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Abstract. Integrability and symmetry reductions of the Kawahara equation
are investigated. Exact traveling wave solutions, soliton solutions and Galilean
invariant solutions are constructed. Auto-Bäcklund transformations and multi-
plication law of solutions are deduced.
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§1. Introduction

Recently [2], Benitez and Kaikina investigated the initial-boundary value prob-
lem on a half-line for the nonlinear equation





ut +N (u, ux) +K(u) = f, t > 0, x > 0,

u(x, 0) = u0(x), x > 0;
∂j−1

x u(0, t) = hj(t), t > 0, j = 1, . . . ,M,

(1.1)

where the nonlinear term N (u, ux) depends on the unknown function u and
its derivative ux and satisfies the estimate

|N (u, v)| ≤ C |u|ρ |v|σ ,

with σ ≥ 0, ρ ≥ 2. The linear operator K(u) is defined by

Ku = an∂n
x + am∂m

x ,

where the constants an, am ∈ R, n,m are integers. The number M of the
boundary data depends essentially on the operator K. Equation (1.1) is a
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simple universal model, arising in the description of the dispersive dissipative
nonlinear waves [8], and describing in a unified way wide classes of nonlinear
equations which are of great interest for physical applications. To mention a
few, belong to these classes:

• the Korteweg-de Vries-Burgers equation

(1.2) ut + uux + αuxxx − νuxx = 0,

which appears in the theory of nonlinear acoustics for fluids with gas
bubbles,

• the Kuramoto-Sivashinski equation

(1.3) ut +
1
2
u2

x + uxx + αuxxx = 0,

which is applied, for instance, in the theory of combustion to model a
flame front and also in the study of two-dimensional turbulence and

• the Kawahara equation

(1.4) ut = uxxxxx − uux − βuxxx,

where u = u(x, t) and β ∈ R which describes propagation of signals
in transmission lines, propagation of long waves under ice cover in liq-
uid depth, and also gravity waves on the surface of liquid with surface
tension.

The authors [2] studied the global existence of solutions and find the main
term of the asymptotic representation of solutions to (1.1). Previously, some
results on the decay estimates of the solutions in different norms to the Cauchy
problems for Korteweg-de Vries-Burgers type equations were obtained, while
a general theory of nonlinear nonlocal equations on a half line was devel-
oped (see [2] and references therein). Zhibin and Mingliang [12] discussed the
structure of traveling wave solutions and studied the similarity solutions and
transformations of the two-dimensional version

(ut + uux −muxx + nuxxx)x + suyy = 0

of (1.2). A. Nuseir [9] constructed several traveling wave solutions to the local
version

ut + uux + auxx + buxxxx = 0

of the Kuramoto-Sivashinsky equation.
As far as we know, neither the truncated Painlevé expansion method nor

the symmetry analysis were implemented before to the Kawahara equation.
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The aim of this contribution is to investigate the complete integrability, iden-
tify some of the properties such as the Bäcklund transformation, carry out
symmetry reductions and construct exact solutions, including soliton solu-
tions of the Kawahara equation [2]. For this purpose, the main tools used
in this work are the Painlevé test, the truncated Painlevé expansion method
and the classical Lie symmetry group method for analysis of nonlinear partial
differential equations (PDEs).

The plan of this work is as follows. In section 2, the integrability of the (1.4)
is investigated using the Painlevé test. In section 3, the truncated Painlevé
expansion method is used to construct traveling waves and especially soliton
solutions of (1.4). An auto -Bäcklund transformation admitted by this PDE is
also derived. In section 4, the classical Lie group methods [10] are implemented
to find the invariance algebra of (1.4) and to reduce it to ODE’s. Then group
invariant solutions and group multiplication law of solutions are deduced.

