# The cycle-complete graph Ramsey number $r\left(C_{8}, K_{8}\right)$ 

M.M.M. Jaradat and B.M.N. Alzaleq

(Received April 7, 2007)


#### Abstract

The cycle-complete graph Ramsey number $r\left(C_{m}, K_{n}\right)$ is the smallest integer $N$ such that every graph $G$ of order $N$ contains a cycle $C_{m}$ on $m$ vertices or has independent number $\alpha(G) \geq n$. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that $r\left(C_{m}, K_{n}\right)=(m-1)(n-1)+1$ for all $m \geq n \geq 3$ (except $r\left(C_{3}, K_{3}\right)=6$ ). In this paper we will present a proof for the conjecture in the case $n=m=8$.


AMS 2000 Mathematics Subject Classification. Primary 05C55; Secondary 05C35.

Key words and phrases. Ramsey number, independent set, cycle graph, complete graph.

## §1. Introduction

Through out this paper a cycle on $m$ vertices will be denoted by $C_{m}$, the complete graph on $n$ vertices by $K_{n}$, a star graph on $n$ vertices by $S_{n}$ and a path on $n$ vertices by $P_{n}$. The graph $K_{1}+P_{n}$ is obtained by adding an additional vertex to the path $P_{n}$ and connecting this new vertex to each vertex of $P_{n}$. The minimum degree of a graph $G$ is denoted by $\delta(G)$. An independent set of vertices of a graph $G$ is a subset of $V(G)$ in which no two vertices are adjacent. The independence number of a graph $G, \alpha(G)$, is the size of the largest independent set. The neighbor of the vertex $u$ is the set of all vertices of $G$ that are adjacent to $u$, denoted by $N(u) . N[u]$ denote to $N(u) \cup\{u\}$. Let $H$ be a subgraph of the graph $G$ and $U \subseteq V(G), N_{H}(U)$ is defined as $\left(\cup_{u \in U} N(u)\right) \cap V(H)$. Suppose that $V_{1} \subseteq V(G)$ and $V_{1}$ is a non empty, the subgraph of $G$ whose vertex set is $V_{1}$ and whose edge set is the set of those edges of $G$ that have both ends in $V_{1}$ is called the subgraph of $G$ induced by $V_{1}$, denoted by $\left\langle V_{1}\right\rangle_{G}$.

The cycle-complete graph Ramsey number $r\left(C_{m}, K_{n}\right)$ is the smallest integer $N$ such that for every graph $G$ of order $N$ contains $C_{m}$ or $\alpha(G) \geq n$. The
graph $(n-1) K_{m-1}$ shows that $r\left(C_{m}, K_{n}\right) \geq(m-1)(n-1)+1$. In one of the earliest contributions to graphical Ramsey theory, Bondy and Erdős [3] proved the following result:

Theorem 1.1 (Bondy and Erdős). For all $m \geq n^{2}-2, r\left(C_{m}, K_{n}\right)=(m-$ 1) $(n-1)+1$.

It has been thought from the beginning that the conclusion is likely to hold under a rather less restriction hypothesis. The restriction in Theorem 1.1 was improved by Nikiforov [9] when he proved the equality for $m \geq 4 n+2$. Erdős eta al. [4] gave the following conjecture:
Conjecture: $r\left(C_{m}, K_{n}\right)=(m-1)(n-1)+1$, for all $m \geq n \geq 3$ except $r\left(C_{3}, K_{3}\right)=6$.

The conjecture was confirmed by Faudree and Schepl [5] and Rosta [11] for $n=3$ in early work on Ramsey theory. Sheng et al. [14] and Bollobás et al. [2] proved the conjecture for $n=4$ and $n=5$, respectively. Recently, the conjecture was proved by Schiermeyer [12] for $n=6$. Most recently, Baniabedalruhman [1] proved that $r\left(C_{7}, K_{7}\right)=37$. In a related work, Radziszowski and Tse [10] showed that $r\left(C_{4}, K_{7}\right)=22$ and $r\left(C_{4}, K_{8}\right)=26$. In [8] Jayawardene and Rousseau proved that $r\left(C_{5}, K_{6}\right)=21$. Also, Schiermeyer [13] proved that $r\left(C_{5}, K_{7}\right)=25$. Jaradat and Baniabedalruhman [7] proved that $r\left(C_{8}, K_{7}\right)=43$. In this article we will prove the conjecture for the case $n=m=8$ which is the first step to show that $r\left(C_{m}, K_{8}\right)=7 m-6$.

## §2. Main Result

It is known, by taking $G=(n-1) K_{m-1}$, that $r\left(C_{m}, K_{n}\right) \geq(m-1)(n-1)+1$. In this section we prove that this bound is exact in the case $m=n=8$. Our proof depends on a sequence of 8 lemmas.

Lemma 2.1. Let $G$ be a graph of order $\geq 50$ that contains neither $C_{8}$ nor an 8 -element independent set. Then $\delta(G) \geq 7$.

Proof. Suppose that $G$ contains a vertex of degree less than 7, say $u$. Then $|V(G-N[u])| \geq 43$. Since $r\left(C_{8}, K_{7}\right)=43$, as a result $G-N[u]$ has an independent set consists of 7 vertices. This set with the vertex $u$ is an 8element independent set of vertices of $G$. This is a contradiction.

Throughout all Lemmas 2.2 to 2.8, we let $G$ be a graph with minimum degree $\delta(G) \geq 7$ that contains neither $C_{8}$ nor an 8 -element independent set.

Lemma 2.2. If $G$ contains $K_{7}$, then $|V(G)| \geq 56$.
Proof. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\}$ be the vertex set of $K_{7}$. Let $R=$ $G-U$ and $U_{i}=N\left(u_{i}\right) \cap V(R)$ for each $1 \leq i \leq 7$. Since $\delta(G) \geq 7, U_{i} \neq \varnothing$ for all $1 \leq i \leq 7$. Since there is a path of order 7 joining any two vertices of $U$, as a result $U_{i} \cap U_{j}=\varnothing$ for all $1 \leq i<j \leq 7$ (otherwise, if $w \in U_{i} \cap U_{j}$ for some $1 \leq i<j \leq 7$, then the concatenation of the $u_{i} u_{j}$-path of order 7 with $u_{i} w u_{j}$, is a cycle of order 8 , a contradiction). Similarly, since there is a path of order 6 joining any two vertices of $U$, as a result for all $1 \leq i<j \leq 7$ and for all $x \in U_{i}$ and $y \in U_{j}$ we have that $x y \notin E(G)$ (otherwise, if there are $1 \leq i<j \leq 7$ such that $x \in U_{i}, y \in U_{j}$ and $x y \in E(G)$, then the concatenation of the $u_{i} u_{j}$-path of order 6 with $u_{i} x y u_{j}$ is a cycle of order 8 , a contradiction). Also, since there is a path of order 5 joining any two vertices of $U$, as a result, $N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)=\varnothing, 1 \leq i<j \leq 7$ (otherwise, if there are $1 \leq i<j \leq 7$ such that $w \in N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)$, then the concatenation of the $u_{i} u_{j}$-path of order 5 with $u_{i} x w y u_{j}$, is a cycle of order 8 where $x \in U_{i}, y \in U_{j}$ and $x w, w y \in E(G)$, a contradiction). Therefore $\left|U_{i} \cup N_{R}\left(U_{i}\right) \cup\left\{u_{i}\right\}\right| \geq \delta(G)+1$. Thus, $|V(G)| \geq 7(\delta(G)+1) \geq(7)(8)=56$.

