SUT Journal of Mathematics Vol. 43, No. 1 (2007), 99–106

On k-Dependent Domination in Graphs

Vladimir Samodivkin

(Received April 11, 2007)

Abstract. A subset D of vertices in a graph G is k-dependent if the maximum degree of a vertex in the subgraph $\langle D \rangle$ induced by D is at most k. The k-dependent domination number $\gamma^k(G)$ of a graph G is the minimum cardinality of a k-dependent dominating set of G. Any k-dependent dominating set D of a graph G with $|D| = \gamma^k(G)$ is called a γ^k -set of G. A vertex x of a graph G is called: (i) γ^k -good if x belongs to some γ^k -set, (ii) γ^k -fixed if x belongs to every γ^k -set, (iii) γ^k -free if x belongs to some γ^k -set but not to all γ^k -sets, (iv) γ^k -bad if x belongs to no γ^k -set. In this paper we deal with γ^k -good/bad/fixed/free vertices and present results on changing and unchanging of the k-dependent domination number when a graph is modified by adding an edge or deleting a vertex.

AMS 2000 Mathematics Subject Classification. 05C69.

Key words and phrases. dependent domination; γ^k -fixed/free/bad/good vertex.

§1. INTRODUCTION

We consider finite, simple graphs. For notation and graph theory terminology not presented here, we follow Haynes, et al. [5]. We denote the vertex set and the edge set of a graph G by V(G) and E(G), respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G \rangle$. For a vertex x of G, N(x, G) denote the set of all neighbors of x in G and $N[x, G] = N(x, G) \cup \{x\}$. The maximum degree of the graph G is denoted by $\Delta(G)$. For a graph G, let $x \in X \subseteq V(G)$. The private neighbor set of x with respect to X is $pn[x, X] = \{y \in V(G) : N[y, G] \cap X = \{x\}\}$.

Let G be a graph and $S \subseteq V(G)$. A set S is called k-dependent if $\Delta(\langle S, G \rangle) \le k$. If $\Delta(\langle S, G \rangle) = 0$ then S is called *independent*. We let i(G) denote the minimum cardinality of a maximal independent set of vertices in G. A k-dependent dominating set D in a graph G is a vertex subset which is both k-dependent and dominating. The minimum cardinality of an k-dependent dominating set

of G is called the k-dependent domination number and is denoted by $\gamma^k(G)$. The concept of k-dependent domination was introduced by Favaron, Hedetniemi, Hedetniemi and Rall [2]. Note that $\gamma^{\Delta(G)}(G) = \gamma(G)$ - the ordinary domination number of a graph and $\gamma^0(G) = i(G)$.

Much has been written about the effects on domination related parameters when a graph is modified by deleting a vertex, adding an edge or deleting an edge. For surveys see [5, Chapter 5], [6, Chapter 16]. In this paper we present results on changing and unchanging of the k-dependent domination number when an edge is added or a vertex is deleted.

§2. VERTEX DELETION AND EDGE ADDITION

Let $\mu(G)$ be a numerical invariant of a graph G defined in such a way that it is the minimum or maximum number of vertices of a set $S \subseteq V(G)$ with a given property P. A set with property P and with $\mu(G)$ vertices in G is called a μ -set of G. A graph G is $vertex-\mu$ -critical if $\gamma(G-v) \neq \gamma(G)$ for all v in V(G). A vertex v of a graph G is defined to be

- (a) [4] μ -good, if v belongs to some μ -set of G;
- (b) [4] μ -bad, if v belongs to no μ set of G;
- (c) [8] μ -fixed if v belongs to every μ -set;
- (d) [8] μ -free if ν belongs to some μ -set but not to all μ -sets.

For a graph G we define:

```
\mathbf{G}^{k}(G) = \{x \in V(G) : x \text{ is } \gamma^{k}\text{-good } \}; 
\mathbf{B}^{k}(G) = \{x \in V(G) : x \text{ is } \gamma^{k}\text{-bad } \}; 
\mathbf{Fi}^{k}(G) = \{x \in V(G) : x \text{ is } \gamma^{k}\text{-fixed } \}; 
\mathbf{Fr}^{k}(G) = \{x \in V(G) : x \text{ is } \gamma^{k}\text{-free } \}; 
\mathbf{V}^{k}_{0}(G) = \{x \in V(G) : \gamma^{k}(G - x) = \gamma^{k}(G)\}; 
\mathbf{V}^{k}_{-}(G) = \{x \in V(G) : \gamma^{k}(G - x) < \gamma^{k}(G)\}; 
\mathbf{V}^{k}_{+}(G) = \{x \in V(G) : \gamma^{k}(G - x) > \gamma^{k}(G)\}.
```