§2. Integrability of the Kawahara equation

Among various approaches followed to study the behavior of nonlinear partial
differential equations (PDE’s), Painlevé analysis has proved to be one of the
most fruitful, providing an algorithmic procedure that affords a systematic
way to deal with nonlinear PDE’s. Besides, it has been often merely used
as a test of integrability while other methods, as Hirota’s method or inverse
scattering have been used to obtain explicit solutions. However, the truncated
Painlevé expansion method [11] reveals to be a powerful method for solving
integrable nonlinear PDE’s that admit soliton solutions, as well as some of
the non-integrable ones with solitary wave solutions, provided these equations
have Painlevé property. A PDE has the Painlevé property when the solutions
of the PDE are ”single-valued” about a singularity manifold and have no worse
singularities than movable poles. More precisely, the singularity manifold is
given by

(2.1) φ(z1, . . . , zn) = 0,

where φ is an analytic function of the independent variables z = (z1, . . . , zn).
Then, one assumes that a solution u = u(z1, . . . , zn) of the PDE can be rep-
resented in a Laurent series in φ:

(2.2) u(z1, . . . , zn) = φ−p(z1, . . . , zn)
∞∑

k=0

uk(z1, . . . , zn)φk(z1, . . . , zn),

where p is a non negative integer, φ = φ(z1, . . . , zn) and u = uk(z1, . . . , zn) are
analytic functions of z = (z1, . . . , zn) in the neighborhood of the singularity
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manifold φ(z1, . . . , zn) = 0. Substituting (2.2) into the equation and equating
coefficients of like powers of φ determine the possible value(s) of p and define
recursion relations for un, for n ≥ 1 of the form

(2.3) (n− α1)(n− α2) · · · (n− αN )un = Fn(u0, u1, . . . , un−1, φ, z),

where N is the order of the equation, for some functional Fn. This defines un

unless n = αj for some j, 1 ≤ j ≤ N, n = α1, α2, . . . , αN are resonances.
For each positive integer resonance, there is a compatibility condition (i.e
Fα = 0) which must be identically satisfied for the PDE to have a solution
of the form (2.2) and uα(z) is an arbitrary function. Essentially, in order
for a given PDE to pass the Painlevé PDE test, it is required that p is a
positive integer and there are N − 1 consistent recursion relations, so that the
series (2.2) contains the requisite number of arbitrary functions as required
by the Cauchy-Kowalevski theorem [1] (φ(z) is the N -th arbitrary function)
and thus corresponds to the general solution of the equation. One should
emphasize that the Painlevé property is a sufficient condition for the complete
integrability of PDE’s. Counter examples, such as the Dym-Kruskal equation
[6], show that it is not a necessary condition.

To check the Painlevé property for (1.4), we use the Kruskal simplifying
ansatz [7] by requiring a generalized Laurent expansion of the solution u =
u(x, t) in the form

(2.4) u(x, t) = φ−p(x, t)
∞∑

j=0

uj(t)φj(x, t), φ(x, t) = x + ψ(t),

where ψ = ψ(t) is an arbitrary function and uj(t), j = 0, 1, . . ., are analytic
functions with u0(t) 6= 0, in the neighborhood of a non-characteristic mov-
able singularity manifold defined by φ(x, t) = 0. To determine the dominant
behavior, we substitute u −→ u0φ

−p into (1.4) to get

pu2
0φ
−2p−1 + (−50p2 − p5 − 24p− 10p4 − 35p3)u0φ

−p−5

+(2p + p3)βu0φ
−p−3 + pψtu0φ

−p−1 − du0
dt φ−p = 0.(2.5)

From the above equation, we can see that the most singular powers of φ are
−2p− 1 and −p− 5. By equating these powers, one gets

(2.6) p = 4.