Lemma 2.3. If $G$ contains $K_{7}-S_{5}$, then $G$ contains $K_{7}$.
Proof. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\}$ be the vertex set of $K_{7}-S_{5}$ where the induced subgraph of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ is isomorphic to $K_{6}$. Without loss of generality we may assume that $u_{1} u_{7}, u_{2} u_{7} \in E(G)$. Let $R=G-U$ and $U_{i}=N\left(u_{i}\right) \cap V(R)$ for each $1 \leq i \leq 7$. Then, as in Lemma 2.2, $U_{i} \neq \varnothing$ for all $1 \leq i \leq 7$. Also, using the same arguments as in Lemma 2.2, we have the following: (1) $U_{i} \cap U_{j}=\varnothing$ for all $1 \leq i<j \leq 7$ except possibly for $i=1$ and $j=2$. (2) For all $1 \leq i<j \leq 7$ and for any $x \in U_{i}$ and $y \in U_{j}$, we have $x y \notin E(G)$. (3) $N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)=\varnothing, 1 \leq i<j \leq 7$ for all $1 \leq i<j \leq 7$. (4) For all $1 \leq i<j \leq 7$ and for any $x \in N_{R}\left(U_{i}\right)$ and $y \in N_{R}\left(U_{j}\right)$, we have $x y \notin E(G)$.

Since, $\alpha(G) \leq 7$, as a result at least three of the induced subgraphs $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, 3 \leq i \leq 7$ are complete. Since $\delta(G) \geq 7$, it implies that these complete graphs contains $K_{7}$.

Lemma 2.4. If $G$ contains $K_{6}$, then $G$ contains $K_{7}-S_{5}$ or $K_{7}$.
Proof. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ be the vertex set of $K_{6}$. Let $R=G-U$ and $U_{i}=N\left(u_{i}\right) \cap V(R)$ for each $1 \leq i \leq 6$. Since $\delta(G) \geq 7, U_{i} \neq \varnothing$ for all $1 \leq i \leq 6$. Now we consider the following two cases:
Case 1: $U_{i} \cap U_{j} \neq \varnothing$ for some $1 \leq i<j \leq 6$, say $w \in U_{i} \cap U_{j}$. Then it is clear that $G$ contains $K_{7}-S_{5}$. In fact, the induced subgraph $\langle U \cup\{w\}\rangle_{G}$ contains $K_{7}-S_{5}$.

Case 2: $U_{i} \cap U_{j}=\varnothing$ for each $1 \leq i<j \leq 6$. Note that between any two vertices of $U$ there are paths of order 4,5 and 6 . Thus, as in Lemma 2.2 for all $1 \leq i<j \leq 6$, we have the following: (1) for all $x \in U_{i}$ and $y \in U_{j}$ we have that $x y \notin E(G)$. (2) $N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)=\varnothing$. (3) for all $x \in N_{R}\left(U_{i}\right)$ and $y \in N_{R}\left(U_{j}\right), x y \notin E(G)$.

Since $\alpha(G) \leq 7$, we have that at least 5 of the induced subgraphs $\left\langle U_{i} \cup\right.$ $\left.N_{R}\left(U_{i}\right)\right\rangle_{G}, 1 \leq i \leq 6$ are complete graphs. Since $\delta(G) \geq 7$, as a result these complete graphs contain $K_{7}$. Hence, $G$ contains $K_{7}$.

Lemma 2.5. If $G$ contains $K_{1}+P_{6}$, then $G$ contains $K_{6}$.
Proof. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\}$ be the vertex set of $K_{1}+P_{6}$ where $K_{1}=u_{1}$ and $P_{6}=u_{2} u_{3} u_{4} u_{5} u_{6} u_{7}$. Let $R=G-U$ and $U_{i}=N\left(u_{i}\right) \cap V(R)$ for each $1 \leq i \leq 7$. Then $U_{i} \neq \varnothing$ for all $1 \leq i \leq 7$ because $\delta(G) \geq 7$. Now we have the following:
(1) $U_{i} \cap U_{j}=\varnothing$ for each $2 \leq i<j \leq 7$ except possibly for $i=3$ and $j=5,6$, and for $i=4$ and $j=6$. To see that, suppose that there are $2 \leq i<j \leq 7$ such that $x \in U_{i} \cap U_{j}$ and $(i, j) \neq(3,5),(3,6),(4,6)$. Then we have the following:
(i) $i=2$ and $j=3$. Then $x u_{2} u_{1} u_{7} u_{6} u_{5} u_{4} u_{3} x$ is a $C_{8}$, a contradiction.
(ii) $i=2$ and $j=4$. Then $x u_{2} u_{3} u_{1} u_{7} u_{6} u_{5} u_{4} x$ is a $C_{8}$, a contradiction.
(iii) $i=2$ and $j=5$. Then $x u_{2} u_{3} u_{4} u_{1} u_{7} u_{6} u_{5} x$ is a $C_{8}$, a contradiction.
(iv) $i=2$ and $j=6$. Then $x u_{2} u_{3} u_{4} u_{5} u_{1} u_{7} u_{6} x$ is a $C_{8}$, a contradiction.
(v) $i=2$ and $j=7$. Then $x u_{2} u_{3} u_{4} u_{5} u_{6} u_{1} u_{7} x$ is a $C_{8}$, a contradiction.
(vi) $i=3$ and $j=4$. Then $x u_{3} u_{2} u_{1} u_{7} u_{6} u_{5} u_{4} x$ is a $C_{8}$, a contradiction.
(vii) $i=4$ and $j=5$. Then $x u_{4} u_{3} u_{2} u_{1} u_{7} u_{6} u_{5} x$ is a $C_{8}$, a contradiction.
(viii) $i, j$ are not as in the above cases. Then we use the symmetry in the subgraph $K_{1}+P_{6}$ and we argue as in (i)-(vii).
(2) For all $2 \leq i<j \leq 7$ and for any $x \in U_{i}$ and $y \in U_{j}$ we have that $x y \notin E(G)$. (3) $N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)=\varnothing$ for all $2 \leq i<j \leq 7$. (4) For all $2 \leq i<j \leq 7$ and for all $x \in N_{R}\left(U_{i}\right)$ and $y \in N_{R}\left(U_{j}\right)$ we have that $x y \notin E(G)$ ((2), (3), and (4) follows easily from being that $K_{1}+P_{6}$ contains paths of order 6,5 and 4 between any two vertices $u_{i}$ and $\left.u_{j}, 2 \leq i<j \leq 7\right)$.

Now, since $\alpha(G) \leq 7$, at least one induced subgraph of $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, i=$ $2,4,5,7$ is a complete graph. Since $\delta(G) \geq 7$, then $\left|N_{R}\left(U_{i}\right)\right| \geq 5$ and so $\left|U_{i} \cup N_{R}\left(U_{i}\right)\right| \geq 6$ for each $2 \leq i \leq 7$. Therefore at least one induced subgraph of $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, i=2,4,5,7$ contains $K_{6}$. Thus, $G$ contains $K_{6}$.

