
SUT Journal of Mathematics
Vol. 43, No. 1 (2007), 115–126

On pseudo projective curvature tensor of a contact

metric manifold

C. S. Bagewadi, D. G. Prakasha and Venkatesha

(Received May 15, 2007; Revised August 24, 2007)

Abstract. The paper deals with extended pseudo projective curvature tensor
P e of contact metric manifolds. We prove that (k, µ)-manifold with vanishing
extended pseudo projective curvature tensor P e is a Sasakian manifold. Several
interesting corollaries of this result are drawn. Non-Sasakian (k, µ)-manifold
with pseudo projective curvature tensor P satisfying P (ξ, X) · S = 0, where S

is the Ricci tensor, are classified.
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§1. Introduction

The unit tangent sphere bundle of a Riemannian manifold of constant sec-
tional curvature admits a contact metric structure (ϕ, ξ, η, g) such that the
characteristic vector field ξ belongs to the (k, µ)-nullity distribution for some
real numbers k and µ. This means that for any vector fields X and Y the
curvature tensor R satisfies the condition

(1.1) R(X,Y )ξ = (kI + µh)R0(X,Y )ξ,

where

(1.2) R0(X,Y )ξ = η(Y )X − η(X)Y

and h denote Lie derivative of the structure tensor field ϕ in the direction of ξ.
The class of contact metric manifolds which satisfies (1.1) has been classified
in all dimensions at least locally (see [7] and [8]).
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Recently, B.Prasad[15]introduced a new type of curvature tensor which is
known as pseudo projective curvature tensor. A K-contact manifold is always
a contact metric manifold, but the converse is not true in general. Thus, it
is worthwhile to study pseudo projective curvature tensor P and E-pseudo
projective curvature tensor P e in contact metric manifold. Here we prove
that a (k, µ)-manifold with vanishing E-pseudo projective curvature tensor
is a Sasakian manifold. Then, we draw several corollaries of this result to
N(k)-contact metric manifolds [16], the unit tangent sphere bundles [7], N(k)-
contact space forms [10] and (k, µ)-space forms [11].

In [13] and [14] contact metric manifolds satisfying R(X, ξ) · S = 0 and in
([1], [2] and [3]) Kenmotsu and 3-dimensional trans-Sasakian manifolds satis-
fying some curvature conditions are studied. From these studies, we classify
non-Sasakian (k, µ)-manifolds with pseudo projective curvature tensor P sat-
isfying P (ξ,X) · S = 0 and obtain some interesting results.

§2. Preliminaries

A (2n + 1)-dimensional differentiable manifold M is called an almost contact
manifold if either its structural group can be reduced to U(n) × 1 or equiva-
lently, there is an almost contact structure (ϕ, ξ, η) consisting of a (1, 1) tensor
field ϕ, a vector field ξ, and a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ,(2.1)

η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0.(2.2)

An almost contact structure is said to be normal if the induced almost complex
structure J on the product manifold M ×R defined by

J

(

X,λ
d

dt

)

=

(

ϕX − λξ, η(X)
d

dt

)

is integrable, where X is tangent to M , t the coordinate of R and λ a smooth
function on M ×R. The condition for being normal is equivalent to vanishing
of the torsion tensor [ϕ,ϕ] + 2dη ⊗ ξ, where [ϕ,ϕ] is the Nijenhuis tensor of ϕ.
Let g be a compatible Riemannian metric with (ϕ, ξ, η), that is,

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y )(2.3)

or equivalently,

g(X,ϕY ) = −g(ϕX, Y ) and g(X, ξ) = η(X)

for all vector fields X, Y . Then, M become an almost contact metric manifold
equipped with an almost contact metric structure (ϕ, ξ, η, g).
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An almost contact metric structure become a contact metric structure if

g(X,ϕY ) = dη(X,Y ), for all vector fields X, Y.

In a contact metric manifold, the (1, 1)-tensor field h is symmetric and
satisfies

(2.4) hξ = 0, hϕ + ϕh = 0, ∇ξ = −ϕ − ϕh, trace(h) = trace(ϕh) = 0,

where ∇ is the Levi-Civita connection.
A normal contact metric manifold is a Sasakian manifold. An almost con-

tact metric manifold is Sasakian if and only if

(2.5) ∇Xϕ = R0(ξ,X),

while a contact metric manifold M is Sasakian if and only if

(2.6) R(X,Y )ξ = R0(X,Y )ξ, for all vector fields X,Y on M.

