SUT Journal of Mathematics Vol. 46, No. 2 (2010), 231–241

9-Shredders in 9-connected graphs

Naoki Hirata

(Received April 8, 2010; Revised July 29, 2010)

Abstract. For a graph G, a subset S of V(G) is called a shredder if G - S consists of three or more components. We show that if G is a 9-connected graph of order at least 67, then the number of shredders of cardinality 9 of G is less than or equal to (2|V(G)| - 9)/3.

AMS 2010 Mathematics Subject Classification. 05C40

Key words and phrases. Graph, connectivity, shredder, upper bound.

§1. Introduction

In this paper, we consider only finite, undirected, simple graphs with no loops and no multiple edges. Let G = (V(G), E(G)) be a graph. For $x \in V(G)$, we let $N_G(x)$ denote the set of vertices adjacent to x in G. For $S \subseteq V(G)$, $\langle S \rangle$ denotes the subgraph induced by S in G, and G - S denotes the subgraph obtained from G by deleting all vertices in S together with the edges incident with them; thus $G - S = \langle V(G) - S \rangle$.

As is introduced by Cheriyan and Thurimella in [1], a subset S of V(G) is called a *shredder* if G-S consists of three or more components. A shredder of cardinality k is referred to as a k-shredder. In [2; Theorem 1], it is proved that if $k \ge 5$ and G is a k-connected graph, then the number of k-shredders of G is less than 2|V(G)|/3, and it is shown that for each fixed $k \ge 5$, the coefficient 2/3 in the upper bound is best possible. For k = 5, it is shown in [3; Theorem 3] that if G is a 5-connected graph of order at least 135, then the number of 5-shredders of G is less than or equal to (2|V(G)| - 10)/3; for k = 6, it is shown in [7] that if G is a 6-connected graph of order at least 325, then the number of 6-shredders of G is less than or equal to (2|V(G)| - 9)/3; for k = 7, it is shown in [5] that if G is a 7-connected graph of order at least 42, then the number of 7-shredders of G is less than or equal to (2|V(G)| - 9)/3; for k = 7, k = 8, it is shown in [6] that if G is a 8-connected graph of order at least 177, then the number of 8-shredders of G is less than or equal to (2|V(G)| - 10)/3. It is also shown that each of these four bounds is attained by infinitely many graphs. For $k \ge 11$, it is shown in [3; Theorem 1] that if G is a k-connected graph of order at least 10k, then the number of k-shredders of G is less than or equal to (2|V(G)| - 6)/3, and the upper bound (2|V(G)| - 6)/3 is believed to be best possible. If this bound is in fact best possible for $k \ge 11$, then the cases where k = 9 and k = 10 will be the only cases for which the best possible bound has not been obtained (for results concerning the case where $1 \le k \le 4$, the reader is referred to [4] and [2; Theorem 2]). In this paper, we take up the case where k = 9.

We have the following theorem.

Theorem 1. Let G be a 9-connected graph of order at least 67. Then the number of 9-shredders of G is less than or equal to

$$(2|V(G)| - 9)/3.$$

We here construct an infinite family of graphs G which attain the bound (2|V(G)| - 9)/3 in the Theorem. Let $m \ge 10$. Define an auxiliary graph H_m of order m by letting

$$V(H_m) = \{v_i | 1 \le i \le m\},\$$

$$E(H_m) = \{v_i v_{i+4} | 1 \le i \le m-4\}$$

$$\cup \{v_1 v_2, v_1 v_3, v_1 v_4, v_2 v_3, v_2 v_5, v_3 v_4\}$$

$$\cup \{v_m v_{m-1}, v_m v_{m-2}, v_m v_{m-3}, v_{m-1} v_{m-2}, v_{m-1} v_{m-4}, v_{m-2} v_{m-3}\}$$

We define a graph G_m of order 3m - 6 by adding m - 6 vertices to the so-called lexicographic product of H_m and the null graph of order 2. More precisely, we let

$$V(G_m) = \{x_{i,j} | 1 \le i \le m, \ 1 \le j \le 2\} \cup \{\alpha_i | 4 \le i \le m - 4\} \cup \{a\},\$$

$$\begin{split} E(G_m) &= \{x_{i,j}x_{i+4,k} | 1 \leq i \leq m-4, \ 1 \leq j,k \leq 2\} \\ &\cup \{x_{i-1,j}\alpha_i, \ x_{i,j}\alpha_i, \ x_{i+1,j}\alpha_i, \ x_{i+2,j}\alpha_i | 4 \leq i \leq m-4, \ 1 \leq j \leq 2\} \\ &\cup \{a\alpha_i | 4 \leq i \leq m-4\} \\ &\cup \{ax_{i,j} | 1 \leq i \leq m \text{ and } i \neq 3, 5, m-4, m-2, \ 1 \leq j \leq 2\} \\ &\cup \{x_{1,j}x_{2,k}, \ x_{1,j}x_{3,k}, \ x_{1,j}x_{4,k}, \ x_{2,j}x_{3,k}, \ x_{2,j}x_{5,k}, \ x_{3,j}x_{4,k} | 1 \leq j,k \leq 2\} \\ &\cup \{x_{m-4,j}x_{m-1,k}, \ x_{m-3,j}x_{m-2,k}, \ x_{m-3,j}x_{m,k}, \ x_{m-2,j}x_{m-1,k}, \ x_{m-2,j}x_{m,k}, \ x_{m-1,j}x_{m,k} | 1 \leq j,k \leq 2\}. \end{split}$$