Lemma 2.6. If $G$ contains $K_{1}+P_{5}$, then $G$ contains $K_{1}+P_{6}$ or $K_{6}$.
Proof. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ be the vertex set of $K_{1}+P_{5}$ where $K_{1}=u_{1}$ and $P_{6}=u_{2} u_{3} u_{4} u_{5} u_{6}$. Let $R=G-U$ and $U_{i}=N\left(u_{i}\right) \cap V(R)$ for each $1 \leq i \leq 6$. Then $\left|U_{i}\right| \geq 2$ for all $1 \leq i \leq 6$ because $\delta(G) \geq 7$. Now we have the following cases:

Case 1: $U_{i} \cap U_{j}=\varnothing$ for all $2 \leq i<j \leq 6$. Then we have the following: (1) For any $x \in U_{i}$ and $y \in U_{j}$ we have that $x y \notin E(G), 2 \leq i \leq j \leq 6$ except possibly for $i=3$ and $j=5$ because otherwise $G$ contains $C_{8}$. (2) $N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)=\varnothing$ for all $2 \leq i \leq j \leq 6$ because otherwise $G$ contains $C_{8}$. (3) For all $2 \leq i \leq j \leq 6$ and for all $x \in N_{R}\left(U_{i}\right)$ and $y \in N_{R}\left(U_{j}\right)$ we have $x y \notin E(G)$ because otherwise $G$ contains $C_{8}$. Therefore as in Lemma 2.5 at least three of $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, 2 \leq i \leq 6$ are complete graphs. Since $\delta(G) \geq 7$, these three complete graphs contains $K_{6}$. And so, $G$ contains $K_{6}$.
Case 2. $U_{i} \cap U_{j} \neq \varnothing$ for some $2 \leq i<j \leq 6$, say $u_{7} \in U_{r} \cap U_{s}$. Then we have the following:
Subcase 2.a. $r=5$ and $s=6$. Then (i) if $x \in U_{6}-\left\{u_{7}\right\}$, then $x u_{7} \notin E(G)$ (otherwise, $x u_{7} u_{5} u_{4} u_{3} u_{2} u_{1} u_{6} x$ is a $C_{8}$, a contradiction). (ii) if $x \in U_{5}-\left\{u_{7}\right\}$, then $x u_{7} \notin E(G)$ (otherwise, $x u_{5} u_{4} u_{3} u_{2} u_{1} u_{6} u_{7} x$ is a $C_{8}$, a contradiction). To this end, we have the following claims:

Claim 1. $\left(U_{i} \cap U_{6}\right)-\left\{u_{7}\right\}=\varnothing$ for all $2 \leq i \leq 4$.
Proof of Claim 1. Suppose that there is $2 \leq i \leq 4$ such that $x \in\left(U_{i} \cap U_{6}\right)-$ $\left\{u_{7}\right\}$. Then (1) if $i=2$, then $u_{2} x u_{6} u_{7} u_{5} u_{4} u_{3} u_{1} u_{2}$ is a $C_{8}$, a contradiction. (2) if $i=3$, then $u_{3} x u_{6} u_{7} u_{5} u_{4} u_{1} u_{2} u_{3}$ is a $C_{8}$, a contradiction. (3) if $i=4$, then $u_{4} x u_{6} u_{7} u_{5} u_{1} u_{2} u_{3} u_{4}$ is a $C_{8}$, a contradiction. The proof of the Claim is complete.
Claim 2. $\left(U_{i} \cap U_{j}\right)-\left\{u_{7}\right\}=\varnothing$ for all $2 \leq i<j \leq 5$ except for $i=3$ and $j=5$.
Proof of Claim 2. By using the same arguments as in Claim 1, we obtain the same contradiction. The proof of the claim is complete.

Now we split this subcase into two subsubcases:
Subsubcases 2.a.1. $\left|U_{5}-\left\{u_{7}\right\}\right|=1$. Since $d\left(u_{5}\right) \geq 7$, we have $u_{5} u_{2}, u_{5} u_{3} \in$ $E(G)$. Then $G$ contains $K_{1}+P_{6}$ where $K_{1}=u_{5}$ and $P_{6}=u_{7} u_{6} u_{1} u_{2} u_{3} u_{4}$.
Subsubcases 2.a.2. $\left|U_{5}-\left\{u_{7}\right\}\right| \geq 2$. Then we have the following:
Subsubsubcases 2.a.2.i. $U_{3} \cap U_{5}=\varnothing$. Then, by Claims 1 and 2, for any $x \in U_{i}-\left\{u_{7}\right\}, x$ is adjacent to at most $u_{i}$ and $u_{1}$ where $i=2,3,4$. Since $\delta(G) \geq 7$, we have $\left|\left(U_{i}-\left\{u_{7}\right\}\right) \cup N_{R}\left(U_{i}-\left\{u_{7}\right\}\right)\right| \geq 6$ for each $i=2,3,4$. Note that, from (ii) above, $\alpha\left(U_{5}\right) \geq 2$. Thus, at least one induced subgraph of $\left\langle\left(U_{i}-\left\{u_{7}\right\}\right) \cup N_{R}\left(U_{i}-\left\{u_{7}\right\}\right)\right\rangle_{G}, 2 \leq i \leq 4$ is complete. Thus, this complete graph contains $K_{6}$.

Subsubsubcases 2.a.2.ii. $U_{3} \cap U_{5} \neq \varnothing$, say $u_{8} \in U_{3} \cap U_{5}$. Then for all $2 \leq i<j \leq 6$ and for all $x \in N_{R}\left(U_{i}\right)$ and $y \in N_{R}\left(U_{j}\right)$ we have that $x y \notin E(G)$ because otherwise $G$ contains $C_{8}$.

Claim 3. $\alpha\left(U_{3} \cup U_{5} \cup U_{6}\right) \geq 4$.
Proof of Claim 3. Since $\left|U_{5}-\left\{u_{7}\right\}\right| \geq 2$, we can assume that $v_{1} \in U_{5}-\left\{u_{7}\right\}$ with $u_{8} \neq v_{1}$. Also, since $d\left(u_{3}\right), d\left(u_{6}\right) \geq 7$, there are two vertices of $U_{3}-\left\{u_{8}\right\}$ and $U_{6}-\left\{u_{7}\right\}$, say $v_{2} \in U_{3}-\left\{u_{8}\right\}$ and $v_{3} \in U_{6}-\left\{u_{7}\right\}$. Note that, by Claim 1, $u_{8} \neq u_{7}, u_{8} \neq v_{3}, u_{7} \neq v_{2}$ and $v_{3} \neq v_{2}$. Also, from (i) above, we have that $v_{3} u_{7} \notin E(G)$. Therefor, either $v_{1} \neq v_{2}$, and so $\left\{v_{1}, v_{2}, u_{7}, u_{8}\right\}$ is an independent set of 4 vertices or $v_{1} \neq v_{3}$, and so $\left\{v_{1}, v_{3}, u_{7}, u_{8}\right\}$ is an independent set of 4 vertices (otherwise, if both $v_{1}=v_{2}$ and $v_{1}=v_{3}$, then $v_{2}=v_{3}$ which contradicts Claim 1). The proof of Claim 3 is complete.

Now, by Claims 1 and 2, for any $x \in U_{i}-\left\{u_{7}\right\}, x$ is adjacent to at most $u_{i}$ and $u_{1}$ where $i=2$, 4. Thus, $\left|\left(U_{i}-\left\{u_{7}\right\}\right) \cup N_{R}\left(U_{i}-\left\{u_{7}\right\}\right)\right| \geq 6$ for each $i=2$, 4. Since $\alpha(G) \leq 7$, at least one of $\left\langle\left(U_{i}-\left\{u_{7}\right\}\right) \cup N_{R}\left(U_{i}-\left\{u_{7}\right\}\right)\right\rangle_{G}, i=$ 2,4 is complete graph. Therefore, $G$ contains $K_{6}$.

