SUT Journal of Mathematics Vol. 43, No. 1 (2007), 107–114

A curvature form for pseudoconnections

C. Morales and M. Vilches

(Received January 8, 2007)

Abstract. We obtain the curvature form $F^{\nabla} = P \circ d^{\nabla} \circ \nabla - d^{\nabla} \circ P \circ \nabla + d^{\nabla} \circ \nabla \circ P$ for a vector bundle pseudoconnection ∇ , where d^{∇} is the exterior derivative associated to ∇ . We use F^{∇} to obtain the curvature of ∇ . We also prove that $F^{\nabla} = 0$ is a necessary (but not sufficient) condition for d^{∇} to be a chain complex. Instead we prove that $F^{\nabla} = 0$ and $d^{\nabla} \circ d^{\nabla} \circ \nabla = 0$ are necessary and sufficient conditions for d^{∇} to be a *chain* 2-complex, i.e., $d^{\nabla} \circ d^{\nabla} \circ d^{\nabla} = 0$.

AMS 2000 Mathematics Subject Classification. Primary 53C05, Secondary 55R25.

Key words and phrases. Curvature Form, Pseudoconnection, Vector Bundle.

§1. Introduction

Let M be a differentiable manifold. Denote by $\Omega^0(M)$ the ring of C^{∞} real valued maps in M. Denote by $\chi^{\infty}(M)$ and $\Omega^k(M)$ respectively the $\Omega^0(M)$ modules of C^{∞} vector fields and k-forms defined on $M, k \geq 0$. Denote by $d : \Omega^k(M) \to \Omega^{k+1}(M)$ the standard exterior derivation of k-forms of M. We denote by Hom(A, B) the set of homomorphisms from the modulus A to the modulus B. If ξ is a real smooth vector bundle over M we denote by $\Omega^k(\xi)$ the set of ξ -valued k-forms of M, namely, $\Omega^0(\xi)$ is the $\Omega^0(M)$ -module of smooth sections of ξ and $\Omega^k(\xi) = \Omega^k(M) \otimes \Omega^0(\xi)$ for all $k \geq 1$. If η is another vector bundle over M we denote by $HOM(\xi, \eta)$ the set of bundle homomorphism from ξ to η over the identity. Every $P \in HOM(\xi, \eta)$ induces a homomorphism $P \in Hom(\Omega^0(\xi), \Omega^0(\eta))$ of $\Omega^0(M)$ modules in the usual way. It also defines a homomorphism $P \in Hom(\Omega^k(\xi), \Omega^k(\eta))$ for all $k \geq 1$ by setting $P(\omega \otimes s) = \omega \otimes P(s)$ at every generator $\omega \otimes s \in \Omega^k(\xi)$.

A pseudoconnection of a vector bundle ξ over M is an \mathbb{R} -linear map ∇ : $\Omega^0(\xi) \to \Omega^0(\xi)$ for which there is a bundle homomorphism $P \in HOM(\xi,\xi)$ called the principal homomorphism of ∇ such that the Leibnitz rule below holds:

$$\nabla(f \cdot s) = df \otimes P(s) + f \cdot \nabla(s), \qquad \forall (f, s) \in \Omega^0(M) \times \Omega^0(\xi).$$

(See [2].) An ordinary connection is a pseudoconnection whose principal homomorphism is the identity. By classical arguments we shall associate to any pseudoconnection ∇ an exterior derivative, that is, a sequence of linear maps $d^{\nabla}: \Omega^k(\xi) \to \Omega^{k+1}(\xi)$ which reduces to ∇ when k = 0 and satisfies a Leibnitz rule. We shall use it to define the curvature form $F^{\nabla}: \Omega^0(\xi) \to \Omega^2(\xi)$ as the alternating sum

$$F^{\nabla} = P \circ d^{\nabla} \circ \nabla - d^{\nabla} \circ P \circ \nabla + d^{\nabla} \circ \nabla \circ P.$$