Hence, the most singular term, i.e. the term in φ−9 in (2.5):

(−6720u0 + 4u2
0)φ

−9

will vanish if

(2.7) u0 = 1680.
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Substituting (2.6) and (2.7) into the first equation of (2.4), then inserting u
into the Kawahara equation, we have

9240u1φ
−8 + (9360u2 + 3u2

1 + 120βu0)φ−7 + (8280u3 + 5u1u2 + 60βu1)φ−6

+(4u0ψt + 6720u4 + 4u1u3 + 2u2
2 + 24βu2)φ−5 +

∞∑

j=5

{−duj−5

dt
− (j − 8)

×uj−4ψt + (j − 4)(j − 5)(j − 6)(j − 7)(j − 8)uj −
j∑

k=0

(k − 4)uj−kuk − β

×(j − 6)(j − 7)(j − 8)uj−2}φj−9 = 0.

This requires the coefficients of the various powers of φ to vanish. We then
obtain

(2.8) u1 = u3 = 0; u2 = −280β

13
, u4 = −17360β2

284089
− 1680

1681
ψt

and for j ≥ 5

−duj−5

dt
− (j − 8)uj−4ψt + (j − 4)(j − 5)(j − 6)(j − 7)(j − 8)uj

−
j∑

k=0

(k − 4)uj−kuk − β(j − 6)(j − 7)(j − 8)uj−2 = 0,

i.e.

−duj−5

dt
− (j − 8)uj−4ψt + (j − 4)(j − 5)(j − 6)(j − 7)(j − 8)uj

−
(
−4uju0 +

j−1∑

k=1

(k − 4)uj−kuk + (j − 4)u0uj

)

−β(j − 6)(j − 7)(j − 8)uj−2 = 0,

or equivalently

(j − 8)[(j − 4)(j − 5)(j − 6)(j − 7)− u0]uj = Fj(2.9)

where

Fj =
duj−5

dt
+ (j − 8)uj−4ψt +

j−1∑

k=1

(k − 4)ukuj−k

+β(j − 6)(j − 7)(j − 8)uj−2.(2.10)

Since u0 = 1680, then (j − 4)(j − 5)(j − 6)(j − 7)− u0 = j4 − 22j3 + 179j2 −
638j − 840 = (j − 12)(j + 1)(j2 − 11j + 70). Hence, (2.9) is equivalent to

(j − 8)(j − 12)(j + 1)(j2 − 11j + 70)uj = Fj .(2.11)
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Therefore, the resonances are j = −1, 8, 12 and the compatibility conditions
are

(2.12) F8 = F12 = 0.

Taking j = 5, 6, 7, 9, 10, 11 in (2.11), we find that

u5 = u6 = u7 = 0, u9 = − 14
21853

ψtt, u10 =
7β

4290
u8, and u11 = − 14β

852267
ψtt.

For j = 8, F8 = 0 and the compatibility condition at this resonance is iden-
tically satisfied, showing that u8 = u8(t) is an arbitrary function. Turning to
the resonance j = 12, we have

F12 = 0 ⇐⇒ ψt =
11767β2

5570
,

i.e. ψ must satisfy the condition

(2.13) ψ(t) =
11767β2

5570
t + C,

C being a constant, leading thus to u5 = u6 = u7 = u9 = u11 = 0, u2 =
−280β

13 , u4 = −343758184β2

284089 , and u8, u10 and u12 being arbitrary functions of
t, so that the requisite number of arbitrary functions is fully obtained at
the resonances. Summing up, we conclude that the Kawahara equation is
conditionally integrable for any β ∈ R.

§3. Truncated Painlevé expansion and solutions of the Kawahara
equation

The principle of the truncated Painlevé expansion method consists in that a
special truncated Painlevé expansion is obtained by cutting the series (2.2) at
the constant level term in φ. The term retained in the truncated expansion
will then define a transformation of the dependent variable. This transfor-
mation will allow one to homogenize the equation; once the equation has
been homogenized, it can be readily solved. The truncated Painlevé expan-
sion method is a fairly systematic method that can be programmed using any
symbolic computer package such as MACSYMA, MATHEMATICA, MAPLE
and REDUCE. In this paper, for sake of accurateness, most of cumbersome
computations have been performed using such symbolic computation packages.