The (k, µ)-nullity distribution N(k, µ) of a contact metric manifold M for
the pair (k, µ) ∈ R2, is a distribution (see [7] and [13])

N(k, µ) : P 7→ NP (k, µ)

= {U ∈ TPM |R(X,Y )U = (kI + µh)R0(X,Y )U, ∀ X,Y ∈ TP M}.

A contact metric manifold with ξ ∈ N(k, µ) is called a (k, µ)-manifold. For a
(k, µ)-manifold it is known that h2 = (k − 1)ϕ2. This class contains Sasakian
manifolds for k = 1 and h = 0. In fact, for (k, µ)-manifold the condition
of being Sasakian manifold, K-Contact manifold, k = 1 and h = 0 are all
equivalent. If µ = 0, the (k, µ)-nullity distribution N(k, µ) is reduced to the
k-nullity distribution N(k) (see [16]). Further if ξ belongs to N(k), then we
call a contact metric manifold M an N(k)-contact metric manifold.
We recall the following theorem due to D.E. Blair [5]:

Theorem 1. A contact metric manifold M 2n+1 satisfying R(X,Y )ξ = 0 is

locally isometric to En+1(0) × Sn(4) for n > 1 and flat for n = 1.

We also need the following definition:

Definition 1. A contact metric manifold M is said to be η-Einstein if the
Ricci operator Q satisfies

(2.7) Q = αI + βη ⊗ ξ,

where α and β are smooth functions on the manifold. In particular if β = 0,
then M is an Einstein manifold.
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§3. (k, µ)-manifold with vanishing E-pseudo projective curvature
tensor

In [15], pseudo projective curvature tensor in an almost contact metric mani-
fold is defined as follows:

P (X,Y )Z = aR(X,Y )Z + b[S(Y,Z)X − S(X,Z)Y ](3.1)

−
r

2n + 1

[ a

2n
+ b

]

[g(Y,Z)X − g(X,Z)Y ],

where a and b are constants such that a, b 6= 0 and r denote scalar curvature
of the manifold. For a (2n+1)-dimensional (k, µ)-manifold M , we have

(3.2) R(X,Y )ξ = (kI + µh)R0(X,Y )ξ,

which is equivalent to

(3.3) R(ξ,X) = R0(ξ, (kI + µh)X) = −R(X, ξ).

In particular, one can get

(3.4) R(ξ,X)ξ = k(η(X)ξ − X) − µhX = −R(X, ξ)ξ.

From (3.1), (3.2) and (3.3), it follows that

P (X,Y )ξ =

[

(a + 2nb)(k −
r

2n(2n + 1)
)I + aµh

]

R0(X,Y )ξ,(3.5)

P (ξ,X) =

[

(a + 2nb)(k −
r

2n(2n + 1)
)

]

R0(ξ,X) + aµR0(ξ, hX).(3.6)

Consequently, we have

P (ξ,X)ξ =

[

(a + 2nb)(k −
r

2n(2n + 1)
)

]

(η(X)ξ − X) − aµhX,(3.7)

η(P (X,Y )ξ) = 0,(3.8)

η(P (ξ,X)Y ) =

[

(a + 2nb)(k −
r

2n(2n + 1)
)

]

[g(X,Y )(3.9)

− η(X)η(Y )] + aµg(hX, Y ).

The E-pseudo projective curvature tensor P e of pseudo projective curvature
tensor P is defined as follows:

P e(X,Y )Z = P (X,Y )Z − η(X)P (ξ, Y )Z(3.10)

− η(Y )P (X, ξ)Z − η(Z)P (X,Y )ξ.
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Let M be a (2n+1)-dimensional (k, µ)-manifold. If E-pseudo projective
curvature tensor of M vanishes, then from (3.7) and (3.10) we have

0 = P e(X, ξ)ξ(3.11)

=

[

(a + 2nb)

(

k −
r

2n(2n + 1)

)]

(η(X)ξ − X) − aµhX

= −P (X, ξ)ξ,

which in view of h2 = (k − 1)ϕ2, gives

(3.12) h2 =
a

a + 2nb

[

2n(2n + 1)

r − 2nk(2n + 1)

]

(k − 1)µh.

Taking the trace of (3.12), we obtain

(3.13) trace(h2) = 2n(1 − k) = 0,

which gives k = 1. Thus M becomes Sasakian. Hence we state the following:

Theorem 2. A (k, µ)-manifold with vanishing E-pseudo projective curvature

tensor is a Sasakian manifold.