Subcase 2.b. $r=4$ and $s=6$. Then we have the following:
(1) We may assume that $U_{5} \cap U_{6}=\varnothing$ (if $U_{5} \cap U_{6} \neq \varnothing$, then we get Subcase 2.a, and so $G$ contains either $K_{1}+P_{6}$ or $K_{6}$ ).
(2) By a similar argument as in Subcase 2.a, for any $x \in U_{i}$, we have $x u_{7} \notin$ $E(G)$ where $i=4,6$.
(3) Since between any two vertices of $\left\{u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 6 , as a result for all $2 \leq i<j \leq 6$ and for any $x \in U_{i}$ and $y \in U_{j}$ we have that $x y \notin E(G)$.
(4) If $w \in U_{4} \cap U_{5}$, then for any $x \in U_{4} \cap U_{5}$ we have that $x w \notin E(G)$ (to see this, assume that $x w \in E(G)$. Then if $x \in U_{4}$, then $x w u_{5} u_{6} u_{1} u_{2} u_{3} u_{4} x$ is a $C_{8}$, which is a contradiction. If $x \in U_{4}$, then $w x u_{5} u_{6} u_{1} u_{2} u_{3} u_{4} w$ is a $C_{8}$, which is a contradiction).

Now, we consider the following two subsubcases:
Subsubcase 2.b.1. $\left|U_{4}-\left\{u_{7}\right\}\right|=1$. Then $u_{4} u_{2}, u_{4} u_{6} \in E(G)$ and so $G$ contains $K_{1}+P_{6}$ where $K_{1}=u_{4}$ and $P_{6}=u_{1} u_{2} u_{3} u_{5} u_{6} u_{7}$.
Subsubcase 2.b.2. $\left|U_{4}-\left\{u_{7}\right\}\right| \geq 2$. By (1) of Subcase 2.b, $U_{5} \cap U_{6}=\varnothing$ and so $u_{5} u_{7} \notin E(G)$. Thus, $\left|U_{i}-\left\{u_{7}\right\}\right| \geq 2$ for each $i=4,5$. Now we have the following claim:

Claim 4. $\alpha\left(U_{4} \cup U_{5} \cup U_{6}\right) \geq 4$.
Proof of Claim 4. To prove the claim we consider the following cases:
Case I. $\left|U_{4} \cap U_{5}\right|=1$, say $v \in U_{4} \cap U_{5}$. Then, by (1), $v \neq u_{7}$ and, by (4), $U_{4} \cup U_{5}-\left\{u_{7}\right\}$ contains an independent set of 3 vertices, say $\left\{v_{1}, v_{2}, v\right\}$ where $v_{1} \in U_{4}$ and $v_{2} \in U_{5}$. Thus, $\left\{v_{1}, v_{2}, v, u_{7}\right\}$ is an independent set of 4 vertices.

Case II. $\left|U_{4} \cap U_{5}\right| \geq 2$. Let $u, v \in U_{4} \cap U_{5}$. Then, by (3) of Subcase 2.b, $\{u, v\}$ is an independent set. Since $d\left(u_{6}\right) \geq 7$, there is $w \in U_{6}-\left\{u_{7}\right\}$. By (1), (2) and (3), $\left\{u, v, w, u_{7}\right\}$ is an independent set of 4 vertices.

Case III. $\left|U_{4} \cap U_{5}\right|=0$. Then we have the following subcases:
Subcase III.1. $U_{4} \cap U_{6}-\left\{u_{7}\right\}=\varnothing$. Then $U_{4}-\left\{u_{7}\right\}, U_{5}, U_{6}-\left\{u_{7}\right\}$ are mutually disjoint sets. Therefore, by (2) and (3), $\left\{v_{1}, v_{2}, v_{3}, u_{7}\right\}$ is an independent set of 4 vertices where $v_{1} \in U_{4}-\left\{u_{7}\right\}, v_{2} \in U_{5}$ and $v_{3} \in U_{6}-\left\{u_{7}\right\}$.

Subcase III.2. $U_{4} \cap U_{6}-\left\{u_{7}\right\} \neq \varnothing$, say $u \in U_{4} \cap U_{6}-\left\{u_{7}\right\}$. Since $d\left(u_{5}\right) \geq 7$ and $U_{5} \cap U_{4}=U_{5} \cap U_{6}=\varnothing$, as a result $\left|U_{5}-\left\{u, u_{7}\right\}\right| \geq 2$. Let $v_{1}, v_{2} \in U_{5}-\left\{u, u_{7}\right\}$. Then, by (2) and (3), $\left\{u, v_{1}, v_{2}, u_{7}\right\}$ is an independent set of 4 vertices. The proof of the Claim is complete.

Now, since between any two vertices of $\left\{u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 5, as a result $N_{R}\left(U_{i}-\left\{u_{7}\right\}\right) \cap N_{R}\left(U_{j}-\left\{u_{7}\right\}\right)=\varnothing$ for each $2 \leq i<j \leq 6$, and so no vertex of the independent set of $U_{4} \cup U_{5} \cup U_{6}$ adjacent to any vertex of $N_{R}\left(U_{2}\right) \cup N_{R}\left(U_{3}\right)$. Also, since between any two vertices of $\left\{u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 7 except possibly for $u_{4}$ and $u_{5}$ and for $u_{4}$ and $u_{6}$, as a result $U_{i} \cap U_{j}-\left\{u_{7}\right\}=\varnothing$ for each $2 \leq i<j \leq 6$ except possibly for $i=4$ and $j=5,6$. Moreover, since there is a path of order 4 between $u_{2}$ and $u_{3}$, it implies that for each $x \in N_{R}\left(U_{2}\right)$ and $u \in N_{R}\left(U_{3}\right)$ we have that $x y \notin E(G)$. Hence, by (3) and being $\alpha(G) \leq 7$, at least one of the induced subgraphs $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, i=2,3$ is complete. Since $\delta(G) \geq 7$, it implies that this complete subgraph contains $K_{6}$.

Subcase 2.c. $r=2$ and $s=6$. Then we have the following:
(1) $U_{i} \cap U_{j}=\varnothing$ for all $1 \leq i<j \leq 6$ except $i=2$ and $j=6$ otherwise $G$ contains $C_{8}$.
(2) Since between any two vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 6 , as a result for all $x \in U_{i}$ and $y \in U_{j}$ we have that $x y \notin E(G)$ for any $1 \leq i<j \leq 6$.

Claim 5. $\alpha\left(U_{1} \cup U_{2} \cup U_{4} \cup U_{6}\right) \geq 4$.
Proof of Claim 5. By (1), $U_{1}, U_{2}, U_{4}$ are mutually disjoint sets. Since $\delta(G) \geq$ $7,\left|U_{i}-\left\{u_{7}\right\}\right| \geq 2$ for each $i=1,4$. Therefore, by (2), $\left\{v_{1}, v_{2}, v_{3}, u_{7}\right\}$ is an independent set of 4 vertices where $v_{1} \in U_{1}, v_{2} \in U_{4}$, and $v_{3} \in U_{2}$ with $v_{3} \neq u_{7}$. The proof of the claim is complete.