Notice that F^{∇} above reduces to the classical curvature form if ∇ were an ordinary connection. We shall prove that F^{∇} is a tensor, that is, $F^{\nabla} \in Hom(\Omega^0(\xi), \Omega^2(\xi))$, and explain how to obtain the Abe's curvature [2] from F^{∇} . We also prove that $F^{\nabla} = 0$ is a necessary (but not sufficient) condition for d^{∇} to be a chain complex. Instead we prove that $F^{\nabla} = 0$ and $d^{\nabla} \circ d^{\nabla} \circ \nabla = 0$ are necessary and sufficient conditions for d^{∇} to be a *chain* 2-complex, i.e., $d^{\nabla} \circ d^{\nabla} \circ d^{\nabla} = 0$.

§2. Results

Let ξ, η be real smooth vector bundles over a differentiable manifold M. An Oderivative operator from ξ to η with principal homomorphism $P \in HOM(\xi, \eta)$ is an \mathbb{R} -linear map $\nabla : \Omega^0(\xi) \to \Omega^0(\eta)$ satisfying the Leibnitz rule

$$\nabla(f \cdot s) = df \otimes P(s) + f \cdot \nabla(s), \qquad \forall (f, s) \in \Omega^0(M) \times \Omega^0(\xi).$$

(See [1].) Notice that a pseudoconnection of ξ is nothing but an *O*-derivative operator from ξ to itself.

As in [1] we denote by $O(\xi, \eta; P)$ the set whose elements are the *O*-derivative operators with principal homomorphism *P* from ξ to η . We even write $O(\xi; P)$ instead of $O(\xi, \xi; P)$ and define

$$O(\xi,\eta) = \bigcup_P O(\xi,\eta;P)$$
 and $O(\xi) = \bigcup_P O(\xi;P).$

Every $\alpha \in HOM(\xi, \eta)$ induces an alternating product

$$\wedge_{\alpha}: \Omega^k(M) \times \Omega^l(\xi) \to \Omega^{k+l}(\eta)$$

defined at the generators by

$$\beta \wedge_{\alpha} (\omega \otimes s) = (\beta \wedge \omega) \otimes \alpha(s).$$

If $\eta = \xi$ and α is the identity, then \wedge_{α} reduced to the ordinary alternating product \wedge ([3]).

Lemma 2.1. For every $\nabla \in O(\xi, \eta; P)$ there is a unique sequence of linear maps $d^{\nabla} : \Omega^k(\xi) \to \Omega^{k+1}(\eta), \ k \ge 0$, satisfying the following properties:

1. If k = 0, then

$$d^{\nabla} = \nabla.$$

2. If $k, l \geq 0$, $\omega \in \Omega^k(M)$ and $S \in \Omega^l(\xi)$, then

$$d^{\nabla}(\omega \wedge S) = d\omega \wedge_P S + (-1)^k \omega \wedge d^{\nabla} S.$$

Proof. First define the map $D^{\nabla}: \Omega^k(M) \times \Omega^0(\xi) \to \Omega^{k+1}(\eta)$ by

$$D^{\nabla}(\omega,s) = d\omega \otimes P(s) + (-1)^k \omega \wedge \nabla s, \quad \forall (\omega,s) \in \Omega^k(M) \times \Omega^0(\xi).$$

Clearly D^{∇} is linear and satisfies

$$D^{\nabla}(f \cdot \omega, s) = D^{\nabla}(\omega, f \cdot s)$$

for all $f \in \Omega^0(M)$ and $(\omega, s) \in \Omega^k(M) \times \Omega^0(\xi)$. Therefore D^{∇} induces a linear map $d^{\nabla} : \Omega^k(\xi) \to \Omega^{k+1}(\eta)$ whose value at the generator $\omega \otimes s$ of $\Omega^k(\xi)$ is given by

$$d^{\nabla}(\omega \otimes s) = d\omega \otimes P(s) + (-1)^k \omega \wedge \nabla s.$$

It follows that d^{∇} and ∇ coincide at the generators (for k = 0) by the Leibnitz rule of ∇ . Therefore (1) holds. The proof of (2) follows as in [3]. This ends the proof.