From Theorem 2 we derive

Corollary 1. An N(k)-contact metric manifold with vanishing E-pseudo pro-

jective curvature tensor is a Sasakian manifold.

The unit tangent sphere bundle T1M equipped with the standard contact
metric structure is a (k, µ)-manifold if and only if the base manifold M is of
constant curvature c with k = c(2 − c) and µ = −2c ([7]). In case of c 6= 1,
the unit tangent sphere bundle is non-Sasakian. Denote the unit tangent
sphere bundle of a space of constant curvature c with standard contact metric
structure as T1M(c). Applying Theorem 2 to T1M(c), one can obtain

Corollary 2. In T1M(c) if the E-pseudo projective curvature tensor vanishes,

then c = 1.

In an almost contact metric manifold if a unit vector X is orthogonal to ξ,
then X and ϕX span a ϕ-section. And if the sectional curvature c(X) of all
ϕ-sections is independent of X, then M is of pointwise constant ϕ-sectional
curvature. Further an N(k)-contact metric manifold M with pointwise con-
stant ϕ-sectional curvature c is called an N(k)-contact space form M(c). The
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curvature tensor of M(c) is given by [10]:

4R(X,Y )Z(3.14)

= (c + 3)[g(Y,Z)X − g(X,Z)Y ]

+ (c − 1)[η(X)η(Z)Y − η(Y )η(Z)X + η(Y )g(X,Z)ξ

− η(X)g(Y,Z)ξ + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ]

+ 4(k − 1)[η(Y )η(Z)X − η(X)η(Z)Y + η(X)g(Y,Z)ξ

− η(Y )g(X,Z)ξ] + 4[g(hY,Z)X − g(hX,Z)Y + g(Y,Z)hX

− g(X,Z)hY + η(X)η(Z)hY − η(Y )η(Z)hX + η(Y )g(hX,Z)ξ

− η(X)g(hY,Z)ξ] + 2[g(hY,Z)hX − g(hX,Z)hY

+ g(ϕhX,Z)ϕhY − g(ϕhY,Z)ϕhX],

for all vector fields X, Y and Z, where c is constant on M if dim (M) > 3.
Now, applying Theorem 2 to an N(k)-contact space form, we state the

following:

Corollary 3. An N(k)-contact space form with vanishing E-pseudo projective

curvature tensor is a Sasakian space form.

Let M be a (2n+1)-dimensional (k, µ)-manifold (n > 1). Next, if M has
a constant ϕ-sectional curvature c then it is called a (k, µ)-space form. The
curvature tensor of (k, µ)-space form is given by [11]:

R(X,Y )Z

(3.15)

=
(c + 3)

4
[g(Y,Z)X − g(X,Z)Y ]

+
(c − 1)

4
[2g(X,ϕY )ϕZ + g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX]

+
(c + 3 − 4k)

4
[η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y,Z)η(X)ξ] +
1

2
[g(hY,Z)hX − g(hX,Z)hY + g(ϕhX,Z)ϕhY

− g(ϕhY,Z)ϕhX] + g(ϕY, ϕZ)hX − g(ϕX,ϕZ)hY

+ g(hX,Z)ϕ2Y − g(hY,Z)ϕ2X + µ[η(Y )η(Z)hX

− η(X)η(Z)hY + g(hY,Z)η(X)ξ − g(hX,Z)η(Y )ξ],

for all vector fields X, Y and Z, where c + 2k = −1 = k − µ if k < 1.
Applying Theorem 2 to a (k, µ)-contact space form, we obtain the following:

Corollary 4. A (k, µ)-contact space form with vanishing E-pseudo projective

curvature tensor is a Sasakian space form.
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Remark 1. Theorem 2 and its Corollaries 1 to 4 are valid for vanishing of
pseudo projective curvature tensor P also.

§4. (k, µ)-manifold satisfying P (ξ,X) · S = 0

For a (2n+1)-dimensional (k, µ)-manifold M , it is well known that

(4.1) S(X, ξ) = 2nkη(X).

In view of (3.8) and (3.9), (4.1) gives

S(P (ξ,X)ξ, Y ) = 2nk(a + 2nb)

(

k −
r

2n(2n + 1)

)

η(X)η(Y )(4.2)

− (a + 2nb)

(

k −
r

2n(2n + 1)

)

S(X,Y )

− aµS(hX, Y )

and

S(P (ξ,X)Y, ξ) = 2nk(a + 2nb)

(

k −
r

2n(2n + 1)

)

[g(X,Y )(4.3)

− η(X)η(Y )] + 2nkaµg(hX, Y )

respectively.
In a (2n+1)-dimensional (k, µ)-manifold, the condition P (ξ,X) · S = 0 is

equivalent to

(4.4) S(P (ξ,X)Y, ξ) + S(Y, P (ξ,X)ξ) = 0.