Now, $N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)=\varnothing$ for each $1 \leq i<j \leq 6$ except $i=1$ and $j=4$ otherwise $G$ contains $C_{8}$. Hence, there is no vertex of $\left\{v_{1}, v_{2}, v_{3}, u_{7}\right\}$ adjacent to any vertex of $N_{R}\left(U_{3}\right) \cup N_{R}\left(U_{5}\right)$. Now, since there is a path of order 4 between $u_{3}$ and $u_{5}$, it implies that for each $x \in N_{R}\left(U_{3}\right)$ and $y \in N_{R}\left(U_{5}\right)$, we have that $x y \notin E(G)$. Hence, at least one of $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, i=3,5$ is complete (otherwise, $\left\{v_{1}, v_{2}, v_{3}, u_{7}\right\}$ with two independent vertices of $\left\langle U_{3} \cup N_{R}\left(U_{3}\right)\right\rangle_{G}$ and two independent vertices of $\left\langle U_{5} \cup N_{R}\left(U_{5}\right)\right\rangle_{G}$ form an independent set of

8 vertices, a contradiction). Since $\delta(G) \geq 7$, it implies that this complete subgraph contains $K_{6}$.

Subcase 2.d. $r=2$ and $s=3$. Then we have a subcase similar to Subcase 2.a.
Subcase 2.e. $r=2$ and $s=4$. Then we have a subcase similar to Subcase 2.b.
Subcase 2.f. $r=4$ and $s=6$. Then we have the following:
(1) Since between any two vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 6 , as a result for all $x \in U_{i}$ and $y \in U_{j}$ we have that $x y \notin E(G)$ for any $1 \leq i<j \leq 6$.
(2) Since between any two vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 5 , as a result $N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)=\varnothing$ for any $1 \leq i<j \leq 6$.
(3) Since between any two vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 4 , as a result for all $x \in N_{R}\left(U_{i}\right)$ and $y \in N_{R}\left(U_{j}\right)$ we have that $x y \notin E(G)$ for any $1 \leq i<j \leq 6$.
(4) If $U_{2} \cap U_{4} \neq \varnothing$ or $U_{2} \cap U_{3} \neq \varnothing$ or $U_{4} \cap U_{6} \neq \varnothing$ or $U_{5} \cap U_{6} \neq \varnothing$ or $U_{2} \cap U_{6} \neq \varnothing$, then we get Subcase 2 a , or 2 b , or 2 c , or 2 d , or 2 e . Also, if $x \in U_{2} \cap U_{5}$, then $u_{5} x u_{2} u_{1} u_{4} u_{3} u_{7} u_{6} u_{5}$ is a $C_{8}$, a contradiction. If $x \in U_{2} \cap U_{6}$, then $u_{6} x u_{2} u_{1} u_{5} u_{4} u_{3} u_{7} u_{5}$ is a $C_{8}$, a contradiction. If $x \in U_{4} \cap U_{5}$, then $u_{5} x u_{4} u_{1} u_{2} u_{3} u_{7} u_{6} u_{5}$ is a $C_{8}$, a contradiction. If $x \in U_{1} \cap U_{4}$, then $u_{4} x u_{1} u_{2} u_{3} u_{7} u_{6} u_{5} u_{4}$ is a $C_{8}$, a contradiction. Moreover, if $w \in U_{1} \cap U_{2}$, then $G$ contains $K_{1}+P_{6}$ where $K_{1}=u_{1}$ and $P_{6}=w u_{2} u_{3} u_{4} u_{5} u_{6}$, and if $w \in U_{1} \cap U_{6}$, then $G$ contains $K_{1}+P_{6}$ where $K_{1}=u_{1}$ and $P_{6}=u_{2} u_{3} u_{4} u_{5} u_{6} w$. Therefore, in the rest of this subcase we may assume that $U_{i} \cap U_{j}=\varnothing$ for any $1 \leq i<j \leq 6$, except possibly for $i=3$ and $j=4,5,6$ and for $i=1$ and $j=3,5$.

Claim 6. $\alpha\left(U_{1} \cup U_{5} \cup U_{6}\right) \geq 4$.
Proof of Claim 6. Since $u_{7} \in U_{3} \cap U_{6}$ and since $d\left(u_{6}\right) \geq 7$, as a result, $\left|U_{6}-\left\{u_{7}\right\}\right| \geq 1$ and so there is $v_{1} \in U_{6}-\left\{u_{7}\right\}$. By (4) $U_{5} \cap U_{6}=\varnothing$, so there is $v_{2} \in U_{5}$ with $v_{2} \neq v_{1}$ and $v_{2} \neq u_{7}$. Also, by (4), $U_{1} \cap U_{6}=\varnothing$, so $\left|U_{1}-\left\{v_{2}\right\}\right| \geq 2$. Hence, there is $v_{3} \in U_{1}-\left\{v_{2}\right\}$. Thus, by (1), $\left\{u_{7}, v_{1}, v_{2}, v_{3}\right\}$ is an independent set of 4 vertices in $U_{1} \cup U_{5} \cup U_{6}$. The proof of the claim is complete.

Now, by (2), there is no vertex of $\left\{u_{7}, v_{1}, v_{2}, v_{3}\right\}$ adjacent to any vertex of $N_{R}\left(U_{2}\right) \cup N_{R}\left(U_{4}\right)$. Also, by (3), for each $x \in N_{R}\left(U_{2}\right)$ and $y \in N_{R}\left(U_{4}\right)$ we have that $x y \notin E(G)$. Hence, at least one of $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, i=2,4$ is complete (otherwise $\left\{u_{7}, v_{1}, v_{2}, v_{3}\right\}$ with two independent vertices of $\left\langle U_{2} \cup N_{R}\left(U_{2}\right)\right\rangle_{G}$ and two independent vertices of $\left\langle U_{4} \cup N_{R}\left(U_{4}\right)\right\rangle_{G}$ forms an independent set of 8 vertices, a contradiction). Since $\delta(G) \geq 7$, this complete graph contains $K_{6}$.
Subcase 2.g. $r=2$ and $s=5$. Then we have a subcase similar to Subcase 2.f.
Subcase 2.h. $r=4$ and $s=5$. Then we have the following:
(1) Since between any two vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 6 except for $u_{1}$ and $u_{4}$, as a result for all $x \in U_{i}$ and $y \in U_{j}$ we have that $x y \notin E(G)$ for any $1 \leq i<j \leq 6$ except possibly for $i=1$ and $j=4$.
(2) Since between any two vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 5 , as a result $N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)=\varnothing$ for any $1 \leq i<j \leq 6$.
(3) Since between any two vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 4 , as a result for all $x \in N_{R}\left(U_{i}\right)$ and $y \in N_{R}\left(U_{j}\right)$ we have that $x y \notin E(G)$ for any $1 \leq i<j \leq 6$. Now, we have the following claim:

Claim 7. $U_{i} \cap U_{j}=\varnothing$ for any $1 \leq i<j \leq 6$ except possibly for $i=5$ and $j=3,4$ and for $i=1$ and $j=3,4,5$.