For the truncated Painlevé expansion method to be fully efficient, this PDE
under study must have the (conditional) Painlevé property. For the purpose, if
the candidate equation has independent variables x, t and dependent variable
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u, the method consists in, first, writing the solution u(x, t) as a Laurent series
in the complex plane

(3.1) u(x, t) = φ−p(x, t)
∞∑

k=0

uk(x, t)φk(x, t),

where φ(x, t) is the non-characteristic manifold for the poles, and p ∈ N−{0}.
Second, by substituting the series into the equation and requiring that the
most singular term vanishes, one obtains the values for p and u0(x, t). If the
next most singular terms are required to vanish, one gets the expressions for
u1(x, t), u2(x, t), etc. After that, the series is truncated at the constant level
term. The truncated series defines a transformation of the dependent variable,
which turns out to be crucial in the process of determining exact closed-form
solutions.

Provided the conditional integrability of the Kawahara equation, let us
solve it using the above-described method. In order to find the leading order
p, we truncate (3.1) at k = 0

(3.2) u ∼ u0φ
−p.

Remarking that this leading order is nothing but that obtained using the first
equation of the simplified Kruskal ansatz (2.4), i.e. p = 4, then substituting
(3.2) into (1.4) yields the most singular term, (here the term in φ−9),

(−6720u0φ
5
x + 4u2

0φx)φ−9(3.3)

which vanishes if
u0(x, t) = 1680φ4

x(x, t).

Next, to find u1, let u = u0φ
−4 + u1φ

−3, i.e

u = 1680φ4
xφ−4 + u1φ

−3.

Then, substituting u into (1.4), we compute again the coefficient of the most
singular term (here, φ−8) and require that this coefficient vanishes. This gives

u1 = −3360φxxφ2
x.

Iterating this process, we set

u = 1680φ4
xφ−4 − 3360φxxφ2

xφ−3 + u2φ
−2,

that we substitute into (1.4), require the most singular term in φ (here the
term in φ−7) to vanish and find

u2 = −280
13

βφ2
x + 1120φxφxxx + 840φ2

xx.
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Next, letting

u = 1680φ4
xφ−4 − 3360φxxφ2

xφ−3 +
(
−280

13
βφ2

x + 1120φxφxxx + 840φ2
xx

)
φ−2

+u3φ
−1

and then, substituting u into (1.4), we find, vanishing the most singular term
in φ (term in φ−6), that

u3 = −280φxxxx +
280β

13
φxx.

Finally, we truncate the solution at the constant level term in φ by setting

u(x, t) = 1680φ4
xφ−4 − 3360φxxφ2

xφ−3 +
(
−280

13
βφ2

x + 1120φxφxxx

+840φ2
xx

)
φ−2 +

(
−280φxxxx +

280β

13
φxx

)
φ−1 + u4(x, t).(3.4)

Substituting now u into (1.4) and requiring that the most singular term, i.e.
the term in φ−5, vanishes, we find that u4 = u4(x, t) satisfies the PDE

(3.5)
∂

∂t
u4 =

∂5

∂x5
u4 − u4

∂

∂x
u4 − β

∂3

∂x3
u4

which is nothing but the Kawahara equation. Thus, (3.4) defines an auto-
Bäcklund transformation for the Kawahara equation: it relates two solutions
of (1.4). We find that (3.4) can be rewritten in terms of Schwartzian derivatives

u(x, t) = 280
[

β

13
∂2

∂x2
ln φ(x, t)− ∂4

∂x4
ln φ(x, t)

]
+ u4(x, t).