Substituting (4.2) and (4.3) in (4.4) followed by a simple calculation gives,
[

(a + 2nb)

(

k −
r

2n(2n + 1)

)]

[S(X,Y ) − 2nkg(X,Y )](4.5)

+ aµ[S(hX, Y ) − 2nkg(hX, Y )] = 0.

It is well known that in a (2n+1)-dimensional non-Sasakian (k, µ)-manifold
M the Ricci operator Q is given as follows [7]:

Q = (2(n − 1) − nµ)I + (2(n − 1) + µ)h(4.6)

+ (2(1 − n) + n(2k + µ))η ⊗ ξ.

Consequently, the Ricci tensor S and the scalar curvature r are given by

S(X,Y ) = (2(n − 1) − nµ)g(X,Y ) + (2(n − 1) + µ)g(hX, Y )(4.7)

+ (2(1 − n) + n(2k + µ))η(X)η(Y ),

r = 2n(2n − 2 + k − nµ).(4.8)
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By virtue of (2.3) and (4.7), we also have

S(hX, Y ) = (2(n − 1) − nµ)g(hX, Y )(4.9)

− (k − 1)(2(n − 1) + µ)[g(X,Y ) − η(X)η(Y )],

where η ◦ h = 0, h2 = (k − 1)ϕ2.

From(2.7) and (4.7), one can see that a non-Sasakian (k, µ)-manifold M is
η-Einstein if and only if µ = −2(n − 1). In this case the Ricci tensor is given
by

(4.10) S = 2(n2 − 1)g − 2(n2 − nk − 1)η ⊗ η.

Putting µ = −2(n − 1) in (4.8), we obtain

(4.11) r = 2n(k + 2(n − 1)(n + 1)).

Now by considering µ = −2(n − 1) in (4.3), then it takes the form

S(P (ξ,X)Y, ξ) = 2nk(a + 2nb)

(

k −
r

2n(2n + 1)

)

[g(X,Y )(4.12)

− η(X)η(Y )] + 4n(1 − n)kag(hX, Y ).

In view of (4.2) and (4.10), we get

S(P (ξ,X)ξ, Y ) = 4a(n − 1)(n2 − 1)g(hX, Y )(4.13)

+ 2(1 − n2)(a + 2nb)

(

k −
r

2n(2n + 1)

)

[g(X,Y ) − η(X)η(Y )].

If M satisfies P (ξ,X) · S = 0, from (4.4), (4.12) and (4.13) we get

S(P (ξ,X)Y, ξ) + S(Y, P (ξ,X)ξ) = 0,

which is equivalent to

2(1 + nk − n2)(a + 2nb)

(

k −
r

2n(2n + 1)

)

[g(X,Y )

− η(X)η(Y )] − 4(n − 1)(1 + nk − n2)ag(hX, Y ) = 0.

Contracting the above equation and then by taking account of (2.4), we have

4n(1 + nk − n2)(a + 2nb)

(

k −
r

2n(2n + 1)

)

= 0.

This implies

k −
r

2n(2n + 1)
= 0.
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Using (4.11) in above, we obtain

(4.14) k =
n2 − 1

n
,

which is equivalent to (1 + nk − n2) = 0. Thus in view of (4.10), M reduces
to Einstein manifold. Hence we state the following:

Theorem 3. In a (2n+1)-dimensional non-Sasakian η-Einstein (k, µ)-manifold

M if the pseudo projective curvature tensor P satisfies P (ξ,X) · S = 0, then

M reduces to an Einstein manifold.

From (4.14), we have k = (n2 − 1)/n < 1. So n = 1 is the only case. This
gives µ = 0 which with n = 1 gives k = 0. Thus substituting k = 0 = µ in
(1.1), we state the following:

Theorem 4. In a (2n+1)-dimensional non-Sasakian η-Einstein (k, µ)-manifold

M if the pseudo projective curvature tensor P satisfies P (ξ,X) · S = 0, then

M is flat and 3-dimensional.