Then, as we shall see below, G_m is 9-connected, and has 2m - 7 9-shredders. $\{x_{i-4,1}, x_{i-4,2}, x_{i+4,1}, x_{i+4,2}, \alpha_{i-2}, \alpha_{i-1}, \alpha_i, \alpha_{i+1}, a\}$ $(6 \le i \le m - 5),$ $\{x_{i-1,1}, x_{i-1,2}, x_{i,1}, x_{i,2}, x_{i+1,1}, x_{i+1,2}, x_{i+2,1}, x_{i+2,2}, a\}$ $(4 \le i \le m - 4),$ $\begin{cases} x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}, x_{9,1}, x_{9,2}, \alpha_4, \alpha_5, \alpha_6, \}, \\ \{x_{m-8,1}, x_{m-8,2}, x_{m-1,1}, x_{m-1,2}, x_{m,1}, x_{m,2}, \alpha_{m-6}, \alpha_{m-5}, \alpha_{m-4} \}, \\ \{x_{1,1}, x_{1,2}, x_{3,1}, x_{3,2}, x_{8,1}, x_{8,2}, \alpha_4, \alpha_5, a\}, \\ \{x_{m-7,1}, x_{m-7,2}, x_{m-4,1}, x_{m-4,2}, x_{m,1}, x_{m,2}, \alpha_{m-5}, \alpha_{m-4}, a\}, \\ \{x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}, x_{4,1}, x_{4,2}, x_{7,1}, x_{7,2}\alpha_4 \}, \\ \{x_{m-6,1}, x_{m-6,2}, x_{m-3,1}, x_{m-3,2}, x_{m-1,1}, x_{m-1,2}, x_{m,1}, x_{m,2}\alpha_{m-4} \}, \\ \{x_{1,1}, x_{1,2}, x_{3,1}, x_{3,2}, x_{5,1}, x_{5,2}, x_{6,1}, x_{6,2}, a\}, \\ \{x_{m-5,1}, x_{m-5,2}, x_{m-4,1}, x_{m-4,2}, x_{m-1,1}, x_{m-1,2}, x_{m,1}, x_{m,2}, a\}, \\ \{x_{m-4,1}, x_{m-4,2}, x_{m-3,1}, x_{m-3,2}, x_{m-2,1}, x_{m-2,2}, x_{m-1,1}, x_{m-1,2}, a\}. \end{cases}$ Thus the number of 9-shredders of G_m is $2m - 7 = (2(3m - 6) - 9)/3 = (2|V(G_m)| - 9)/3.$

When m = 14, we obtain the Figure 1.

For completeness, we include the proof of the assertion that G is 9-connected. The following property of H_m plays an important role in our proof.

Lemma 1.1. Let $S \subseteq V(H_m)$ be a cutset of H_m such that $|S| \leq 3$. Then one of the following holds:

- (i) there exist integers t, k, l with $2 \le t \le 5$, $k \equiv t \pmod{4}$, $l \ge 2$ and $2 \le k < k + 4l \le m 1$ such that $\{v_k, v_{k+4l}\} \subseteq S \cap \{v_{t+4p} | 0 \le p \le \frac{1}{4}(m t 1)\} \subseteq \{v_k, v_{k+4}, v_{k+8}, \cdots, v_{k+4l-4}, v_{k+4l}\}$ and $\{v_{k+4}, v_{k+8}, \cdots, v_{k+4l-4}\} S \ne \phi$;
- (ii) $S = \{v_1, v_2, v_{5+4l}\}$ or $\{v_m, v_{m-1}, v_{m-4-4l}\}$ for some l with $1 \le l \le \frac{1}{4}(m-6)$; or
- (iii) $S = \{v_1, v_3, v_{4+4l}\}$ or $\{v_m, v_{m-2}, v_{m-3-4l}\}$ for some l with $1 \leq l \leq \frac{1}{4}(m-5)$.

Proof. For each r with $2 \leq r \leq 5$, set $V_r = \{v_{r+4p} | 0 \leq p \leq \frac{1}{4}(m-r-1)\}$. Then $V(H_m) = V_2 \cup V_3 \cup V_4 \cup V_5 \cup \{v_1, v_m\}$ (disjoint union). Note that for each $r, \langle \{v_1\} \cup V_r \rangle$ and $\langle V_r \cup \{v_m\} \rangle$ are connected.