Clearly, $\{\mathbf{V}_{-}^{k}(G), \mathbf{V}_{0}^{k}(G), \mathbf{V}_{+}^{k}(G)\}$ and $\{\mathbf{G}^{k}(G), \mathbf{B}^{k}(G)\}$ are partitions of V(G), and $\{\mathbf{Fi}^{k}(G), \mathbf{Fr}^{k}(G)\}$ is a partition of $\mathbf{G}^{k}(G)$.

Proposition 2.1. Let G be a graph and $v \in \mathbf{V}_{-}^{k}(G)$. Then:

- (1) $\gamma^k(G-v) = \gamma^k(G)-1$; for any γ^k -set M of G-v the set $M_v = M \cup \{v\}$ is a γ^k -set of G and any neighbor of v is a γ^k -bad vertex in G-v;
- (2) $\mathbf{G}^k(G-v) \subseteq \mathbf{G}^k(G)$, $\mathbf{Fi}^k(G-v) \supseteq \mathbf{Fi}^k(G) \{v\}$ and $\mathbf{B}^k(G-v) \supseteq \mathbf{B}^k(G)$;
- (3) if u is a γ^k -fixed vertex of G and $u \neq v$ then $uv \notin E(G)$.

Proof. (1) Let M be an arbitrary γ^k -set of G - v. If $u \in M$ then $u \notin N(v, G)$ - otherwise M will be a k-dependent dominating set of G, which is a contradiction with $\gamma^k(G - v) < \gamma^k(G)$. Then M_v is a k-dependent dominating set of G and $\gamma^k(G) \leq |M_v| = \gamma^k(G - v) + 1 \leq \gamma^k(G)$.

- (2) Immediately follows by (1).
- (3) By (2), $u \in \mathbf{Fi}^k(G v)$ and by (1), $uv \notin E(G)$.

Proposition 2.2. Let G be a graph and $v \in V(G)$.

- (1) ([1] when $k = \Delta(G)$) Let $v \in \mathbf{V}_{+}^{k}(G)$. Then v is a γ^{k} -fixed vertex of G;
- (2) If v is a γ^k -bad vertex of G then $\gamma^k(G-v) = \gamma^k(G)$.

Proof. (1) Let M be a γ^k -set of G. Assume $v \notin M$. Then M is a k-dependent dominating set of G - v which implies $\gamma^k(G) < \gamma^k(G - v) \le |M| = \gamma^k(G)$ - a contradiction.

(2) By (1),
$$\gamma^k(G-v) \leq \gamma^k(G)$$
 and by Proposition 2.1(1), $\gamma^k(G-v) \geq \gamma^k(G)$.

Since for every $v \in V(G)$, $\gamma^k(G-v) \leq |V(G)|-1$ and because of Proposition 2.1 we have $\gamma^k(G-v) = \gamma^k(G) + p$, where $p \in \{-1, 0, ..., |V(G)| - 2\}$. This motivated us to define for a graph G:

$$\begin{split} \mathbf{Fr}_{-}^{k}(G) &= \{x \in \mathbf{Fr}^{k}(G) : \gamma^{k}(G-x) = \gamma^{k}(G) - 1\}; \\ \mathbf{Fr}_{0}^{k}(G) &= \{x \in \mathbf{Fr}^{k}(G) : \gamma^{k}(G-x) = \gamma^{k}(G)\}; \\ \mathbf{Fi}_{p}^{k}(G) &= \{x \in \mathbf{Fi}^{k}(G) : \gamma^{k}(G-x) = \gamma^{k}(G) + p\}, \, p \in \{-1, 0, .., |V(G)| - 2\}. \end{split}$$

Let G be a graph of order n. By Propositions 2.1 and 2.2 we have:

- (e) $\{\mathbf{Fr}_{-}^{k}(G), \mathbf{Fr}_{0}^{k}(G)\}$ is a partition of $\mathbf{Fr}^{k}(G)$;
- (f) $\{\mathbf{Fi}_{-1}^k(G), \mathbf{Fi}_0^k(G), \dots, \mathbf{Fi}_{n-2}^k(G)\}$ is a partition of $\mathbf{Fi}^k(G)$;
- (g) $\{\mathbf{Fi}_{-1}^k(G), \mathbf{Fr}_{-}^k(G)\}$ is a partition of $\mathbf{V}_{-}^k(G)$;
- (h) $\{\mathbf{Fi}_0^k(G), \mathbf{Fr}_0^k(G), \mathbf{B}^k(G)\}\$ is a partition of $\mathbf{V}_0^k(G)$;
- (i) $\{\mathbf{Fi}_1^k(G), \mathbf{Fi}_2^k(G), \dots, \mathbf{Fi}_{n-2}^k(G)\}$ is a partition of $\mathbf{V}_+^k(G)$.