Proof of Claim 7. Suppose that there is $1 \leq i<j \leq 6$ such that $x \in U_{i} \cap U_{j}$ and $(i, j) \neq(5, p)$ or $(i, j) \neq(1, q)$ where $p=3,4$ and $q=3,4,5$. Then we have the following:
(i) $i=2$ and $j=4$. Then we get Subcase 2 .e and so $G$ contains $K_{1}+P_{6}$ or $K_{6}$, a contradiction.
(ii) $i=2$ and $j=3$. Then we get $S$ ubcase $2 . \mathrm{d}$ and so $G$ contains $K_{1}+P_{6}$ or $K_{6}$, a contradiction.
(iii) $i=4$ and $j=6$. Then we get Subcase 2 .b and so $G$ contains $K_{1}+P_{6}$ or $K_{6}$, a contradiction.
(iv) $i=5$ and $j=6$. Then we get $\operatorname{Subcase} 2$.a and so $G$ contains $K_{1}+P_{6}$ or $K_{6}$, a contradiction.
(v) $i=2$ and $j=6$. Then we get $\operatorname{Subcase} 2 . c$ and so $G$ contains $K_{1}+P_{6}$ or $K_{6}$, a contradiction.
(vi) $i=1$ and $j=6$. Then $G$ contains $K_{1}+P_{6}$ where $K_{1}=u_{1}$ and $P_{6}=$ $u_{2} u_{3} u_{4} u_{5} u_{6} x$, a contradiction.
(vii) $i=3$ and $j=6$. Then we get Subcase 2.f and so $G$ contains $K_{1}+P_{6}$ or $K_{6}$, a contradiction.
(viii) $i=2$ and $j=5$. Then we get Subcase $2 . \mathrm{g}$ and so $G$ contains $K_{1}+P_{6}$ or $K_{6}$, a contradiction.
(ix) $i=3$ and $j=4$. Then $u_{4} x u_{3} u_{2} u_{1} u_{6} u_{5} u_{7} u_{4}$ is a $C_{8}$, a contradiction.
(x) $i=1$ and $j=2$. Then $u_{2} x u_{1} u_{6} u_{5} u_{7} u_{4} u_{3} u_{2}$ is a $C_{8}$, a contradiction. The proof of the claim is complete.

Now, we split our work into the following subsubcases:
Subsubcase 2.h.i. $\left|U_{4}-\left\{u_{7}\right\}\right|=1$. Then $u_{2} u_{4}, u_{4} u_{6} \in E(G)$. Therefore, $G$ contains $K_{1}+P_{6}$ where $K_{1}=u_{4}$ and $P_{6}=u_{7} u_{5} u_{6} u_{1} u_{2} u_{3}$.
Subsubcase 2.h.ii. $\left|U_{4}-\left\{u_{7}\right\}\right| \geq 2$. Note that $\left|U_{5}-\left\{u_{7}\right\}\right| \geq 1$. Hence there are $v_{1} \in U_{4}-\left\{u_{7}\right\}$ and $v_{2} \in U_{5}-\left\{u_{7}\right\}$ such that $v_{1} \neq v_{2}$. Now, by Claim 7, $U_{3} \cap U_{4}=\varnothing$. Since $d\left(u_{3}\right) \geq 7,\left|U_{3}-\left\{u_{7}\right\}\right| \geq 2$. Hence, there is $v_{3} \in U_{3}-\left\{u_{7}\right\}$ with $v_{3} \neq v_{1}$ and $v_{3} \neq v_{2}$. Then, by (1), $\left\{u_{7}, v_{1}, v_{2}, v_{3}\right\}$ is an independent set of 4 vertices of $U_{3} \cup U_{4} \cup U_{5}$. Thus, $\alpha\left(U_{3} \cup U_{4} \cup U_{5}\right) \geq 4$. Now, by (2), there is no vertex of $\left\{u_{7}, v_{1}, v_{2}, v_{3}\right\}$ adjacent to any vertex of $N_{R}\left(U_{2}\right) \cap N_{R}\left(U_{6}\right)$. Also, by (3), for each $x \in N_{R}\left(U_{2}\right)$ and $y \in N_{R}\left(U_{6}\right)$, we have that $x y \notin E(G)$. Hence at least one of $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, i=2,6$ is complete (otherwise, $\left\{u_{7}, v_{1}, v_{2}, v_{3}\right\}$ with two independent vertices of $\left\langle U_{2} \cup N_{R}\left(U_{2}\right)\right\rangle_{G}$ and two independent vertices of $\left\langle U_{6} \cup N_{R}\left(U_{6}\right)\right\rangle_{G}$ is an 8 independent vertices, a contradiction). Since, $\delta(G) \geq 7$, this complete graph contains $K_{6}$.

Subcase 2.i. $r=3$ and $s=4$. Then we have a subcase similar to Subcase 2.h.
Subcase 2.j. $r=3$ and $s=5$. Then we have the following:
(1) Since between any two vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 5 , as a result $N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)=\varnothing$ for any $1 \leq i<j \leq 6$.
(2) Since between any two vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ there is a path of order 4 , as a result for all $x \in N_{R}\left(U_{i}\right)$ and $y \in N_{R}\left(U_{j}\right)$ we have that $x y \notin E(G)$ for any $1 \leq i<j \leq 6$.
(3) If $x \in U_{i}$ and $y \in U_{j}$, we have that $x y \notin E(G)$ for any $1 \leq i<j \leq 6$ except possibly for $i=3$ and $j=5$ and for $i=1$ and $j=3,5$ because otherwise $G$ contains $C_{8}$, a contradiction.
(4) If $U_{2} \cap U_{4} \neq \varnothing$ or $U_{2} \cap U_{3} \neq \varnothing$ or $U_{4} \cap U_{6} \neq \varnothing$ or $U_{5} \cap U_{6} \neq \varnothing$ or $U_{2} \cap U_{6} \neq \varnothing$ or $U_{2} \cap U_{5} \neq \varnothing$ or $U_{3} \cap U_{6} \neq \varnothing$ or $U_{3} \cap U_{4} \neq \varnothing$ or $U_{4} \cap U_{5} \neq \varnothing$, then we get Subcase 2 a , or 2 c , or 2 g , or 2 f , or 2 i or 2 h . Also, if $x \in U_{1} \cap U_{2}$, then $G$ contains $K_{1}+P_{6}$ where $K_{1}=u_{1}$ and $P_{6}=w u_{2} u_{3} u_{4} u_{5} u_{6}$, a contradiction. If $w \in U_{1} \cap U_{6}$, then $G$ contains $K_{1}+P_{6}$ where $K_{1}=u_{1}$ and $P_{6}=u_{2} u_{3} u_{4} u_{5} u_{6} w$, a contradiction. Therefore, in the rest of this subcase we may assume that $U_{i} \cap U_{j}=\varnothing$ for any $1 \leq i<j \leq 6$, except possibly for $i=3$ and $j=5$ and for $i=1$ and $j=3,4,5$. Now we have the following two subsubcases:
Subsubcase 2.j.I. There is a $u_{3} u_{5}$-path of order 4 in $G-U$, say $u_{3} x y u_{5}$ where $x, y \in G-U$. Then $U_{1} \cap U_{4}=\varnothing$ ( otherwise, if $w \in U_{1} \cap U_{4}$, then $w u_{1} u_{2} u_{3} x y u_{5} u_{4} w$ is a $C_{8}$, which is a contradiction). It implies that, by (4), $U_{i} \cap U_{j}=\varnothing$, for any $i, j \in\{1,2,4,5\}$ with $i \neq j$. And so, by (1), (2), and (3), at least one of $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, i=1,2,4,6$ is a complete graph (otherwise two independent vertices of each of $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, i=1,2,4,6$ form an independent set of 8 elements). Since $\delta(G) \geq 7$, this complete graph contains $K_{6}$.
Subsubcase 2.j.II. There is no a $u_{3} u_{5}$-path of order 4 in $G-U$. That is for
any $x \in U_{3}$ and $y \in U_{5}$, we have that $x y \notin E(G)$.
Claim 8. $\alpha\left(U_{3} \cup U_{5}\right) \geq 2$.
Proof of the Claim 8. Since $d\left(u_{3}\right) \geq 7,\left|U_{3}-\left\{u_{7}\right\}\right| \geq 1$ and so there is $v \in U_{3}-\left\{u_{7}\right\}$. Then $\left\{u_{7}, v\right\}$ is an independent set of two vertices. The proof of the claim is complete.