First we consider the case where there exists t with $2 \le t \le 5$ such that $|S \cap V_t| \ge 2$. If $|S \cap V_t| = 2$, write $S \cap V_t = \{v_k, v_{k+4l}\}$ $(l \ge 1)$; if $|S \cap V_t| = 3$, write $S \cap V_t = \{v_k, v_{k+4l'}, v_{k+4l}\}$ $(l > l' \text{ and } l \ge 1)$. We show that $l \ge 2$. Note that since $\langle \{v_1\} \cup V_r \rangle$ and $\langle V_r \cup \{v_m\} \rangle$ are connected for each $r \in \{2, 3, 4, 5\} - \{t\}$, $\langle V(H_m) - V_t - \{v_m\} \rangle$ and $\langle V(H_m) - V_t - \{v_1\} \rangle$ are connected.

By way of contradiction, suppose that l = 1. Then $S \cap V_t = \{v_k, v_{k+4}\}$. Assume for the moment that $S = \{v_k, v_{k+4}, v_1\}$. Then $V(H_m) - S = (V(H_m) - V_t - \{v_1\}) \cup \{v_{t+4p} | 0 \le p \le \frac{1}{4}(k - t - 4)\} \cup \{v_{k+4+4p} | 1 \le p \le \frac{1}{4}(m - k - 5)\}$. Since $\langle V(H_m) - V_t - \{v_1\} \rangle$ and $\langle \{v_{k+4+4p} | 1 \le p \le \frac{1}{4}(m - k - 5)\} \cup \{v_m\} \rangle$ are connected, $\langle (V(H_m) - V_t - \{v_1\}) \cup \{v_{k+4+4p} | 1 \le p \le \frac{1}{4}(m - k - 5)\} \rangle$ is connected.

Figure 1: m = 14

Since $\langle \{v_2, v_3, v_4, v_5\} \rangle$ and $\langle \{v_{t+4p} | 0 \le p \le \frac{1}{4}(k-t-4)\} \rangle$ are connected, this implies that $H_m - S$ is connected, which contradicts the assumption that S is a cutset. By symmetry, we also see that if $S = \{v_k, v_{k+4}, v_m\}$, then $H_m - S$ is connected, a contradiction. Finally if $S = \{v_k, v_{k+4}\}$ or $S = \{v_k, v_{k+4}, v_i\}$ with $v_i \in V(H_m) - V_t - \{v_1, v_m\}$, then it easily follows that $H_m - S$ is connected, a contradiction. Thus $l \ge 2$, as desired.

Now if $S \cap V_t = \{v_k, v_{k+4l}\}$, then (i) holds. Thus we may assume $S \cap V_t = \{v_k, v_{k+4l'}, v_{k+4l}\}$. If l = 2, then l' = 1 and $H_m - S$ is connected, a contradiction. Thus $l \ge 3$. Hence (i) holds.

Next we consider the case where $|S \cap V_r| \leq 1$ for each $2 \leq r \leq 5$. In this case, if $S \cap \{v_1, v_m\} = \phi$, then $H_m - S$ is clearly connected. Thus $S \cap \{v_1, v_m\} \neq \phi$. If $S \supseteq \{v_1, v_m\}$, then since $\langle \{v_2, v_3, v_4, v_5, \} \rangle$ and $\langle \{v_{m-1}, v_{m-2}, v_{m-3}, v_{m-4}\} \rangle$ are connected, $H_m - S$ is connected. Thus $|S \cap \{v_1, v_m\}| = 1$. By symmetry, we may assume $S \cap \{v_1, v_m\} = \{v_1\}$. If $|S \cap \{v_2, v_3, v_4, v_5\}| = 2$, then $H_m - S$ is connected. Thus $|S \cap \{v_2, v_3, v_4, v_5\}| = 2$, then $H_m - S$ is connected. Thus $|S \cap \{v_2, v_3, v_4, v_5\}| = 2$, then since $\langle \{v_2, v_3, v_4, v_5\} \rangle$ is connected, $H_m - S$ is connected. Thus $|S \cap \{v_2, v_3, v_4, v_5\}| = 1$. Write $S \cap \{v_2, v_3, v_4, v_5\} = \{v_s\}$. Since $H_m - \{v_1, v_s\}$ is connected, we have |S| = 3. Write $S = \{v_1, v_s, v_i\}$. Then $6 \leq i \leq m - 1$. Note that $v_i \notin V_s$ by assumption. If s = 4 or 5, then $\langle \{v_2, v_3, v_4, v_5\} - \{v_s\} \rangle$ is connected, and hence $H_m - S$ is connected. Thus s = 2 or 3. Note that $\{2, 3, 4, 5\} = \{s, 5-s, s+2, 7-s\}$. If $v_i \in V_{5-s} \cup V_{s+2}$, then since $v_{5-s}v_{s+2} \in E(H_m)$, $H_m - S$ is connected. Thus $v_i \in V_{7-s}$. Consequently (ii) or (iii) holds according as s = 2 or s = 3. This completes the proof of the lemma.