Theorem 2.3. Let G be a graph of order $n \geq 2$. Then G is a vertex- γ^k -critical graph if and only if $\gamma^k(G-v) = \gamma^k(G) - 1$ for all $v \in V(G)$.

Proof. Necessity is obvious.

Sufficiency: Let G be a γ^k -critical graph. For every isolated vertex $v \in V(G)$, $\gamma^k(G-v) = \gamma^k(G) - 1$. So, let G have a component of order at least two, say Q. By Propositions 2.1 and 2.2 it follows that either for all $v \in V(Q)$, $\gamma^k(Q-v) > \gamma^k(Q)$ or for all $v \in V(Q)$, $\gamma^k(Q-v) = \gamma^k(Q) - 1$. Suppose, for all $v \in V(Q)$, $\gamma^k(Q-v) > \gamma^k(Q)$. But then Proposition 2.2(1) implies that V(Q) is a γ^k -set of Q. This is a contradiction with $\gamma^k(Q-v) > \gamma^k(Q)$.

When $k \in \{0, \Delta(G)\}$ the theorem above due to Ao and MacGillivray (as is referred in [6]) and Carrington, Harary and Haynes [1] respectively.

Theorem 2.4. Let x and y be two nonadjacent vertices in a graph G. If $\gamma^k(G+xy) < \gamma^k(G)$ then $\gamma^k(G+xy) = \gamma^k(G) - 1$. Moreover, $\gamma^k(G+xy) = \gamma^k(G) - 1$ if and only if at least one of the following holds:

- (i) $x \in \mathbf{V}_{-}^{k}(G)$ and y is a γ^{k} -good vertex of G x;
- (ii) x is a γ^k -good vertex of G y and $y \in \mathbf{V}_-^k(G)$.

Proof. Let $\gamma^k(G+xy) < \gamma^k(G)$ and M be a γ^k -set of G+xy. Then $|\{x,y\} \cap M| = 1$, otherwise M will be a k-dependent dominating set of G which is a contradiction. Let without loss of generalities $x \notin M$ and $y \in M$. Since M is no dominating set of G then $M \cap N(x,G) = \emptyset$. Hence $M_1 = M \cup \{x\}$ is a k-dependent dominating set of G with $|M_1| = \gamma^k(G+xy) + 1$ which implies $\gamma^k(G) = \gamma^k(G+xy) + 1$. Since M is a k-dependent dominating set of G-x, $\gamma^k(G-x) \le \gamma^k(G+xy)$. Hence $\gamma^k(G) \ge \gamma^k(G-x) + 1$ and by Proposition 2.1 follows $\gamma^k(G) = \gamma^k(G-x) + 1$. Thus x is in $\mathbf{V}_-^k(G)$ and M is a γ^k -set of G-x. Since $y \in M$ then y is a γ^k -good vertex of G-x.

For the converse let without loss of generalities (i) hold. Then there is a γ^k -set M of G-x with $y\in M$. Certainly M is a k-dependent dominating set of G+xy and then $\gamma^k(G+xy)\leq |M|=\gamma^k(G-x)=\gamma^k(G)-1\leq \gamma^k(G+xy)$. \square

Corollary 2.5. Let x and y be two nonadjacent vertices in a graph G and $x \in \mathbf{V}_{-}^{k}(G)$. Then $\gamma^{k}(G) - 1 \leq \gamma^{k}(G + xy) \leq \gamma^{k}(G)$.

Proof. Let M be a γ^k -set of G-x. If $y \in \mathbf{G}^k(G-x)$ then by Theorem 2.4 $\gamma^k(G)-1=\gamma^k(G+xy)$. So that, let $y \in \mathbf{B}^k(G-x)$. By Proposition 2.1, $M_1=M \cup \{x\}$ is a γ^k -set of G and $M_1 \cap N(x,G)=\emptyset$. Hence M_1 is a k-dependent dominating set of G+xy and $\gamma^k(G+xy) \leq |M_1|=\gamma^k(G-x)+1=\gamma^k(G)$. \square

We will refine the definitions of the γ^k -free vertex and the γ^k -fixed vertex as follows. Let x be a vertex of a graph G.