Hence, we truncate the Laurent expansion (3.1) at the constant level term
u4(x, t) in the form (3.4) and set u4(x, t) = 0. Now, we seek φ(x, t) in the
form

(3.6) φ(x, t) = 1 + exp (kx− wt + δ),

so that (3.4) becomes the ansatz

u(x, t) =
280
13

k2
{

(β − 13k2)[e3kx−3wt−3δ + ekx−wt+δ]

+ (2β + 52k2)e2kx−2wt+2δ
}(

1 + ekx−wt+δ
)−4

.(3.7)

Substituting (3.7) into (1.4) and canceling out the coefficients of independent
powers of exp (kx− wt + δ), we find that the pair (k, w) must necessarily
satisfy the system of algebraic equations

−169wk2 + 13wβ − 13k3β2 + 182βk5 − 169k7 = 0
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−4901k7 + 13βw + 1859k2w − 13k3β2 − 3458k5β = 0(3.8)

whose solutions can be expressed as

(k, w) =
(

ε

√
13β

13
,

36εβ2
√

13β

2197

)
, ε = ±1,

(k, w) = (0, 0),

(k, w) =
(

r,
βr(2093r2 + 31β)

1690

)
,(3.9)

where r is any of the roots of the quartic equation

1690r4 + 403βr2 + 31β2 = 0,

i.e.

r ∈
{
± 1

130

[
β

(
−2015 + 195i

√
31

)] 1
2
,

± 1
130

[
β

(
−2015− 195i

√
31

)] 1
2

}
,(3.10)

where i2 = −1 is the standard complex number. Note that, no restriction is
set on δ. Thus we can state the following.

Proposition 1. δ-families of solutions to the Kawahara equation are defined
by the functions

uδ(x, t) =
280
13

k2
{

(β − 13k2)[e3kx−3wt−3δ + ekx−wt−δ]

+ (2β + 52k2)e2kx−2wt+2δ
}(

1 + ekx−wt+δ
)−4

,(3.11)

where δ is an arbitrary constant and (k, w) satisfy (3.9) and (3.10).

Note that, for β > 0, and if (k,w) =
(
ε
√

13β
13 , 36εβ2

√
13β

2197

)
, ε = ±1, the

solution (3.11) takes the form

uδ(x, t) =
1680
169

β2 e
2ε

 
x
√

13β
13

− 36β
5
2
√

13t
2197

!
+2δ


1 + e

ε

 
x
√

13β
13

− 36β
5
2
√

13t
2197

!
+δ




4

or equivalently

uδ(x, t) =
1680
2704

β2sech4

{
ε

2

(
x
√

13β

13
− 36β

5
2

√
13t

2197

)
+

δ

2

}
(3.12)
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ε = ±1, δ ∈ R. Clearly (3.12) describes a family of soliton solutions to the
Kawahara equation. In this case, δ is the phase shift of the soliton. We
illustrate this behavior of the solution (3.12) for β = 0.5 , ε = 1 in Figures 1
and 2 for δ = 0, 1, respectively.
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Figure 1: Function u versus x and
t for β = 0.5, ε = 1, δ = 0.
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Figure 2: Function v versus x and
t for β = 0.5, ε = 1, δ = 1.

Note that the pair (k, w) = (0, 0) leads to the trivial solution u = 0, while
the pairs (k, w) =

(
r, βr(2093r2+31β)

1690

)
with β > 0 and r satisfying (3.10) yield

the complex-valued functions

uδ(x, t) =
280
13

r2

{
(−13r2 + β)

(
e3rx−3

βr(2093r2+31β)
1690

t+3δ

+ erx−βr(2093r2+31β)
1690

t+δ

)
+ (2β + 52r2)e2rx−βr(2093r2+31β)

845
t+2δ

}

×
(

1 + erx−βr(2093r2+31β)
1690

t+δ

)−4

.