We also make use of the following lemma, which is easily verified.

Lemma 1.2. Let G be a connected graph, and let $S \subseteq V(G)$ be a cutset with minimum cardinality. Let u, v be two vertices of G such that $N_G(u) = N_G(v)$. Then we have $\{u, v\} \subseteq S$ or $\{u, v\} \cap S = \emptyset$.

Now let $G = G_m$, and set $A = \{\alpha_i | 1 \leq i \leq m - 4\}$, $X_i = \{x_{i,1}, x_{i,2}\}$ $(1 \leq i \leq m)$, $Y_r = \bigcup_{0 \leq p \leq (m-r-1)/4} X_{r+4p}$ $(2 \leq r \leq 5)$, and $B = \bigcup_{1 \leq i \leq m} X_i$. Thus $B = Y_2 \cup Y_3 \cup Y_4 \cup Y_5 \cup X_1 \cup X_m$ (disjoint union). Note that for each r $(2 \leq r \leq 5)$, $\langle X_1 \cup Y_r \rangle$ and $\langle Y_r \cup X_m \rangle$ are connected. Let $S \subseteq V(G)$ be a cutset of G with minimum cardinality and, by way of contradiction, suppose that $|S| \leq 8$.

Claim 1.1. $S \cap (\{a\} \cup A) \neq \emptyset$

Proof. Suppose that $S \cap (\{a\} \cup A) = \emptyset$. By the definition of G, $\langle \{a\} \cup A \rangle$ is connected and $N_G(x) \cap (\{a\} \cup A) \neq \emptyset$ for each $x \in B$. Hence G - S is connected, which contradicts the assumption that S is a cutset of G.

Claim 1.2. $\langle B - S \rangle$ is disconnected.

Proof. Suppose that $\langle B-S \rangle$ is connected. Since $|S| \leq 8$, it follows from Claim 1.1 that $|S \cap B| \leq 7$. On the other hand, $|N_G(\alpha) \cap B| \geq 8$ for each $\alpha \in \{a\} \cup A$ by the definition of G. Hence $N_G(\alpha) \cap (B-S) \neq \emptyset$ for each $\alpha \in \{a\} \cup A$, which means that G-S is connected, a contradiction.

Since $|S \cap B| \leq 7$ by Claim 1.1, the following claim follows from Lemmas 1.1 and 1.2 and Claim 1.2.

Claim 1.3. One of the following holds:

(i) $|S \cap B| = 4 \text{ or } 6$, and there exist integers $t, k, l \text{ with } 2 \le t \le 5, k \equiv t \pmod{4}$, $l \ge 2 \text{ and } 2 \le k < k+4l \le m-1 \text{ such that } X_k \cup X_{k+4l} \subseteq S \cap Y_t \subseteq X_k \cup X_{k+4} \cup X_{k+8} \cup \cdots \cup X_{k+4l-4} \cup X_{k+4l} \text{ and } (X_{k+4} \cup X_{k+8} \cup \cdots \cup X_{k+4l-4}) - S \neq \phi$;

(ii) $|S \cap B| = 6$, and $S \cap B = X_1 \cup X_2 \cup X_{5+4l}$ or $X_m \cup X_{m-1} \cup X_{m-4-4l}$ for some l with $1 \le l \le \frac{1}{4}(m-6)$; or

(iii) $|S \cap B| = 6$, and $S \cap B = X_1 \cup X_3 \cup X_{4+4l}$ or $X_m \cup X_{m-2} \cup X_{m-3-4l}$ for some l with $1 \le l \le \frac{1}{4}(m-5)$.

First we consider the case where (i) of Claim 1.3 holds. Let t, k, l be the integers as in Claim 1.3(i). Since $\langle X_1 \cup Y_r \rangle$ and $\langle Y_r \cup X_m \rangle$ are connected for each $r \in \{2, 3, 4, 5\} - \{t\}, \langle B - Y_t - X_m \rangle$ and $\langle B - Y_t - X_1 \rangle$ are connected. Let $B_1 = (X_{k+4} \cup X_{k+8} \cup \cdots \cup X_{k+4l-4}) - S$ and $B_2 = B - S - B_1$. By the condition that $S \cap Y_t \subseteq X_k \cup X_{k+4} \cup \cdots \cup X_{k+4l}$, we have $B_2 = (B - Y_t - S) \cup (\bigcup_{0 \le p \le (k-t-4)/4} X_{t+4p}) \cup (\bigcup_{1 \le p \le (m-k-4l-1)/4} X_{k+4l+4p})$.

Claim 1.4. $\langle B_2 \rangle$ is connected.