Next, let M be a (2n+1)-dimensional (k, µ)-manifold satisfying P (ξ,X) ·
S = 0. Then we have the following four possible cases.
Case-1: Suppose k = 0 = µ.
From (1.1) we have R(X,Y )ξ = 0. Thus, in view of Theorem 1, M is flat and
3-dimensional or it is locally isometric to En+1(0) × Sn(4).
Case-2: Suppose k 6= 0 = µ.
Using µ = 0 in (4.5), we have S(X,Y ) = 2nkg(X,Y ). Thus M reduces to an
Einstein Sasakian manifold.
Case-3(i): Suppose k = 0 6= µ and n > 1.
Using k = 0 in (4.5), (4.7) and (4.9) we get

rS(X,Y ) = 2n(2n + 1)

(

a

a + 2nb

)

µS(hX, Y ),

S(X,Y ) = (2(n − 1) − nµ)[g(X,Y ) − η(X)η(Y )]

+ (2(n − 1) + µ)g(hX, Y ) and

S(hX, Y ) = (2(n − 1) − nµ)g(hX, Y )

+ (2(n − 1) + µ)[g(X,Y ) − η(X)η(Y )]

respectively. From the above three equations, we get S(X,Y ) = C[g(X,Y ) −
η(X)η(Y )], for some suitable C. Now in view of Theorem 4, we see that the
Case-3(i) is not possible.
Case-3(ii): Suppose k = 0 6= µ and n = 1.
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Using k = 0 and n = 1 in (4.5), (4.7) and (4.9) we get

rS(X,Y ) = 6

(

a

a + 2nb

)

µS(hX, Y ),

S(X,Y ) = −µ[g(X,Y ) − η(X)η(Y )] + µg(hX, Y ) and

S(hX, Y ) = −µg(hX, Y ) + µ[g(X,Y ) − η(X)η(Y )]

respectively.

From the above three relations, we get
[

(

a+2nb
a

)

(

r
6µ

)

+ 1
]

S(X,Y ) = 0.

This gives either
(

a+2nb
a

)

(

r
6µ

)

+1 = 0 or S(X,Y ) = 0. If
(

a+2nb
a

)

(

r
6µ

)

+1 = 0,

then r = −6µ
(

a
a+2nb

)

. Putting k = 0 and n = 1 in (4.8), we get r = −2µ.

Thus (a+2nb
a

)( r
6µ

) + 1 = 0 is not possible.

If S(X,Y ) = 0, then taking X = Y = ξ we have

S(ξ, ξ) = 2nk = 0,

which implies that k = 0. Using k = 0 in (4.8), we get nµ = 2(n − 1). But we
have n = 1, this implies µ = 0, which is a contradiction. Thus, Case-3(ii) is
also not possible.
Case-4(i): Suppose k 6= 0, µ 6= 0 and n > 1. After eliminating g(hX, Y )
and S(hX, Y ) from (4.5), (4.7) and (4.9) we get S(X,Y ) = αg(X,Y ) +
βη(X)η(Y )), for some suitable α and β. Thus M reduces to an η-Einstein
manifold.
(ii): Suppose k 6= 0, µ 6= 0 and n = 1.
Putting n = 1 in (4.5), (4.7) and (4.9) we get

(

k −
r

6

)

S(X,Y ) = 2k
(

k −
r

6

)

g(X,Y ) +

(

a

a + 2b

)

2kµg(hX, Y )

−

(

a

a + 2b

)

µS(hX, Y ),

S(X,Y ) = −µg(X,Y ) + µg(hX, Y ) + (2k + µ)η(X)η(Y ) and

S(hX, Y ) = −µg(hX, Y ) − (k − 1)µg(X,Y )

+ (k − 1)µη(X)η(Y )

respectively. Eliminating g(hX, Y ) and S(hX, Y ) from the above three equa-
tions, we have S(X,Y ) = αg(X,Y ) + βη(X)η(Y ), for some suitable α and β.
Thus, M is a η-Einstein manifold and in this case µ = −2(n − 1). But n = 1,
implies µ = 0 which is a contradiction. Hence this case is not possible. Thus
from the above four possible cases, we can able to state the following:
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Theorem 5. Let M be a (2n+1)-dimensional non-Sasakian (k, µ)-manifold

satisfying the condition P (ξ,X) ·S = 0 such that a +2nb 6= 0. Then the man-

ifold M is either flat and 3-dimensional or is locally isometric to En+1(0) ×
Sn(4) or is an η-Einstein manifold or is a 3-dimensional Einstein manifold.
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