- (j) x is called γ_0^k -free if $x \in \mathbf{Fr}_0^k(G)$;
- (k) x is called $\gamma_{-}^{k}(G)$ -free if $x \in \mathbf{Fr}_{-}^{k}(G)$ and
- (l) x is called $\gamma_q^k(G)$ -fixed if $x \in \mathbf{Fi}_q^k(G)$, where $q \in \{-1, 0, 1, .., |V(G)| 2\}$.

We need the following useful lemma:

Lemma 2.6. Let x be a γ_0^k -fixed vertex of a graph G. Then $N(x,G) \subseteq \mathbf{B}^k(G-x) \cap (\mathbf{V}_0^k(G) \cup \mathbf{Fi}_1^k(G))$.

Proof. Let M be a γ^k -set of G-x and $y\in N(x,G)$. If $y\in M$ then M will be a k-dependent dominating set of G of cardinality $|M|=\gamma^k(G-x)=\gamma^k(G)$ - a contradiction with $x\in \mathbf{Fi}^k(G)$. Thus $N(x,G)\subseteq \mathbf{B}^k(G-x)$. By Proposition 2.1(3) it follows $y\not\in \mathbf{V}_-^k(G)$. Assume $y\in \mathbf{Fi}_p^k(G)$ for some $p\geq 2$. It follows by $M\cap N(x,G)=\emptyset$ that $M_2=M\cup\{x\}$ is a k-dependent dominating set of G

with $|M_2| = \gamma^k(G-x) + 1 = \gamma^k(G) + 1$. But $y \notin M$ and then $|M_2| \ge \gamma^k(G) + p$. Thus we have a contradiction.

It is well known fact that for any edge $e \in \overline{G}$, $\gamma(G + e) \leq \gamma(G)$ ([5]). In general, for γ^k this is not valid.

Theorem 2.7. Let x and y be two nonadjacent vertices in a graph G. Then $\gamma^k(G+xy) > \gamma^k(G)$ if and only if every γ^k -set of G is no k-dependent set of G+xy and one of the following holds:

- (1) x is a γ_p^k -fixed vertex of G and y is a γ_q^k -fixed vertex of G for some $p, q \geq 1$;
- (2) $x \in \mathbf{Fi}_0^k(G)$ and $y \in \mathbf{Fi}_1^k(G) \cap \mathbf{B}^k(G-x)$;
- (3) $x \in \mathbf{Fi}_1^k(G) \cap \mathbf{B}^k(G-y)$ and $y \in \mathbf{Fi}_0^k(G)$;
- (4) $x, y \in \mathbf{Fi}_0^k(G), x \in \mathbf{B}^k(G-y)$ and $y \in \mathbf{B}^k(G-x)$.

Proof. Let $\gamma^k(G+xy) > \gamma^k(G)$. By Corollary 2.5, $x,y \in \mathbf{V}_0^k(G) \cup \mathbf{V}_+^k(G)$. Assume to the contrary, that (without loss of generalities) $x \notin \mathbf{Fi}^k(G)$. Hence there is a γ^k -set M of G with $x \notin M$. But then M will be a k-dependent dominating set of G + xy and $|M| = \gamma^k(G) < \gamma^k(G+xy)$ - a contradiction. Thus x and y are both γ^k -fixed vertices of G. This implies that each γ^k -set M of G is a dominating set of G + xy and is no k-dependent set of G + xy.

Let x be γ_p^k -fixed, y be γ_q^k -fixed and without loss of generalities, $q \geq p \geq 0$. Assume (1) does not hold. Hence p = 0. Let M_1 be a γ^k -set of G - x. Then $|M_1| = \gamma^k (G - x) = \gamma^k (G) < \gamma^k (G + xy)$ and we have that y is a γ^k -bad vertex of G - x. By Lemma 2.6, $N(x,G) \cap M_1 = \emptyset$. Then $M_1 \cup \{x\}$ is a k-dependent dominating set of G + xy which implies $\gamma^k (G + xy) = \gamma^k (G) + 1$. Since $y \notin M_1 \cup \{x\}$ then $M_1 \cup \{x\}$ is a k-dependent dominating set of G - y and then $\gamma^k (G) + 1 = |M_1 \cup \{x\}| \geq \gamma^k (G - y) = \gamma^k (G) + q$. So, $q \in \{0, 1\}$. If q = 1 then (2) holds. If q = 0 then by symmetry, it follows that x is a γ^k -bad vertex of G - y and hence (4) holds.