The sequence d^{∇} in the lemma above will be referred to as the *exterior* derivative of $\nabla \in O(\xi, \eta)$. Next we state the following definition.

Definition 2.2. Let ∇ be a pseudoconnection with principal homomorphism P on a vector bundle ξ . We define the following maps

$$E^{\nabla}, F^{\nabla}: \Omega^0(\xi) \to \Omega^2(\xi), \quad L^{\nabla}: \Omega^0(\xi) \to \Omega^1(\xi) \quad \text{and} \quad G^{\nabla}: \Omega^0(\xi) \to \Omega^3(\xi)$$

by

•
$$E^{\nabla} = d^{\nabla} \circ \nabla;$$

• $F^{\nabla} = P \circ d^{\nabla} \circ \nabla - d^{\nabla} \circ P \circ \nabla + d^{\nabla} \circ \nabla \circ P;$

•
$$L^{\nabla} = P \circ \nabla - \nabla \circ P;$$

•
$$G^{\nabla} = d^{\nabla} \circ d^{\nabla} \circ \nabla$$
.

The map F^{∇} will be referred to as the *curvature form* of ∇ .

The maps in the definition above are related by the expressions

(2.1)
$$F^{\nabla} = P \circ E^{\nabla} - d^{\nabla} \circ L^{\nabla}, \quad G^{\nabla} = d^{\nabla} \circ E^{\nabla}.$$

As already observed the curvature form F^{∇} of a pseudoconnection ∇ reduces to the classical curvature form when ∇ is an ordinary connection [3].

Theorem 2.3. If ∇ is a pseudoconnection of ξ , then $F^{\nabla} \in Hom(\Omega^0(\xi), \Omega^2(\xi))$ and $L^{\nabla} \in Hom(\Omega^0(\xi), \Omega^1(\xi))$.

Proof. It is not difficult to see that $L^{\nabla} \in Hom(\Omega^0(\xi), \Omega^1(\xi))$. On the other hand,

$$P(\omega \wedge S) = \omega \wedge_P S, \quad \forall \omega \in \Omega^1(M), \forall S \in \Omega^1(\xi)$$

 \mathbf{SO}

$$E^{\nabla}(f \cdot s) = df \wedge L^{\nabla}(s) + f \cdot E^{\nabla}(s), \quad \forall f \in \Omega^0(M), \forall s \in \Omega^0(\xi).$$

Then, (2.1) implies

$$F^{\nabla}(f \cdot s) = P(E^{\nabla}(f \cdot s))) - d^{\nabla}(L^{\nabla}(f \cdot s)) = P(df \wedge L^{\nabla}(s) + f \cdot E^{\nabla}(s)) - d^{\nabla}(f \cdot L^{\nabla}(s))$$
$$= df \wedge_P L^{\nabla}(s) - df \wedge_P L^{\nabla}(s) + f \cdot F^{\nabla}(s) = f \cdot F^{\nabla}(s)$$

 $\forall f \in \Omega^0(M), \forall s \in \Omega^0(\xi).$ Therefore $F^{\nabla} \in Hom(\Omega^0(\xi), \Omega^2(\xi))$ and we are done. This ends the proof.

Lemma 2.4. If ∇ is a pseudoconnection of a vector bundle ξ and $i \ge 0$, then

(2.2)
$$d^{\nabla} \circ d^{\nabla} \circ d^{\nabla}(\omega \otimes s) = d\omega \wedge F^{\nabla}(s) + (-1)^{i}\omega \wedge G^{\nabla}(s)$$

for every generator $\omega \otimes s \in \Omega^i(\xi)$.