Now, by (2), there is no vertex of $\left\{u_{7}, v\right\}$ adjacent to any vertex of $N_{R}\left(U_{2}\right) \cup$ $N_{R}\left(U_{4}\right) \cup N_{R}\left(U_{6}\right)$. Also, from (1), for any $x \in N_{R}\left(U_{i}\right)$ and $y \in N_{R}\left(U_{j}\right)$, we have $x y \notin E(G)$ for each $i, j \in\{2,4,6\}$ with $i \neq j$. Hence at least one of $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, i=2,4,6$ is a complete graph (otherwise, $\left\{u_{7}, v\right\}$ with two independent vertices of each of $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, i=2,4,6$ form an independent set of 8 elements). Since $\delta(G) \geq 7$, this complete graph contains $K_{6}$.

Lemma 2.7. If $G$ contains $K_{5}$, then $G$ contains $K_{1}+P_{5}$ or $K_{6}$.
Proof. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ be the vertex set of $K_{5}$. Let $R=G-U$ and $U_{i}=N\left(u_{i}\right) \cap V(R)$ for each $1 \leq i \leq 5$. Then $\left|U_{i}\right| \geq 3$ for all $1 \leq i \leq 5$ because $\delta(G) \geq 7$. Now we split our work into the following two cases:
Case 1. There are $1 \leq i<j \leq 5$ such that $U_{i} \cap U_{j} \neq \varnothing$. Then $G$ contains $K_{1}+P_{5}$.
Case 2. $U_{i} \cap U_{j}=\varnothing$ for all $1 \leq i<j \leq 5$. Then we consider the following subcases:
Subcase 2.a. There is no $u_{i} u_{j}$-path of order 4 in $G-U$, that is for any $x \in U_{i}$ and $y \in U_{j}$, we have that $x y \notin E(G)$ for each $1 \leq i<j \leq 5$. Since between any two vertices of $U$ there are paths of order 4 and 5 , as a result $N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)=\varnothing$, and for any $x \in N_{R}\left(U_{i}\right)$ and $y \in N_{R}\left(U_{j}\right)$, we have that $x y \notin E(G)$ for each $1 \leq i<j \leq 5$. Therefore, since $\delta(G) \geq 7$, at least three of $\left\langle U_{i} \cup N_{R}\left(U_{i}\right)\right\rangle_{G}, 1 \leq i \leq 5$ are complete graph. Since $\delta(G) \geq 7$, this complete graph contains $K_{6}$.
Subcase 2.b. There is a $u_{i} u_{j}$-path of order 4 in $G-U$, say $i=1$ and $j=2$ and $u_{1} u_{6} u_{7} u_{2}$ is a path. For simplicity, in the rest of this subcase we consider $U_{i}^{\prime}=N\left(u_{i}\right) \cap V\left(R^{\prime}\right)$ where $R^{\prime}=G-U \cup\left\{u_{6}, u_{7}\right\}$. Then $U_{6}^{\prime} \cap$ $U_{i}^{\prime}=\varnothing$ for $i=1,3,4,5,7$, and also $U_{7}^{\prime} \cap U_{i}^{\prime}=\varnothing$ for $2 \leq i \leq 6$ because otherwise $G$ contains $C_{8}$, a contradiction. Since between any two vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\}$ there is a path of order 6 except possibly between $u_{1}$ and $u_{2}$, as a result for all $x \in U_{i}^{\prime}$ and $y \in U_{j}^{\prime}$ we have that $x y \notin E(G)$ for any $1 \leq i<j \leq 7$ except possibly for $i=1$ and $j=2$. Now we split this subcase into two subsubcases:
Subsubcase 2.b.I. At least one of $U_{6}^{\prime}$ and $U_{7}^{\prime}$ is complete graph. Since $u_{6}$ is adjacent only to $u_{1}$ and $u_{7}$ of $U \cup\left\{u_{6}, u_{7}\right\}$ and $u_{7}$ is adjacent only to $u_{2}$ and $u_{6}$ of $U \cup\left\{u_{6}, u_{7}\right\}$ and since $d\left(u_{6}\right), d\left(u_{7}\right) \geq 7$, as a result $G$ contains $K_{6}$.

Subsubcase 2.b.II. Non of $U_{6}^{\prime}$ and $U_{7}^{\prime}$ is complete. Then we have the following
(1) $\alpha\left(\left\langle U_{6}^{\prime}\right\rangle_{G}\right) \geq 2$ and $\alpha\left(\left\langle U_{7}^{\prime}\right\rangle_{G}\right) \geq 2$.
(2) $\alpha\left(\left\langle U_{6}^{\prime} \cup U_{2}^{\prime}\right\rangle_{G}\right) \geq 3$. To see this we argue as follows:
a) If $U_{6}^{\prime} \cap U_{2}^{\prime}=\varnothing$, then, by (1), the result is obtained.
b) If $U_{6}^{\prime} \cap U_{2}^{\prime} \neq \varnothing$, say $w \in U_{6}^{\prime} \cap U_{2}^{\prime}$, then for any $x \in U_{i}^{\prime}, i=2,6$ we have that $x w \notin E(G)$ (otherwise, if $x \in U_{2}^{\prime}$, then $x w u_{6} u_{1} u_{5} u_{4} u_{3} u_{2} x$ is a $C_{8}$, a contradiction. If $x \in U_{6}^{\prime}$, then $x u_{6} u_{1} u_{5} u_{4} u_{3} u_{2} w x$ is a $C_{8}$, a contradiction). Since $\left|U_{2}^{\prime}\right| \geq 2$ and $\left|U_{6}^{\prime}\right| \geq 4,\left\{v_{1}, v_{2}, w\right\}$ is an independent set of $U_{6}^{\prime} \cup U_{2}^{\prime}$ where $v_{1} \in U_{2}^{\prime}$ and $v_{2} \in U_{6}^{\prime}$. Thus, $\alpha\left(\left\langle U_{6}^{\prime} \cup U_{2}^{\prime}\right\rangle_{G}\right) \geq 3$.
(3) $\alpha\left(\left\langle U_{3}^{\prime} \cup U_{7}^{\prime}\right\rangle_{G}\right) \geq 3$. This follows from (1) and being $U_{3}^{\prime} \cap U_{7}^{\prime}=\varnothing$.
(4) $\alpha\left(\left\langle U_{4}^{\prime} \cup U_{5}^{\prime}\right\rangle_{G}\right) \geq 2$. This follows from being that $U_{4}^{\prime} \cap U_{5}^{\prime}=\varnothing$.

Note that there is no edge connecting two partitions among $U_{6}^{\prime} \cup U_{2}^{\prime}, U_{3}^{\prime} \cup U_{7}^{\prime}$ and $U_{4}^{\prime} \cup U_{5}^{\prime}$. Hence, we have that $\alpha\left(\left\langle U_{6}^{\prime} \cup U_{2}^{\prime} \cup U_{3}^{\prime} \cup U_{7}^{\prime} \cup U_{4}^{\prime} \cup U_{5}^{\prime}\right\rangle_{G}\right)=$ $\alpha\left(\left\langle U_{6}^{\prime} \cup U_{2}^{\prime}\right\rangle_{G}\right)+\alpha\left(\left\langle U_{3}^{\prime} \cup U_{7}^{\prime}\right\rangle_{G}\right)+\alpha\left(\left\langle U_{4}^{\prime} \cup U_{5}^{\prime}\right\rangle_{G}\right) \geq 3+3+2=8$. Which is a contradiction.

