An elementary proof of Frank's constructive characterization of the graphs having k edge disjoint spanning trees

Matthias Kriesell

(Received February 11, 2008)

Abstract

We give an elementary proof of Frank's Theorem stating that a (finite, undirected, nonempty) multigraph has k edge disjoint spanning trees if and only if it can be obtained from K_{1} by repeatedly (i) adding an edge or (ii) chosing a sequence σ of k vertices and pairwise distinct non-loop edges, deleting the edges of σ, and adding a new vertex plus one edge to each vertex of σ plus one edge to each end of every edge of σ.

AMS 2000 Mathematics Subject Classification. 05c40, 05c70, 05c75.
Key words and phrases. Factorization, decomposition, spanning tree, base packing, disjoint bases, Henneberg operation.

All graphs and hypergraphs considered here are supposed to be finite and undirected and may contain loops and multiple edges. For terminology not defined here I refer to [1] and [2].

One of the classic results in graph theory, Tutte's and Nash-Williams's base packing theorem, states that a graph admits k edge disjoint spanning trees if and only if for every partition \mathcal{P} of its vertex set there are at least $k \cdot(|\mathcal{P}|-1)$ many edges connecting distinct classes of \mathcal{P} [7] [5].

There is a constructive characterization of the graphs having k edge disjoint spanning trees in terms of the following Henneberg operation. Let $\sigma:=$ x_{1}, \ldots, x_{k} be a sequence of vertices and pairwise distinct non-loop edges of some graph G. Let $S:=E(\sigma):=\left\{x_{1}, \ldots, x_{k}\right\} \cap E(G)$. Let G^{+}be obtained from $G-S$ by adding a new vertex z, adding a new edge from x_{i} to z for each vertex x_{i} in σ and adding a new edge from each $y \in V(e)$ to z, for every $e \in S$. We then say that G^{+}is obtained from G by a k-lifting according to σ. The degree of the lifting is defined to be $d_{G^{+}}(z)$, which equals $k+|E(\sigma)|$. Observe that $\left|E\left(G^{+}\right)\right|=|E(G)|+k$.

Theorem 1 ([3]). Let $k \geq 1$. Then a graph has k edge disjoint spanning trees if and only if it can be obtained from K_{1} by a sequence of edge additions or k-liftings of degree less than $2 k$.

Frank observed in [3], without proof, that it is possible to deduce Theorem 1 by combining the base packing theorem with another fundamental result of graph connectivity theory, namely Mader's constructive characterization of the k-edge-connected digraphs [4]. Earlier, Tay gave a proof of Theorem 1 for all integers $k \geq 1$ of the form $k=n \cdot(n-1) / 2[6]$, relying on some results on bar and body frameworks and on the core lemma from [5]. Here, we give an elementary proof of Theorem 1.

We start with a lemma on a separation property of spanning tree factorizations.

Lemma 1. Let G be a graph which admits a factorization into k spanning trees. Then for distinct edges e_{1}, \ldots, e_{k} there exists a factorization S_{1}, \ldots, S_{k} of G into spanning trees such that $e_{1} \in E\left(S_{1}\right), \ldots, e_{k} \in E\left(S_{k}\right)$.

Proof. Let S_{1}, \ldots, S_{k} be a factorization into k spanning trees such that as many of its factors as possible intersect $X:=\left\{e_{1}, \ldots, e_{k}\right\}$. It clearly suffices to prove that they all do. Without loss of generality we may assume, to the contrary, that S_{1} does not intersect X and that S_{2} contains two edges $e \neq f$ from X. Let C be the edge set of the unique cycle in $S_{1}+e$ and let C^{*} be the set of edges in $S_{1}+S_{2}$ whose end vertices are in distinct components of $S_{2}-e$. Since C intersects the cut C^{*} in e, there must be a $g \in C \cap C^{*}-\{e\}$. Now $T_{1}:=\left(S_{1}-g\right)+e, T_{2}:=\left(S_{2}-e\right)+g, S_{3}, \ldots, S_{k}$ is a factorization of G into k spanning trees with $e \in E\left(T_{1}\right), f \in E\left(T_{2}\right)$; so one more factor, compared to S_{1}, \ldots, S_{k}, intersects X, contradicting our choice.

Lemma 2. Suppose that G has a factorization into k edge disjoint spanning trees. Then every graph obtained from G by a k-lifting has a factorization into k edge disjoint spanning trees.

Proof. Suppose G^{+}has been obtained from a k-lifting according to $\sigma=$ x_{1}, \ldots, x_{k}. Without loss of generality, x_{i} is an edge for every $i \leq s:=|E(\sigma)|$. By Lemma 1 , there exists a factorization into spanning trees S_{1}, \ldots, S_{k} such that $x_{1} \in E\left(S_{1}\right), \ldots, x_{s} \in E\left(S_{s}\right)$. For $i \leq s$, let T_{i} be obtained from $S_{i}-x_{i}$ by adding the two edges added to the endvertices of the edge x_{i} in the lifting, and for $i>s$, let T_{i} be obtained from S_{i} by adding the edge added to the vertex x_{i} in the lifting. Then T_{1}, \ldots, T_{k} is a factorization of G^{+}into spanning trees.