By Theorem 2.4 and Theorem 2.7 we immediately have:

Theorem 2.8. Let x and y be two nonadjacent vertices in a graph G. Then $\gamma^k(G+xy)=\gamma^k(G)$ if and only if at least one of the following holds:

- (1) $x \in \mathbf{V}_{-}^{k}(G) \cap \mathbf{B}^{k}(G-y)$ and $y \in \mathbf{V}_{-}^{k}(G) \cap \mathbf{B}^{k}(G-x)$;
- (2) $x \in \mathbf{V}_{-}^{k}(G)$ and $y \in \mathbf{B}^{k}(G-x) \mathbf{V}_{-}^{k}(G)$;
- (3) $x \in \mathbf{B}^k(G y) \mathbf{V}_{-}^k(G)$ and $y \in \mathbf{V}_{-}^k(G)$;
- (4) $x, y \notin \mathbf{V}_{-}^{k}(G)$ and $|\{x, y\} \cap \mathbf{Fi}^{k}(G)| \le 1$;
- (5) $x \in \mathbf{Fi}_0^k(G)$ and $y \in \mathbf{Fi}_s^k(G) \cap \mathbf{G}^k(G-x)$ for some $s \in \{0,1\}$;
- (6) $x \in \mathbf{Fi}_s^k(G) \cap \mathbf{G}^k(G-y)$ and $y \in \mathbf{Fi}_0^k(G)$ for some $s \in \{0,1\}$;
- (7) $x \in \mathbf{Fi}_0^k(G)$ and $y \in \mathbf{Fi}_q^k(G)$ for some $q \ge 2$;
- (8) $x \in \mathbf{Fi}_q^k(G)$ and $y \in \mathbf{Fi}_0^k(G)$ for some $q \geq 2$;
- (9) there is a γ^k -set of G which is a k-dependent set of G + xy and one of the (1), (2), (3) and (4) of Theorem 2.7 holds.

Corollary 2.9. Let x and y be two nonadjacent vertices in a graph G. If $x \in \mathbf{B}^k(G)$ then $\gamma^k(G+xy) = \gamma^k(G)$.

Proof. If $y \notin \mathbf{V}_{-}^{k}(G)$ then the result follows by Theorem 2.8(4). If $y \in \mathbf{V}_{-}^{k}(G)$ then by Proposition 2.1, $x \in \mathbf{B}^{k}(G-y)$ and the result now follows by Theorem 2.8(3).

Let $\mu \in \{\gamma, i\}$. A graph G is edge- μ -critical if $\mu(G+e) < \mu(G)$ for every edge e missing from G. These concepts were introduced by Sumner and Blitch [10] and Ao and MacGillivray [6, Chapter 16] respectively. Here we define a graph G to be $edge-\gamma^k$ -critical if $\gamma^k(G+e) \neq \gamma^k(G)$ for every edge e of the complement of G. Relating edge addition to vertex removal, Sumner and Blitch [10] and Ao and MacGillivray showed that $\mathbf{V}_+^k(G)$ is empty for $k=\Delta(G)$ and k=0 respectively. Furthermore Favaron, Sumner and Wojcicka [3] showed that if $\mathbf{V}_0^{\Delta(G)}(G) \neq \emptyset$ then $\left\langle \mathbf{V}_0^{\Delta(G)}(G), G \right\rangle$ is complete. In general, for edge- γ^k -critical graphs the following holds.

Theorem 2.10. Let G be an edge- γ^k -critical graph. Then

- (1) $V(G) = \mathbf{Fi}_{-1}^k(G) \cup \mathbf{Fr}^k(G)$ and if $\mathbf{Fr}_0^k(G) \neq \emptyset$ then $\langle \mathbf{Fr}_0^k(G), G \rangle$ is complete:
- (2) $\gamma^k(\hat{G} + e) < \gamma^k(G)$ for every edge e missing from G.