Lemma 2.8. If $G$ be a graph of order $\geq 50$, then $G$ contains $K_{1}+P_{5}$ or $K_{5}$.
Proof. Suppose that $G$ contains neither $K_{1}+P_{5}$ nor $K_{5}$. Then we have the following claims:

Claim 1. $|N(u)| \leq 21$ for any $u \in V(G)$.
Proof of Claim 1. Suppose that $u$ is a vertex with $|N(u)| \geq 22$. Since $G$ contains neither $K_{1}+P_{5}$ nor $K_{5}$, the induced subgraph $\langle N(u)\rangle_{G}$ contains neither $P_{5}$ nor $K_{4}$. Thus the best case to have for $\langle N(u)\rangle_{G}$, regarding the number of independent vertices, is a subgraph consisting of 7 non adjacent triangles and an isolated vertex (see Figure 1), Which implies that $\alpha\left(\langle N(u)\rangle_{G}\right)=8$. The other options for $\langle N(u)\rangle_{G}$ gives that $\alpha\left(\langle N(u)\rangle_{G}\right) \geq 8$. And so $\alpha(G) \geq 8$. This is a contradiction. The proof of the Claim is complete.

Claim 2. $\alpha(G)=7$.
Proof of the Claim 2. Since $|V(G)| \geq 50$ and $G$ contains no $C_{8}$ and since $r\left(C_{8}, K_{7}\right)=43, \alpha(G) \geq 7$. But $G$ has no 8 -elements independent set, so $\alpha(G) \leq 7$. Thus, $\alpha(G)=7$. The proof of the claim is complete.

Now, for any seven independent vertices $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$, and $u_{7}$, set $N_{i}\left[u_{i+1}\right]=N\left[u_{i+1}\right]-\left(\cup_{j=1}^{i} N\left[u_{j}\right]\right), 1 \leq i \leq 6$. Analogously, we set $N_{i}\left(u_{i+1}\right)$, $1 \leq i \leq 6$. Let $A=\cup_{i=1}^{6} N_{i}\left[u_{i+1}\right], B=\cup_{i=1}^{6} N_{i}\left(u_{i+1}\right)$ and $\beta=\alpha\left(\langle B\rangle_{G}\right)$.

Claim 3. $\left|N\left(u_{1}\right) \cup B\right| \geq 43$.


Figure 1:
Proof of Claim 3. Suppose that $\left|N\left(u_{1}\right) \cup B\right| \leq 42$. Then $\left|N\left[u_{1}\right] \cup A\right| \leq 49$. And so $\left|G-\left(N\left[u_{1}\right] \cup A\right)\right| \geq 50-49=1$. But $r\left(C_{8}, K_{1}\right)=1$, so $G-\left(N\left[u_{1}\right] \cup A\right)$ contains a vertex, say $u_{8}$, which is not adjacent to any of $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$, and $u_{7}$. Thus, $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8}\right\}$ is a an independent set of vertices. A contradiction. The proof of the claim is complete.

Now, by Lemma 1.1, $\delta(G) \geq 7$ and so by Claim 1, we have that $7 \leq$ $\left|N\left(u_{1}\right)\right| \leq 21$. Thus, If $\left|N\left(u_{1}\right)\right|=r$, then $|B| \geq 43-r$. By a similar argument as in Claim 1, we have that $\alpha\left(\left\langle N\left(u_{1}\right)\right\rangle_{G}\right) \geq\left\lceil\frac{r}{3}\right\rceil$ and $\beta \geq\left\lceil\frac{43-r}{3}\right\rceil$. Note that for any $7 \leq r \leq 21$ either $\left\lceil\frac{r}{3}\right\rceil$ or $\left\lceil\frac{43-r}{3}\right\rceil$ is greater than or equal to 8 . And so $\alpha(G) \geq 8$. That is a contradiction.

Theorem 2.1. $r\left(C_{8}, K_{8}\right)=50$.
Proof. Suppose that there exist a graph $G$ of order 50 that contains neither $C_{8}$ nor an 8-elements independent set. Then by Lemma 2.1, $\delta(G) \geq 7$ and by Lemma 2.8, $G$ contains $K_{1}+P_{5}$ or $K_{5}$. Thus, by Lemmas 2.7, 2.6, 2.5, 2.4, 2.3 and 2.2 , we have that $|V(G)| \geq 56$. This is a contradiction. Thus, The proof is complete.

## References

[1] A. Baniabedalruhman, On Ramsey number for cycle-complete graphs, M.Sc. Thesis, Yarmouk University, 2006.
[2] B. Bollobás, C. J. Jayawardene, Z. K. Min, C. C. Rousseau, H. Y. Ru, and J. Yang, On a conjecture involving cycle-complete graph Ramsey numbers, Australas. J. combin., 22 (2000), 63-72.
[3] J. A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, Journal of Combinatorial Theory, Series B, 14 (1973), 46-54.
[4] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, On cycle-complete graph Ramsey numbers, J. Graph Theory, 2 (1978), 53-64.
[5] R. J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Mathematics, 8 (1974), 313-329.
[6] G. R. Hendry, Ramsey numbers for graphs with five vertices, Journal of Graph Theory, 13 (1989), 245-248.
[7] M.M.M. Jaradat and A. Baniabedalruhman, The cycle complete graph Ramsey number $r\left(C_{8}, K_{7}\right)$. To appear.
[8] C. J. Jayawardene and C. C. Rousseau, The Ramsey number for a cycle of length five versus a complete graph of order six. J. Graph Theory, 35 (2000), 99-108.
[9] V. Nikiforov, The cycle-complete graph Ramsey numbers. Combin. Probab. Comput. 14 (2005), no.3, 349-370.
[10] S. P. Radziszowski and K.-K. Tse, A computational approach for the Ramsey numbers $r\left(C_{4}, K_{n}\right)$. J. Comb. Math. Comb. Comput., 42 (2002), 195-207.
[11] V. Rosta, On a Ramsey type problem of J. A. Bondy and P. Erdős, I and II, Journal of Combinatorial Theory, Series B 15 (1973), 94-120.
[12] I. Schiermeyer, All cycle-complete graph Ramsey numbers $r\left(C_{n}, K_{6}\right)$, J. Graph Theory, 44 (2003), 251-260.
[13] I. Schiermeyer, The cycle-complete graph Ramsey number $r\left(C_{5}, K_{7}\right)$, Discussiones Mathematicae Graph Theory 25 (2005) 129-139.
[14] Y. J. Sheng, H. Y. Ru and Z. K. Min, The value of the Ramsey number $r\left(C_{n}, K_{4}\right)$ is $3(n-1)+1(n \geq 4)$, Ausralas. J. Combin., 20 (1999), 205-206.
M.M.M. Jaradat

Department of Mathematics Department of Mathematics and Physics
Yarmouk University
Irbid-Jordan Qatar University
Doha-Qatar
mmjst4@yu.edu.jo
mmjst4@qu.edu.qa
B.M.N. Alzaleq

Department of Mathematics
Yarmouk University
Irbid-Jordan
alzaleq@yahoo.com