Proof. Note that $|S \cap (B - Y_t)| \leq 2$. Hence by Lemma 1.2, we have $S \cap (B - Y_t) = X_1$ and $B_2 \supseteq X_m$, or $S \cap (B - Y_t) = X_m$ and $B_2 \supseteq X_1$, or $B_2 \supseteq X_1 \cup X_m$. Assume first that $S \cap (B - Y_t) = X_1$ and $B_2 \supseteq X_m$. Then $B_2 = (B - Y_t - X_1) \cup (\bigcup_{0 \leq p \leq (k-t-4)/4} X_{t+4p}) \cup (\bigcup_{1 \leq p \leq (m-k-4l-1)/4} X_{k+4l+4p})$. Since $\langle B - Y_t - X_1 \rangle$ is connected and since $\langle (\bigcup_{1 \leq p \leq (m-k-4l-1)/4} X_{k+4l+4p}) \cup X_m \rangle$ is connected if $m-k-4l \ge 5$, we see that $\langle (B - Y_t - X_1) \cup (\bigcup_{1 \leq p \leq (m-k-4l-1)/4} X_{k+4l+4p}) \rangle$ is connected. Since $\langle X_2 \cup X_3 \cup X_4 \cup X_5 \rangle$ is connected and since $\langle (\bigcup_{0 \leq p \leq (k-t-4)/4} X_{t+4p}) \rangle$ is connected if $k - t \ge 8$, this implies that $\langle B_2 \rangle$ is connected. By symmetry, we also see that if $S \cap (B - Y_t) = X_m$ and $B_2 \supseteq X_1$, then $\langle B_2 \rangle$ is connected. Assume now that $B_2 \supseteq X_1 \cup X_m$. Since $|S \cap (B - Y_t - X_1 - X_m)| \le 2$, $\langle B - Y_t - S \rangle$ is connected. Since $B_2 = (B - Y_t - S) \cup (\bigcup_{0 \leq p \leq (k-t-4)/4} X_{t+4p}) \cup (\bigcup_{1 , this implies that <math>\langle B_2 \rangle$ is connected, as desired.

Claim 1.5. $\langle B_2 \cup ((\{a\} \cup A) - S) \rangle$ is connected.

Proof. Take $\alpha \in (\{a\} \cup A) - S$. If $\alpha \in A$, $|N_G(\alpha) \cap (B - Y_t)| = |N_G(\alpha) \cap B| - |N_G(\alpha) \cap Y_t| = 6$; if $\alpha = a$, $|N_G(\alpha) \cap (B - Y_t)| \ge |X_1 \cup X_m \cup ((X_2 \cup X_4) - X_t)| \ge 6$. Thus $|N_G(\alpha) \cap (B - Y_t)| \ge 6$. Since $|S \cap (B - Y_t)| \le 2$ and $B - Y_t - S \subseteq B_2$, it follows that $N_G(\alpha) \cap B_2 \ne \phi$. Since $\alpha \in (\{a\} \cup A) - S$ is arbitrary, this together with Claim 1.4 implies that $\langle B_2 \cup ((\{a\} \cup A) - S) \rangle$ is connected.

Now take $x \in B_1$. Note that $x \in X_i$ for some i with $k+4 \leq i \leq k+4(l-1)$. Then $6 \leq i \leq m-5$, and hence $|N_G(x) \cap (\{a\} \cup A)| = 5$ by the definition of G. Since $|S \cap (\{a\} \cup A)| \leq 8 - |S \cap B| \leq 4$, it follows that $N_G(x) \cap ((\{a\} \cup A) - S) \neq \phi$. Since $x \in B_1$ is arbitrary, this together with Claim 1.5 implies that $G - S = \langle B_1 \cup B_2 \cup ((\{a\} \cup A) - S) \rangle$ is connected, which contradicts the assumption that S is a cutset of G.

Next we consider the case where (ii) or (iii) of Claim 1.3 holds. By symmetry, we may assume that $S \cap B = X_1 \cup X_2 \cup X_{5+4l}$ for some l with $1 \leq l \leq \frac{1}{4}(m-6)$ or $S \cap B = X_1 \cup X_3 \cup X_{4+4l}$ for some l with $1 \leq l \leq \frac{1}{4}(m-5)$. If $S \cap B = X_1 \cup X_2 \cup X_{5+4l}$, let t = 5 and $B_1 = \bigcup_{0 \leq p \leq l-1} X_{5+4p}$; if $S \cap B = X_1 \cup X_3 \cup X_{4+4l}$, let t = 4 and $B_1 = \bigcup_{0 \leq p \leq l-1} X_{4+4p}$. Also let $B_2 = B - S - B_1$. The following claim follows from the definition of G.

Claim 1.6. $\langle B_2 \rangle$ is connected.

Claim 1.7. $\langle B_2 \cup ((\{a\} \cup A) - S) \rangle$ is connected.

Proof. Take $\alpha \in (\{a\} \cup A) - S$. As in the proof of Claim 1.5, we obtain $|N_G(\alpha) \cap (B-Y_t)| \ge 6$. Since $|S \cap (B-Y_t)| \le 4$, it follows that $N_G(\alpha) \cap B_2 \ne \phi$. Since $\alpha \in (\{a\} \cup A) - S$ is arbitrary, this together with Claim 1.6 implies that $\langle B_2 \cup ((\{a\} \cup A) - S) \rangle$ is connected.