§4. Symmetry reduction of the Kawahara equation

Quite often, solutions obtained via Painlevé analysis can be also deduced from
other techniques such as the symmetry group methods and Hirota methods
[5]. Symmetry groups have been used in several different applications in the
context of differential equations [10]. The symmetry group techniques lead
to solutions in special forms, obtained by exploiting the symmetries of the
original equation. At the same time, group theoretical techniques are used to
reduce the total number of dependent and independent variables of a PDE.
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An advantage of these techniques is that they are applicable to all PDEs,
irrespective whether or not the equations are integrable. In this section, we
use the Lie group techniques [10] to obtain exact solutions of (1.4). The Lie
group method of infinitesimal transformations is the classical method used to
find symmetry reductions of PDEs. To apply this method to a n-th order
PDE

(4.1) ∆(x, t, u(n)) = 0

where u(n) denotes all the partial derivatives of u with respect to x and t
up to order n, one considers the one-parameter Lie groups of infinitesimal
transformations in (x, t, u), given by

x̃ = x + εξ(x, t, u) + O(ε2),
t̃ = t + ετ(x, t, u) + O(ε2),
x̃ = u + εφ(x, t, u) + O(ε2),(4.2)

where ε is the group parameter. This requires that this transformation leaves
invariant the solution manifold

(4.3) S∆ = {u(x, t) : ∆ = 0}

of this PDE. This yields an overdetermined linear system of equations for the
infinitesimals ξ(x, t, u), τ(x, t, u) and φ(x, t, u). The associated Lie algebra of
infinitesimal symmetries is the set of vector fields of the form

(4.4) Q = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
.

Having determined the infinitesimals, the symmetry variables are found by
solving the characteristic equations

(4.5)
dx

ξ(x, t, u)
=

dt

τ(x, t, u)
=

du

φ(x, t, u)

which is equivalent to solving the invariant surface condition

Ψ ≡ ξ(x, t, u)ux + τ(x, t, u)ut − φ(x, t, u) = 0.

The set S∆ is invariant under the transformation (4.2), provided that

(4.6) pr(n)Q(∆) |∆=0= 0,

where pr(n)Q is the n-th prolongation of the vector field (4.4), which is given
in terms of ξ, τ and φ (cf [10]). In the case of equation (1.4), this yields a
system of eighty one equations, as calculated using the MACSYMA package
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”symmgrp.max” [3]. A triangulation or standard form [4] of these equations
is the following system of seven equations

φ = ξt, ξtt = 0, ξx = 0, ξu = 0, τx = 0, τt = 0, τu = 0

from which we easily obtain the following infinitesimals

ξ = c1t + c2, τ = c3, φ = c1,

where c1, c2 and c3 are arbitrary constants. The associated Lie algebra is
spanned by the vector fields

(4.7) Q1 = t
∂

∂x
+

∂

∂u
, Q2 =

∂

∂x
, Q3 =

∂

∂t
.

Operator Q1 generates a Galilean symmetry, while Q2 and Q3 generate
space and time translational invariance, respectively. Hence wQ2 +kQ3 gener-
ates traveling wave solutions to (1.4) for some constants w, k ∈ R−{0}. Solv-
ing the characteristic system (4.5) with the infinitesimals ξ = t, τ = 0, φ = 1,
corresponding to Q1, we obtain the following canonical symmetry reduction

(4.8) u(x, t) =
x + v(t)

t
, t 6= 0,

where v = v(t) satisfies v′(t) = 0, i.e. v(t) = const. Therefore, the Galilean
invariant solution of the Kawahara equation is given by

(4.9) u(x, t) =
x + c

t
, c ∈ R, t 6= 0.

Turning to the operator kQ3 + wQ2 = k ∂
∂t + w ∂

∂x , its infinitesimals ξ =
w, τ = k, φ = 0, lead to the following canonical symmetry reduction

(4.10) u(x, t) = v(y), y = kx− wt,

where v(y) satisfies the fifth order PDE

(4.11) −wv′(y) = k5v′′′′′ − kvv′ − βk3v′′′.