Hence, by repeatedly applying k-liftings, starting with K_{1}, we generate only graphs which admit a factorization into k spanning trees. To prove that all
these graphs arise in that way, we shall apply the following Lemma. It states that when k finite partitions of some nonempty set together with an SDR each are given then they can be made connected (considered as hypergraphs) simultaneously by adding edges of size 2 such that each element is at most as often incident with a new edge as it occurs in the SDRs if and only if there are at most $2 k$ partition classes in total.

Lemma 3. Let $N \neq \emptyset$ be a set. For each $i \in\{1, \ldots, k\}$, let \mathcal{P}_{i} be a finite partition of N and $X_{i} \subseteq N$ with $\left|X_{i} \cap P\right|=1$ for all $P \in \mathcal{P}_{i}$.

Then there exist graphs G_{1}, \ldots, G_{k} on N with
(i) $\left|E\left(G_{i}\right)\right|=\left|\mathcal{P}_{i}\right|-1$ for every $i \in\{1, \ldots, k\}$,
(ii) the hypergraph $G_{i}+\mathcal{P}_{i}$ is connected for every $i \in\{1, \ldots, k\}$, and
(iii) $\sum_{i=1}^{k} d_{G_{i}}(x) \leq \sum_{i=1}^{k}\left|X_{i} \cap\{x\}\right|$ for every $x \in N$
if and only if $\sum_{i=1}^{k}\left|\mathcal{P}_{i}\right| \leq 2 k .{ }^{1}$
Proof. Let $a_{i}:=\left|\mathcal{P}_{i}\right| \geq 1$ and $b:=\sum_{i=1}^{k} a_{i}$. For the "only if" part we estimate $2 b-2 k \stackrel{(\mathrm{i})}{=} 2 \sum_{i=1}^{k}\left|E\left(G_{i}\right)\right|=\sum_{i=1}^{k} \sum_{x \in N} d_{G_{i}}(x)=\sum_{x \in N} \sum_{i=1}^{k} d_{G_{i}}(x)$ $\stackrel{(\text { iii) }}{\leq} \sum_{x \in N} \sum_{i=1}^{k}\left|X_{i} \cap\{x\}\right|=\sum_{i=1}^{k} \sum_{x \in N}\left|X_{i} \cap\{x\}\right|=\sum_{i=1}^{k} a_{i}=b$, so $b \leq 2 k$.

The remaining statement is proved by induction on k. If $k=0$ then there is nothing to show. For $k>0$, suppose $b \leq 2 k$. If $b<2 k$ then $a_{i}=1$ for some i, and $i=k$ without loss of generality, so $\sum_{i=1}^{k-1} a_{i} \leq 2(k-1)$. By induction, we find graphs G_{1}, \ldots, G_{k-1} with the desired properties, and, taking the edgeless graph on N for G_{k}, the statement follows. So we may assume $b=2 k$. If $a_{i}=2$ for all i then we let $E\left(G_{i}\right)$ consist of a single edge connecting the two vertices in X_{i}; it is easy to check that this choice satisfies all the conditions. Otherwise, $a_{i}>2$ for some i and, at the same time, $a_{j}=1$ for some j. Without loss of generality, $i=k-1$ and $j=k$. Let p be the vertex in X_{k}, let P be the unique class in \mathcal{P}_{k-1} which contains p, let $Q \in \mathcal{P}_{k-1}-\{P\}$, and let q be the vertex in $X_{k-1} \cap Q$. Set $\mathcal{Q}:=\left(\mathcal{P}_{k-1}-\{P, Q\}\right) \cup\{P \cup Q\}$ and $Y:=X_{k-1}-\{q\}$. By induction, applied to $\mathcal{P}_{1}, \ldots, \mathcal{P}_{k-2}$ and \mathcal{Q} for \mathcal{P}_{k-1} and X_{1}, \ldots, X_{k-2} and Y for X_{k-1}, we find subgraphs G_{1}, \ldots, G_{k-2} and H for G_{k-1} with the following properties: $\left|E\left(G_{i}\right)\right|=a_{i}-1$ and $G_{i}+\mathcal{P}_{i}$ is connected for $i \in\{1, \ldots, k-2\}$, and $|E(H)|=a_{k-1}-2$ and $H+\mathcal{Q}$ is connected, and

$$
\begin{equation*}
\sum_{i=1}^{k-2} d_{G_{i}}(x)+d_{H}(x) \leq \sum_{i=1}^{k-2}\left|X_{i} \cap\{x\}\right|+|Y \cap\{x\}| \tag{0.1}
\end{equation*}
$$

