Remark 3 this result shows that Sp has constant pos-
itive curvature. Therefore, we can suppose that for any q ∈ U the indicatrix
hypersurface Sq also has positive curvature and the argumentation is similar
as above.

§4. On conformal equivalence of almost spherical Berwald
manifolds

Proposition 3. Keeping our previous notations let E be a non-Riemannian
Asanov-type Finslerian metric function at the point p ∈ M , i.e. suppose that
K(p) = 0. If

TpM = W ⊕ {tw | t ∈ R} =: W ⊕ L(w)

is a direct composition such that for any v ∈ W and t ∈ R the symmetry
property

E(v + tw) = E(−v + tw)(52)

is satisfied, then

W = Ker(αc |TpM ) = TpN and w ∈ L(gradR α(p)).

Proof. Let v ∈W be an arbitrary tangent vector such that

v = v0 + t0 gradR α(p), where v0 ∈ TpN ;

first of all we suppose that v0 = 0. Using the symmetry property (52) it follows
that E(v) = E(−v) and, consequently,

(
ER(v) +K(p)LR(v0)

t0
4

)
f(t0) =

(
ER(v) −K(p)LR(v0)

t0
4

)
f(−t0),(53)

where the function f is defined by the formula

f(t) := exp
2K(q)√

16 −K2(q)
arctan

4t+K(q)LR(v0)
LR(v0)

√
16 −K2(q)

.
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It can be easily seen that

f is strictly increasing ⇔ K(p) > 0,
f is strictly decreasing ⇔ K(p) < 0.

Since f is positive, these observations are also true for the function f2; there-
fore, for any t ∈ R

tK(p)
(
f2(t) − f2(−t)

)
≥ 0.

On the other hand, according to the relation (53)

ER(v)
(
f(t0) − f(−t0)

)
+K(p)LR(v0)

t0
4

(
f(t0) + f(−t0)

)
= 0

and both members on the left hand side have the same sign because their
product is no less than 0 as we have seen above. This means that t0 = 0, i.e.
v ∈ TpN . If v0 = 0, then v = t0 gradR α(p) and the symmetry property (52)
gives that

t20

(
exp

K(p)√
16 −K2(p)

π − 1

exp K(p)√
16−K2(p)

π

)
= 0

and, consequently, t0 = 0.
Consider now the subspace L(w) ⊂ TpM ; we put

w = w0 + t0 gradR α(p),

where w0 ∈ TpN and t0 := w(α). If v := 1
t0
w0 and t := 1

t0
then the symmetry

property (52) gives that

E(gradR α(p)) = E(
2
t0
w0 + gradR α(p)).

Let us define a function

j : [0, 2] → R, j(t) := E(
t

t0
w0 + gradR α(p)) ⇒ j(0) = j(2);

since j is continuous and it is differentiable at any inner point, there exists a
real number 0 < t < 2 such that j′(t) = 0. On the other hand, according to
(29) an easy calculation shows that for any inner point t:

j′(t) = 2tER(
1
t0
w0)

exp
2K(p)√

16 −K2(p)
(arctan

4 +K(p)LR( t
t0
w0)

LR( t
t0
w0)

√
16 −K2(p)

− arctan
K(p)√

16 −K2(p)
),

and, consequently, E( 1
t0
w0) = 0 ⇒ w0 = 0, which implies our statement. �



38 CS. VINCZE

Theorem 1. Let (M,E) be an almost spherical Berwald manifold of dimen-
sion n ≥ 3; then the Berwald-type conformal changes of its Riemann-Finsler
metric must be homothetic unless the manifold is Riemannian, i.e. one of the
following cases is satisfied:

(i) b ≡ 0;

(ii) b ≡ n and, consequently, (M,E) is a Riemannian manifold.

Proof. Suppose that there exists a nontrivial Berwald-type conformal change

gα = ϕg (ϕ = exp ◦αv)

of the metric g, i.e. (M,Eα) is a Berwald manifold and dpα = 0 (p ∈ M).
Proposition 2 implies the energy function E to be conformal to an Asanov-
type Finslerian metric function on a connected open neighbourhood U of the
point p. This means that for any q ∈ U the indicatrix hypersurface Sq has
constant sectional curvature and the symmetry property

E(v + t gradR α(p)) = E(v − t gradR α(p)),

where v ∈ TqM is tangential to the level hypersurface Nr := α−1(r) ∩ U
containing q is satisfied; notations as in the proof of Proposition 2. Since
the canonical Barthel endomorphism h arises from a linear connection ∇ on
the underlying manifold M , it follows that the punctured tangent spaces as
Riemannian manifolds are isometric to each other (cf. the proof of Lemma 2).
Therefore, the indicatrices have the same constant curvature which means that
the functionK is constant on the neighbourhood U . We can obviously suppose
that this Asanov-type Finslerian metric function is non-Riemannian, i.e. K =
0. Taking into account the fact that the parallel transport with respect to ∇
preserves the Finslerian norm, Proposition 3 implies that the tangent spaces
of the level hypersurfaces Nr are also invariant under the parallel transport
with respect to ∇. In other words, these hypersurfaces are totally geodesic
submanifolds of the Berwald manifold (M,E), i.e. for example

Sαc |TN= 0,

where N := α−1(0) ∩ U - without loss of generality we can suppose that
α(p) = 0. Starting out from the Berwald manifold (M,Eα) and the Berwald-
type conformal change g = 1

ϕgα of the metric gα, we also have that

Sαα
c |TN= 0 ⇒ E‖ gradαv‖2 |TN= 0

using the transformation formula (19), see also the proof of Lemma 7. This
is obviously contradicts to the regularity property dpα = 0. Therefore, the
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exterior derivative of the function α vanishes and the conformal change is ho-
mothetic. If K = 0 then the manifold is locally Riemannian and, consequently,
it is a Riemannian manifold; the proof can be easily realized by the help of
the parallel transport with respect to ∇, see e.g. Proposition 3 in [18]. �

§5. An application: on the uniqueness of Wagner stuctures for
Finsler manifolds

Corollary 1. Suppose that (M,E) is a positive definite almost spherical Wag-
ner manifold of dimension n ≥ 3; then the Wagner structure or, in an equiv-
alent way, the linear Wagner connection on the underlying manifold M is
uniquely determined unless the manifold is Riemannian.

Proof. As it is well-known (see e.g. [17], [15] and [8]), if there exists a linear
Wagner connection on a Finsler manifold (M,E), then it is conformal to a
Berwald manifold and vica-verse. Explicitly, if

gα = ϕg (ϕ = exp ◦αv)

is a Berwald-type conformal change of the metric g, then the Wagner con-
nection induced by −1

2α is linear. According to Theorem 1, for any positive
definite almost spherical Wagner manifold b ≡ 0, i.e. the Berwald-type con-
formal changes can be written in the form

ϕλ := exp ◦
(
αv + λ

)
,

where λ is an arbitrary constant. Since the exterior derivative of a constant
function vanishes, the Wagner connections induced by the functions −1

2α and
−1

2(α+λ) coincide as was to be stated; for the details see [17], [16] and [6]. �

Remark 5. For a detailed discussion of the two-dimensional case, see [10].
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