Now take $x \in B_1$. Note that $x \in X_i$ for some i with $t \le i \le t+4(l-1)$. Then $4 \le i \le m-5$, and hence $|N_G(x) \cap (\{a\} \cup A)| \ge 3$ by the definition of G. Since $|S \cap (\{a\} \cap A)| \le 8 - |S \cap B| = 2$, it follows that $N_G(x) \cap ((\{a\} \cup A) - S) \ne \phi$. Since $x \in B_1$ is arbitrary, this together with Claim 1.7 implies that G - S is connected, which contradicts the assumption that S is a cutset of G.

This completes the proof of the assertion that G is 9-connected.

§2. Preliminary Result

Throughout the rest of this paper, let G be a 9-connected graph, and let \mathscr{S} denote the set of 9-shredders of G. For each $S \in \mathscr{S}$, we define $\mathscr{K}(S)$,

N. HIRATA

 $\mathscr{L}(S)$ and L(S) as follows. Let $S \in \mathscr{S}$. We let $\mathscr{K}(S)$ denote the set of components of G - S. Write $\mathscr{K}(S) = \{H_1, \cdots, H_s\}$ $(s = |\mathscr{K}(S)|)$. We may assume $|V(H_1)| \ge |V(H_2)| \ge \cdots \ge |V(H_s)|$ (any such labeling will do). Under this notation, we let $\mathscr{L}(S) = \mathscr{K}(S) - \{H_1\}$ and $L(S) = \bigcup_{2 \le i \le s} V(H_i)$; thus $L(S) = \bigcup_{C \in \mathscr{L}(S)} V(C)$. Now let $\mathscr{L} = \bigcup_{S \in \mathscr{S}} \mathscr{L}(S)$. A member F of \mathscr{L} is said to saturated if there exists a subset \mathscr{C} of $\mathscr{L} - \{F\}$ such that $V(F) = \bigcup_{C \in \mathscr{C}} V(C)$.

Let $S, T \in \mathscr{S}$ with $S \neq T$. We say that S meshes with T if S intersects with at least two members of $\mathscr{K}(T)$. It is easy to see that if S meshes with T, then T intersects with all members of $\mathscr{K}(S)$, and hence T meshes with Sand S intersects with all members of $\mathscr{K}(T)$ (see [1; Lemma 4.3 (1)]).

The following two lemmas are proved in [4; Lemmas 2.1 and 3.1] (see also [2; Lemmas 3.2 and 3.4]).

Lemma 2.1. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that S does not mesh with T. Then one of the following holds:

- (i) $L(S) \cap L(T) = \emptyset$, $(L(S) \cup L(T)) \cap (S \cup T) = \emptyset$, and no edge of G joins a vertex in L(S) and a vertex in L(T);
- (ii) there exists $C \in \mathscr{L}(S)$ such that $V(C) \supseteq L(T)$ (so $L(S) \supseteq L(T)$); or
- (iii) there exists $D \in \mathscr{L}(T)$ such that $V(D) \supseteq L(S)$ (so $L(T) \supseteq L(S)$).

Lemma 2.2. Let $S, T \in \mathcal{S}$ with $S \neq T$, and suppose that S meshes with T. Then the following hold.

- (i) $S \supseteq L(T)$ or $T \supseteq L(S)$.
- (ii) $L(S) \cap L(T) = \emptyset$.

The following lemma is proved in [2; Lemma 3.6].

Lemma 2.3. Let $F \in \mathcal{L}$, and suppose that F is saturated. Then $|V(F)| \ge 4$.

The following lemmas are proved in [3; Lemmas 2.9 through 2.12].

Lemma 2.4. Let $S \in \mathcal{S}$, and let $p = |\mathcal{L}(S)|$.

Set $\mathscr{T}=\{T\in \mathscr{S}|L(T)\subseteq L(S)\}.\ |\ \mathscr{T}|\leq (2|L(S)|-2p+3)/3\leq (2|L(S)|-1)/3.$

Lemma 2.5. Let $X \subseteq V(G)$. Set $\mathscr{T} = \{T \in \mathscr{S} | L(T) \subseteq X\}$ and $\mathscr{L}_0 = \bigcup_{T \in \mathscr{T}} \mathscr{L}(T)$, and suppose that no component in \mathscr{L}_0 is saturated. Then $|\mathscr{T}| \leq |X|/2$.

Lemma 2.6. Let $S, T \in \mathcal{S}$, and suppose that S meshes with T and $L(S) \nsubseteq T$. Then $L(T) \subseteq S$ and $|L(T)| \leq 4$. **Lemma 2.7.** Suppose that $|V(G)| \ge 19$. Let $S, T \in \mathscr{S}$, and suppose that S meshes with T, $L(S) \subseteq T$ and $L(T) \subseteq S$. Then $|L(S)| + |L(T)| \le 9$.