[^0]for all $x \in N$. Now let G_{k-1} be obtained from H by adding an edge connecting p and q, and let G_{k} be the edgeless graph on N. Then both $G_{k-1}+\mathcal{P}_{k-1}$ and $G_{k}+\mathcal{P}_{k}$ are connected. For $x \in N-\{p, q\}, d_{H}(x)=d_{G_{k-1}}(z)+d_{G_{k}}(x)$ and $|Y \cap\{x\}|=\left|X_{k-1} \cap\{x\}\right|+\left|X_{k} \cap\{x\}\right|$, whereas for $x \in\{p, q\}, d_{H}(x)=$ $d_{G_{k-1}}(x)+d_{G_{k}}(x)-1$ and $|Y \cap\{x\}|=\left|X_{k-1} \cap\{x\}\right|+\left|X_{k} \cap\{x\}\right|-1$, and so (0.1) implies (iii), which accomplishes the induction.

Lemma 4. Suppose that $G^{+} \neq K_{1}$ has a factorization into k edge disjoint spanning trees. Then there exists a graph G which admits a factorization into k edge disjoint spanning trees such that G^{+}is obtained from G by a k-lifting of degree less than $2 k$.

Proof. Let S_{1}, \ldots, S_{k} be a factorization of G^{+}into k edge disjoint spanning trees. As the average degree of a tree is less than 2, the average degree of G^{+}is less than $2 k$. So let z be a vertex of degree less than $2 k$ in G^{+}, and let $N:=N_{G^{+}}(z)$. For each i, let \mathcal{P}_{i} be the partition of N formed by its intersections with the components of $S_{i}-z$, and let $X_{\ell}:=N_{S_{i}}(z)$. We apply Lemma 3 and find subgraphs G_{1}, \ldots, G_{k} with (i), (ii), (iii) as there, which we choose pairwise edge disjoint and edge disjoint from $G^{+}-z$. Hence $\left|E\left(G_{i}\right)\right|$ $\stackrel{(\mathrm{i})}{=}\left|N_{S_{i}}(z)\right|-1=d_{S_{i}}(z)-1$, and $G:=\left(G^{+}-z\right)+\left(G_{1}+\cdots+G_{k}\right)$ has k edges less than G^{+}. By (ii), $T_{1}:=\left(S_{1}-z\right)+G_{1}, \ldots, T_{k}:=\left(S_{k}-z\right)+G_{k}$ is a factorization of G into connected spanning subgraphs, and, as $|E(G)|=$ $\left|E\left(G^{+}\right)\right|-k=k\left|V\left(G^{+}\right)\right|-k-k=k|V(G)|-k$, they must be trees. Note that $d_{G}(x)=d_{G^{+}}(x)$ for all $x \in V(G)-N$. By (iii), $d_{G}(x) \leq d_{G^{+}}(x)$ for all $x \in N$. Let σ be a sequence in which every edge of $E(G)-E\left(G^{+}-z\right)$ occurs exactly once and every $x \in N$ occurs exactly $d_{G^{+}}(x)-d_{G}(x) \geq 0$ many times. Then G^{+}is obtained from G by a lifting of degree $d_{G^{+}}(z)$ according to σ; the length of σ is $\left|E\left(G^{+}\right)\right|-|E(G)|=k$.

We thus obtain the following, from which Theorem 1 follows immediately.
Theorem 2. Let $k \geq 1$. Then a graph admits a factorization into k edge disjoint spanning trees if and only if it can be obtained from K_{1} by a sequence of k-liftings of order less than $2 k$.

Proof. The if part is Lemma 2, the only if part is Lemma 4.
Note that in both Theorem 1 and Theorem 2 the restriction to the degree of the k-lifting can be omitted.

References

[1] C. Berge, Graphes et hypergraphes, Monographies Universitaires de Mathématiques 37, Dunod (1970).
[2] R. Diestel, Graph Theory, Graduate Texts in Mathematics 173, 3rd edition, Springer (2005).
[3] A. Frank, Connectivity and Network Flows, Handbook of Combinatorics, Elsevier (1996), 111-177.
[4] W. Mader, Konstruktion aller n-fach kantenzusammenhängenden Digraphen, Europ. J. Combinatorics 3 (1982), 63-67.
[5] C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc. 36 (1961), 445-450.
[6] T.-S. Tay, Henneberg's method for bar and body frameworks, Structural Topology 17 (1991), 53-58.
[7] W. T. Tutte, On the problem of decomposing a graph into n connected factors, J. Lond. Math. Soc. 36 (1961), 221-230.

Matthias Kriesell
Mathematisches Seminar der Universität Hamburg
Bundesstraße 55, D-20146 Hamburg, Germany
E-mail: kriesell@math.uni-hamburg.de

[^0]: ${ }^{1}$ As it is easy to see, (i) can be ommitted in the statement - but the proofs of Lemma 3 and Lemma 4 run slightly smoother if we prove it "en passant".