Proof. (1) If $\gamma^k(G) = 1$ then obviously G is complete and the result is trivial. Assume $\gamma^k(G) \geq 2$. Let $x, y \in \mathbf{Fr}_0^k(G)$ and $xy \notin E(G)$. Then by Theorem 2.8(4) it follows $\gamma^k(G+xy) = \gamma^k(G)$ - a contradiction. By Corollary 2.9, $\mathbf{B}^k(G) = \emptyset$. Assume $x \in \mathbf{Fi}_q^k(G)$ for some $q \geq 0$. Let M be any γ^k -set of G. Hence there is $y \in pn[x, M] - \{x\}$ - otherwise $M - \{x\}$ becomes a γ^k -set of G - x, which implies $x \in \mathbf{V}_-^k(G)$. Since $pn[x, M] \cap \mathbf{V}_-^k(G) = \emptyset$ (by Proposition 2.1 when $q \geq 1$ and Lemma 2.6 when q = 0), $\mathbf{B}^k(G) = \emptyset$ and $y \notin M$, we have $y \in \mathbf{Fr}_0^k(G)$. Let M_1 be a γ^k -set of G and $y \in M_1$. Then there is $z \in (pn[x, M_1] - \{x\}) \cap \mathbf{Fr}_0^k(G)$. Hence $y, z \in \mathbf{Fr}_0^k(G)$ and $yz \notin E(G)$ - a contradiction. Thus $\mathbf{Fi}^k(G) = \mathbf{Fi}_{-1}^k(G)$ and the result follows.

(2) Immediately follows by (1) and Theorem 2.7.

§3. OPEN PROBLEMS

• Characterize/study the following classes of graphs. (We use acronyms as follows: C represents changing; U: unchanging; V: vertex; E: edge; R: removal; A: addition.)

$$(CVR)^k$$
 $\gamma^k(G-v) \neq \gamma^k(G)$ for all $v \in V(G)$;

$$(CER)^k$$
 $\gamma^k(G-e) \neq \gamma^k(G)$ for all $e \in E(G)$;

$$(CEA)^k$$
 $\gamma^k(G+e) \neq \gamma^k(G)$ for all $e \in E(\overline{G})$;

$$(UVR)^k$$
 $\gamma^k(G-v) = \gamma^k(G)$ for all $v \in V(G)$;

$$(UER)^k$$
 $\gamma^k(G-e) = \gamma^k(G)$ for all $e \in E(G)$;

$$(CEA)^k$$
 $\gamma^k(G+e) = \gamma^k(G)$ for all $e \in E(\overline{G})$.

Note that Chapter 5 [5] surveys the results of studies attempting to characterize the graphs G in the six classes above provided $k = \Delta(G)$. Additional facts on classes $(CEA)^{\Delta(G)}$ and $(CVR)^{\Delta(G)}$ can be found in [6, Chapter 16] and [9]. Some relationships among these six classes are established by Haynes [5, pp. 150–153] and Haynes and Henning [7].

References

- [1] Carrington, J.R., Harary, F. and Haynes, T.W., Changing and unchanging the domination number of a graph, *J. Combin. Math. Combin. Comput.*, **9** (1991), 57–63.
- [2] Favaron, O., Hedetniemi, S.M., Hedetniemi, S.T. and Rall, D.F., On k-dependent domination, *Discrete Mathematics*, **249** (2002), 83–94.
- [3] Favaron, O., Sumner, D.P. and Wojcicka, E., The diameter of domination k-critical graphs, J. Graph Theory, 18 (1994), 723–734.
- [4] Fricke, G.H., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T. and Laskar, R.C., Excellent trees, Bull. Inst. Comb. Appl., 34 (2002), 27–38.
- [5] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J., Domination in graphs, New York, Marsel Dekker, 1998.
- [6] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J., Domination in graphs (Advanced topics), New York, Marsel Dekker, 1998.
- [7] Haynes, T.W. and Henning, M., Changing and unchanging domination: a classification, *Discrete Mathematics*, **272** (2003), 65–73.

- [8] Sampathkumar, E. and Neeralagi, P.S., Domination and neighborhood critical fixed, free and totally free points, *Sankhya*, **54** (1992), 403–407.
- [9] Sumner, D.P., Critical concepts in domination, *Discrete Mathematics*, **86** (1990), pp. 33–46.
- [10] Sumner, D.P. and Blitch, P., Domination critical graphs, J. Combin. Theory Ser. B, 34 (1983), 65–76.

Vladimir Samodivkin Department of Mathematics, UACEG 1046 Sofia, Bulgaria E-mail: vlsam_fte@uacg.bg