Proof. First notice that

$$d^{\nabla} \circ d^{\nabla}(\omega \otimes s) = d^{\nabla}(d^{\nabla}(\omega \otimes s)) = d^{\nabla}(d\omega \otimes P(s) + (-1)^{i}\omega \wedge \nabla s) =$$

= $d^{2}\omega \otimes P^{2}(s) + (-1)^{i+1}d\omega \wedge \nabla P(s) + (-1)^{i}(dw \wedge_{P} \nabla s +$
+ $(-1)^{i}\omega \wedge d^{\nabla}(\nabla s)) = (-1)^{i}[d\omega \wedge (P\nabla s - \nabla Ps) + (-1)^{i}\omega \wedge d^{\nabla}(\nabla s)].$

Therefore

$$d^{\nabla} \circ d^{\nabla}(\omega \otimes s) = \omega \wedge E^{\nabla}(s) + (-1)^i d\omega \wedge L^{\nabla}(s).$$

Applying d^{∇} to this expression we get (2.2). The proof follows.

As is well known the curvature form F^{∇} of an ordinary connection ∇ measures how the exterior derivative d^{∇} of ∇ deviates from being a *chain complex*, i.e., $d^{\nabla} \circ d^{\nabla} = 0$. Indeed, d^{∇} is a chain complex if and only if $F^{\nabla} = 0$. However, the analogous result for pseudoconnections is false in general by Proposition 2.8 below. Despite we shall obtain a pseudoconnection version of this result based on the following definition.

Definition 2.5. A pseudoconnection ∇ is called:

- 1. strongly flat if $E^{\nabla} = 0$ and $L^{\nabla} = 0$,
- 2. weakly flat if $F^{\nabla} = 0$ and $G^{\nabla} = 0$.

For ordinary connections one has $F^{\nabla} = E^{\nabla}$, $L^{\nabla} = 0$ and then the notions of flatness above coincide with the classical flatness [3]. The exterior derivative d^{∇} of a pseudoconnection ∇ is said to be a *chain* 2-*complex* if $d^{\nabla} \circ d^{\nabla} \circ d^{\nabla} = 0$. With these definitions we have the following result.

Theorem 2.6. A pseudoconnection ∇ is weakly flat (resp. strongly flat) if and only if d^{∇} is a chain 2-complex (resp. chain complex).

Proof. We only prove the result for weakly flat since the proof for strongly flat is analogous.

Fix a pseudoconnection ∇ with principal homomorphism P on a vector bundle ξ . If ∇ is weakly flat then d^{∇} is a chain 2-complex by (2.2) in Lemma 2.4. Conversely, if d^{∇} is a chain 2-complex, then both $d^{\nabla} \circ d^{\nabla} \circ d^{\nabla}$ and $d^{\nabla} \circ d^{\nabla} \circ \nabla$ vanish hence $\omega \wedge F^{\nabla}(s) = 0$ for all exact form ω of M and all $s \in \Omega^0(\xi)$ by (2.2) in Lemma 2.4. Since every form in M is locally a $\Omega^0(M)$ -linear combination of alternating product of exact forms we obtain that $\omega \wedge F^{\nabla}(s) = 0$ for all k-form ω of M ($k \geq 1$) and all $s \in \Omega^0(\xi)$. From this we obtain that $F^{\nabla} = 0$ so ∇ is weakly flat. The proof follows. \Box

The following is a direct corollary of the above theorem.

Corollary 2.7. If the exterior derivative d^{∇} of a pseudoconnection ∇ is a chain complex, then $F^{\nabla} = 0$.

The converse of the above corollary is false by the following proposition.

Proposition 2.8. There is a pseudoconnection ∇ with $F^{\nabla} = 0$ such that d^{∇} is not a chain complex.