The following lemma follows from Lemmas 2.6 and 2.7.

Lemma 2.8. Suppose that $|V(G)| \ge 19$. Let $S, T \in \mathscr{S}$, and suppose that S meshes with T and $|L(S)| \ge 5$. Then $L(T) \subseteq S$ and $|L(T)| \le 4$.

As an immediate corollary of Lemma 2.8, we obtain the following lemma.

Lemma 2.9. Suppose that $|V(G)| \ge 19$. Let $S, T \in \mathscr{S}$ with $S \ne T$, and suppose that $|L(S)|, |L(T)| \ge 5$. Then S does not mesh with T.

§3. Proof of the Theorem

We continue with the notation of the preceeding section, and prove the Theorem. Thus let $|V(G)| \ge 67$ and, by way of contradiction, suppose that

(3.1)
$$|\mathscr{S}| \ge (2|V(G)| - 8)/3.$$

We define an order relation \leq in \mathscr{S} as follows:

$$S \leq T \iff L(S) \subseteq L(T) \ (S, T \in \mathscr{S}).$$

Let S_1, \dots, S_m be the maximal members of \mathscr{S} with respect to the order relation \leq . We may assume $|L(S_1)| \geq \dots \geq |L(S_m)|$. Let $p_i = |\mathscr{L}(S_i)|$ for each *i*, and let $W = V(G) - (L(S_1) \cup \dots \cup L(S_m))$. Arguing as in [3; Claims 3.2 through 3.4], we obtain the following three claims. We include sketches of their proofs for the convenience of the reader.

Claim 3.1.

- (i) $m + 2|W| \le 8$.
- (ii) $2p_1 + (m-1) + 2|W| \le 11$.

Sketch of Proof. By (3.1) and Lemma 2.4, $(2|V(G)|-8)/3 \leq \sum_{1\leq i\leq m} (2|L(S_i)|-2p_i+3)/3$, and hence $2(p_1+\cdots+p_m)-3m+2|W|\leq 8$. Since $p_i\geq 2$ for all *i*, both (i) and (ii) follow from this.

Claim 3.2. $|L(S_1)| \ge 5$.

Sketch of Proof. If $|L(S_1)| \le 4$, then by Claim 3.1 (i), $|V(G)| \le 4m + |W| \le 32$, which contradicts the assumption that $|V(G)| \ge 67$.

Claim 3.3. $m \ge 2$ and $|L(S_2)| \ge 5$.

N. HIRATA

Sketch of Proof. Suppose that m = 1 or $|L(S_2)| \leq 4$. Then by Claim 3.1 (ii), $|V(G) - L(S_1)| \leq 4(m-1) + |W| \leq 44 - 8p_1$, and hence $|V(G) - (S_1 \cup L(S_1))| \leq 35 - 8p_1$, which implies $|L(S_1)| \leq p_1(35 - 8p_1)$. Consequently $|V(G)| \leq p_1(35 - 8p_1) + 44 - 8p_1 \leq 66$ because $p_1 \geq 2$, which contradicts the assumption that $|V(G)| \geq 67$.

By Lemma 2.9, Claim 3.2 and Claim 3.3 imply that S_1 does not mesh with S_2 . Since $L(S_1) \cap L(S_2) = \emptyset$ by the maximality of $L(S_1)$ and $L(S_2)$, $L(S_1) \cap S_2 = L(S_2) \cap S_1 = \emptyset$ by Lemma 2.1. Write $\mathscr{K}(S_1) - \mathscr{L}(S_1) = \{C_1\}$ and $\mathscr{K}(S_2) - \mathscr{L}(S_2) = \{C_2\}$; thus $C_1 = G - S_1 - L(S_1)$ and $C_2 = G - S_2 - L(S_2)$. We define $\mathscr{T}_1, \mathscr{T}_2, \mathscr{T}_{1,1}, \mathscr{T}_{1,2}, \mathscr{T}_{1,3}, \mathscr{T}_{2,1}, \mathscr{T}_{2,2}, \mathscr{T}_{2,3}$ as follows:

$$\begin{split} \mathscr{T}_1 &= \{T \in \mathscr{S} | L(T) \cap (S_1 \cup S_2) = \emptyset\}, \\ \mathscr{T}_2 &= \{T \in \mathscr{S} | L(T) \subseteq S_1 \cup S_2\}, \\ \mathscr{T}_{1,1} &= \{T \in \mathscr{S} | L(T) \subseteq L(S_1)\}, \\ \mathscr{T}_{1,2} &= \{T \in \mathscr{S} | L(T) \subseteq L(S_2)\}, \\ \mathscr{T}_{1,3} &= \{T \in \mathscr{S} | L(T) \subseteq V(C_1) \cap V(C_2)\}, \\ \mathscr{T}_{2,1} &= \{T \in \mathscr{T}_2 | L(T) \subseteq S_1 - S_2\}, \\ \mathscr{T}_{2,2} &= \{T \in \mathscr{T}_2 | L(T) \subseteq S_2 - S_1\}, \\ \mathscr{T}_{2,3} &= \{T \in \mathscr{T}_2 | L(T) \subseteq S_1 \cap S_2\}. \end{split}$$