Solutions of (4.11) yield all the traveling wave solutions of the Kawahara equa-
tion. In particular, using the ansatz

v(y) =
280
13

k2
{
(β − 13k2)[e3y + ey] + (2β + 52k2)e2y

}
(1 + ey)−4(4.12)

which is equivalent to the ansatz (3.7), where kx−wt + δ is substituted by y,
inserting (4.14) into the reduced equation (4.11), we get

(−169k7 + 182βk5 − 169wk2 − 13β2k3 + 13wβ)(e3y − 1)
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+(−4901k7 − 3458βk5 − 137β2k3 + 13wβ + 1859wk2)(e2y − ey) = 0

which must hold identically for any y ∈ R. Thus, necessarily k and w must
satisfy the system of algebraic equations

−169wk2 + 13wβ − 13k3β2 + 182βk5 − 169k7 = 0
−4901k7 + 13βw + 1859k2w − 13k3β2 − 3458k5β = 0(4.13)

corresponding to the system (3.8). Thus k and w satisfy (3.9), and substituting
them into (4.14) with the use of (4.10) we recover the solutions constructed in
the previous section in the particular case of δ = 0, i.e.

u0(x, t) =
280
13

k2
{

(β − 13k2)[e3kx−3wt + ekx−wt]

+ (2β + 52k2)e2kx−2wt
} (

1 + ekx−wt
)−4

.(4.14)

Besides, exponentiating the operators Q1, Q2 and Q3 by solving their re-
spective flow equations, we easily find that their corresponding one-parameter
Lie point transformations exp (εQi), i = 1, 2 and 3, operate on the Kawahara
fields (x, t, u) according to

exp (εQ1)(x, t, u) = (εt + x, t, u + ε),
exp (εQ2)(x, t, u) = (x + ε, t, u),
exp (εQ3)(x, t, u) = (x, t + ε, u),(4.15)

respectively. Hence, the most general Lie point transformation g leaving in-
variant the solution manifold S∆ of the Kawahara equation depends on three
parameters, say α, λ, σ ∈ R, i.e.

(4.16) g = exp (αQ1) exp (λQ2) exp (σQ3),

operating according to

(4.17) g.(x, t, u) := (x̃, t̃, ũ) = (x + αt + λ + ασ, t + σ, u + α).

Thus, if (x, t, u) ∈ S∆, then (x̃, t̃, ũ) := g.(x, t, u) ∈ S∆ and ũ(x̃, t̃) = u(x, t)+α
solves (1.4). More precisely, if u = f(x, t) is a solution of (1.4), so is ũ(x̃, t̃) =
f(x̃−αt̃−λ, t̃−σ)+α. Dropping the tilde for the sake of simplicity, we state
the following.

Proposition 2. The most general solution of the Kawahara equation, obtained
from a given solution u = f(x, t) by Lie point symmetry, is of the form

u(x, t) = f(x− αt− λ, t− σ) + α,

where α, λ, σ are arbitrary constants.
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Hence, using this latter statement, we generalize the solution (4.14) to get
the three parameter-family of solutions as

uα,λ,σ(x, t) =
280
13

k2
{

(β − 13k2)[e3kx−3(kα+w)t+3wσ−3kλ

+ ekx−(kα+w)t+wσ−kλ] + (2β + 52k2)
× e2kx−2(kα+w)t+2wσ−2kλ

}

×
(
1 + ekx−(kα+w)t+wσ−kλ

)−4
+ α,(4.18)

where α, λ, σ are arbitrary constants. Remarking that if we make α = 0
and set δ = wσ − kλ in (4.18), we recover the δ-family solutions (3.7), (3.9),
(3.10), derived in the previous section, we deduce that the arbitrariness of
δ parameterizing these solutions is justified by the space-time translational
invariance property of (1.4). Moreover, as postulated in [11, 5], the solutions
obtained via the truncated Painlevé expansion can be also constructed using
the symmetry reduction techniques.
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