Proof. Choose a suitable vector bundle ξ over $M = \mathbb{R}^3$, $\Phi_2, \Phi_3 \in HOM(\xi, \xi)$ such that $\Phi_3 \circ \Phi_2 \neq \Phi_2 \circ \Phi_3$ and three 1-forms $\omega_1, \omega_2, \omega_3 \in \Omega^1(M)$ such that $\omega_1 \wedge \omega_2 \wedge \omega_3$ never vanishes. Define the map $\nabla : \Omega^0(\xi) \to \Omega^1(\xi)$ by

$$\nabla s = \omega_1 \otimes s + \omega_2 \otimes \Phi_2(s) + \omega_3 \otimes \Phi_3(s).$$

We have that $\nabla \in Hom(\Omega^0(\xi), \Omega^1(\xi))$ therefore ∇ is a pseudoconnection with zero principal homomorphism so $F^{\nabla} = 0$. On the other hand, an straightforward computation yields

$$G^{\nabla}(s) = (\omega_1 \wedge \omega_2 \wedge \omega_3) \otimes (\Phi_3 \circ \Phi_2 - \Phi_2 \circ \Phi_3)(s), \quad \forall s \in \Omega^0(\xi)$$

therefore $G^{\nabla} \neq 0$ and so ∇ is not weakly flat. Then, d^{∇} cannot be a chain complex by Theorem 2.6 since a chain complex is necessarily a chain 2-complex. This ends the proof.

To finish we explain how the Abe's curvature [2] can be obtained from the curvature form F^{∇} . For this we need some short definitions (see [3]).

Given a vector bundle ξ over M and k vector fields $X_1, \dots, X_k \in \chi^{\infty}(M)$ we define the evaluation map $Ev_{X_1,\dots,X_k} : \Omega^k(\xi) \to \Omega^0(\xi)$ by defining

$$Ev_{X_1,\dots,X_k}(\omega \otimes s) = w(X_1,\dots,X_k) \cdot s$$

at each generator $\omega \otimes s \in \Omega^k(\xi)$. If $\nabla \in O(\xi)$ and $X, Y \in \chi^{\infty}(M)$ we define $\nabla_X : \Omega^0(\xi) \to \Omega^0(\xi)$ by

$$\nabla_X s = E v_X(\nabla s)$$

and $F_{X,Y}^{\nabla}: \Omega^0(\xi) \to \Omega^0(\xi)$ by

$$F_{X,Y}^{\nabla} = Ev_{X,Y}(F^{\nabla}(s)), \quad \forall s \in \Omega^0(\xi).$$

Theorem 2.9. If $\nabla \in O(\xi; P)$ then

$$F_{X,Y}^{\nabla}(s) = \nabla_X \nabla_Y (Ps) - \nabla_Y \nabla_X (Ps) - \nabla_X P(\nabla_Y s) + P \nabla_X \nabla_Y s + \nabla_Y P(\nabla_X s) - P \nabla_Y \nabla_X s - P\left(\nabla_{[X,Y]} P(s)\right),$$

for all $X, Y \in \chi^{\infty}(M)$ and all $s \in \Omega^{0}(\xi)$.

Proof. By definition we have

(2.3)
$$F_{X,Y}^{\nabla}(s) =$$
$$= Ev_{X,Y}(P(d^{\nabla}(\nabla s))) - Ev_{X,Y}(d^{\nabla}(P(\nabla s))) + Ev_{X,Y}(d^{\nabla}(\nabla(Ps)))$$

Let us compute the three sumands separated way. First of all if $\omega \otimes s \in \Omega^1(\xi)$ is a generator then

(2.4)
$$Ev_{X,Y}(d^{\nabla}(\omega \otimes s)) = dw(X,Y) \cdot P(s) - \omega(X) \cdot \nabla_Y s + \omega(Y) \cdot \nabla_X s.$$

Now, as $\nabla s \in \Omega^1(\xi)$ and $\{\omega \otimes s' : (\omega, s') \in \Omega^1(M) \times \Omega^0(\xi)\}$ is a generating set of $\Omega^1(\xi)$ we obtain

(2.5)
$$\nabla s = \sum_{r=1}^{k} \omega_r \otimes s_r,$$

for some $(\omega_r, s_r) \in \Omega^1(M) \times \Omega^0(\xi)$, $r = 1, \dots, k$. Then (2.4) implies