In view of the maximality of $L(S_1)$ and $L(S_2)$ and Claims 3.2 and 3.3, it follows from Lemmas 2.1 and 2.8 that \mathscr{T}_1 is the set of those members of \mathscr{S} which mesh with neither S_1 nor S_2 , and \mathscr{T}_2 is the set of those members of \mathscr{S} which mesh with S_1 or S_2 . Thus $\mathscr{S} = \mathscr{T}_1 \cup \mathscr{T}_2$ (disjoint union). Further by Lemma 2.1, $\mathscr{T}_1 = \mathscr{T}_{1,1} \cup \mathscr{T}_{1,2} \cup \mathscr{T}_{1,3}$ (disjoint union) and , by Lemma 2.8, $\mathscr{T}_2 = \mathscr{T}_{2,1} \cup \mathscr{T}_{2,2} \cup \mathscr{T}_{2,3}$ (disjoint union).

The following two claims immediately follow from Lemma 2.4 (see also [3; Claim 3.6]).

Claim 3.4. $|\mathscr{T}_{1,i}| \leq (2|L(S_i)| - 1)/3 \ (i = 1, 2).$

Claim 3.5. $|\mathscr{T}_{1,3}| \leq 2|V(C_1) \cap V(C_2)|/3.$

Since $|L(T)| \leq 4$ for each $T \in \mathscr{T}_2$ by Lemma 2.8, the following claim follows from Lemmas 2.3 and 2.5 (see also [3; Claim 3.8]).

Claim 3.6.

- (i) $|\mathscr{T}_{2,1}| \le |S_1 S_2|/2.$
- (ii) $|\mathscr{T}_{2,2}| \le |S_2 S_1|/2.$
- (iii) $|\mathscr{T}_{2,3}| \le |S_1 \cap S_2|/2.$

Now it follows from Claims 3.4, 3.5 and 3.6 that

$$\begin{split} |\mathscr{S}| &= |\mathscr{T}_1| + |\mathscr{T}_2| \\ &= |\mathscr{T}_{1,1}| + |\mathscr{T}_{1,2}| + |\mathscr{T}_{1,3}| + |\mathscr{T}_{2,1}| + |\mathscr{T}_{2,2}| + |\mathscr{T}_{2,3}| \\ &\leq (2|L(S_1|-1)/3 + (2|L(S_2)|-1)/3 + 2|V(C_1) \cap V(C_2)|/3 \\ &+ \lfloor |S_1 - S_2|/2 \rfloor + \lfloor |S_2 - S_1|/2 \rfloor + \lfloor |S_1 \cap S_2|/2 \rfloor \\ &= (2(|L(S_1)| + |L(S_2)| + |V(C_1) \cap V(C_2)|) - 2)/3 \\ &+ 2\lfloor (7 - |S_1 \cap S_2|)/2 \rfloor + \lfloor |S_1 \cap S_2|/2 \rfloor \\ &= (2(|V(G)| - |S_1 \cup S_2|) - 2)/3 + 2\lfloor (9 - |S_1 \cap S_2|)/2 \rfloor + \lfloor |S_1 \cap S_2|/2 \rfloor \\ &= (2|V(G)| + 2|S_1 \cap S_2| - 38)/3 + 2\lfloor (9 - |S_1 \cap S_2|)/2 \rfloor + \lfloor |S_1 \cap S_2|/2 \rfloor. \end{split}$$

Since $0 \leq |S_1 \cap S_2| \leq 8$, this implies that $|\mathscr{S}| \leq (2|V(G)| - 9)/3$, which contradicts (3.1). This completes the proof of the Theorem.

References

- [1] J. Cheriyan and R. Thurimella, Fast algorithms for k-shredders and k-node connectivity augumentation, Proc. 28th ACM STOC, 1996, 37-46.
- [2] Y. Egawa, k-Shredders in k-connected graphs, J. Graph Theory 59(2008), 239-259.
- [3] Y. Egawa, Y. Okadome and M. Takatou 5-Shredders in 5-connected graphs, Discrete Math. 309(2009), 1565-1574.
- [4] T. Jordán, On the number of shredders, J. Graph Theory 31(1999), 195-200.
- [5] M. Takatou, 7-Shredders in 7-connected graphs, AKCE J.Graphs. Combin. 2(2005), 25-32.
- [6] M. Takatou, 8-Shredders in 8-connected graphs, AKCE J.Graphs. Combin. 5(2008), 147-164.
- [7] M. Tsugaki, 6-Shredders in 6-connected graphs, SUT J. Math. 39(2003), 211-224.

Naoki Hirata Department of Mathematical Information Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

E-mail: j1410705@ed.kagu.tus.ac.jp