(2.6)
$$Ev_{X,Y}(d^{\nabla}(\nabla s)) =$$
$$= \sum_{r=1}^{k} \{ dw_r(X,Y) \cdot P(s_r) - \omega_r(X) \cdot \nabla_Y s_r + \omega_r(Y) \cdot \nabla_X s_r \}.$$

On the other hand, (2.5) yields

$$\nabla_X s = \sum_{r=1}^k \omega_r(X) \cdot s_r$$

therefore

$$\nabla_Y \nabla_X s = \sum_{r=1}^k \left\{ d[\omega_r(X)](Y) \cdot P(s_r) + \omega_r(Y) \cdot \omega_r(X) \cdot \nabla_Y s_s \right\}.$$

But $\nabla_{[X,Y]}s = \sum_{r=1}^{k} \omega_r([X,Y]) \cdot s_r$, so

$$P\left(\nabla_{[X,Y]}s\right) = \sum_{r=1}^{k} \omega_r([X,Y]) \cdot P(s_r)$$

and then

(2.7)
$$Ev_{X,Y}(d^{\nabla}(\nabla s)) = \nabla_X \nabla_Y s - \nabla_Y \nabla_X s - P\left(\nabla_{[X,Y]} s\right)$$

because of (2.6). Replacing s by P(s) in (2.7) we obtain

(2.8)
$$Ev_{X,Y}(d^{\nabla}(\nabla P(s))) = \nabla_X \nabla_Y P(s) - \nabla_Y \nabla_X P(s) - P\left(\nabla_{[X,Y]} P(s)\right).$$

Besides (2.5) implies

$$P(\nabla s) = \sum_{r=1}^{k} \omega_r \otimes P(s_r)$$

thus

$$Ev_{X,Y}(d^{\nabla}(P\nabla s)) = \sum_{r=1}^{k} Ev_{X,Y}(d^{\nabla}(\omega_r \otimes P(s_r))) =$$
$$= \sum_{r=1}^{k} [dw_r(X,Y) \cdot P^2(s_r) - \omega_r(X)\nabla_X P(s_r) + \omega_r(Y) \cdot \nabla_X P(s_r)]$$

and then

$$\nabla_Y P(\nabla_X s) = \sum_{r=1}^k \left\{ d[w_r(X)](Y) \cdot P^2(s_r) + w_r(X) \cdot \nabla_Y P(s_r) \right\}.$$

As
$$P^2\left(\nabla_{[X,Y]}s\right) = \sum_{r=1}^k \omega_r([X,Y]) \cdot P^2(s_r)$$
 we obtain

(2.9)
$$Ev_{X,Y}(d^{\nabla}(P(\nabla s))) = \nabla_X P(\nabla_Y s) - \nabla_Y P(\nabla_X s) - P^2(\nabla_{[X,Y]}s).$$

As the maps P and $Ev_{X,Y}$ commute we can apply P to (2.7) and use (2.3), (2.8), (2.9) to obtain the result.

Remark 2.10. $F_{X,Y}^{\nabla}(s)$ in Theorem 2.9 is the curvature $K(\nabla)_{X,Y}(s)$ defined in [2] p. 328.

References

- Abe, N., Geometry of certain first order differential operators and its applications to general connections, Kodai Math. J. 11 (1988), no. 2, 205–223.
- [2] Abe, N., General connections on vector bundles, Kodai Math. J. 8 (1985), 322– 329.
- [3] Madsen, I., Tornehave, J., From calculus to cohomology. de Rham cohomology and characteristic classes, Cambridge University Press, Cambridge, 1997.

C. Morales

Instituto de Matematica, Universidade Federal do Rio de Janeiro P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil

M. Vilches

Departamento de Análise Matemática, IME, Universidade do Estado do Rio de Janeiro 20550-013, Rio de Janeiro, Brazil