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9-Shredders in 9-connected graphs
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Abstract. For a graph G, a subset S of V (G) is called a shredder if G − S
consists of three or more components. We show that if G is a 9-connected graph
of order at least 67, then the number of shredders of cardinality 9 of G is less
than or equal to (2|V (G)| − 9)/3.
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§1. Introduction

In this paper, we consider only finite, undirected, simple graphs with no loops
and no multiple edges. Let G = (V (G), E(G)) be a graph. For x ∈ V (G), we
let NG(x) denote the set of vertices adjacent to x in G. For S ⊆ V (G), 〈S〉
denotes the subgraph induced by S in G, and G − S denotes the subgraph
obtained from G by deleting all vertices in S together with the edges incident
with them; thus G − S = 〈V (G) − S〉.

As is introduced by Cheriyan and Thurimella in [1], a subset S of V (G) is
called a shredder if G−S consists of three or more components. A shredder of
cardinality k is referred to as a k-shredder. In [2; Theorem 1], it is proved that
if k ≥ 5 and G is a k-connected graph, then the number of k-shredders of G is
less than 2|V (G)|/3, and it is shown that for each fixed k ≥ 5, the coefficient
2/3 in the upper bound is best possible. For k = 5, it is shown in [3; Theorem
3] that if G is a 5-connected graph of order at least 135, then the number of
5-shredders of G is less than or equal to (2|V (G)| − 10)/3; for k = 6, it is
shown in [7] that if G is a 6-connected graph of order at least 325, then the
number of 6-shredders of G is less than or equal to (2|V (G)|− 9)/3; for k = 7,
it is shown in [5] that if G is a 7-connected graph of order at least 42, then
the number of 7-shredders of G is less than or equal to (2|V (G)| − 8)/3; for
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k = 8, it is shown in [6] that if G is a 8-connected graph of order at least 177,
then the number of 8-shredders of G is less than or equal to (2|V (G)| − 10)/3.
It is also shown that each of these four bounds is attained by infinitely many
graphs. For k ≥ 11, it is shown in [3; Theorem 1] that if G is a k-connected
graph of order at least 10k, then the number of k-shredders of G is less than
or equal to (2|V (G)| − 6)/3, and the upper bound (2|V (G)| − 6)/3 is believed
to be best possible. If this bound is in fact best possible for k ≥ 11, then
the cases where k = 9 and k = 10 will be the only cases for which the best
possible bound has not been obtained (for results concerning the case where
1 ≤ k ≤ 4, the reader is referred to [4] and [2; Theorem 2]). In this paper, we
take up the case where k = 9.

We have the following theorem.

Theorem 1. Let G be a 9-connected graph of order at least 67. Then the
number of 9-shredders of G is less than or equal to

(2|V (G)| − 9)/3.

We here construct an infinite family of graphs G which attain the bound
(2|V (G)| − 9)/3 in the Theorem. Let m ≥ 10. Define an auxiliary graph Hm

of order m by letting

V (Hm) = {vi|1 ≤ i ≤ m},
E(Hm) = {vivi+4|1 ≤ i ≤ m − 4}

∪ {v1v2, v1v3, v1v4, v2v3, v2v5, v3v4}
∪ {vmvm−1, vmvm−2, vmvm−3, vm−1vm−2, vm−1vm−4, vm−2vm−3}.

We define a graph Gm of order 3m − 6 by adding m − 6 vertices to the
so-called lexicographic product of Hm and the null graph of order 2. More
precisely, we let
V (Gm) = {xi,j |1 ≤ i ≤ m, 1 ≤ j ≤ 2} ∪ {αi|4 ≤ i ≤ m − 4} ∪ {a},

E(Gm) = {xi,jxi+4,k|1 ≤ i ≤ m − 4, 1 ≤ j, k ≤ 2}
∪{xi−1,jαi, xi,jαi, xi+1,jαi, xi+2,jαi|4 ≤ i ≤ m − 4, 1 ≤ j ≤ 2}
∪{aαi|4 ≤ i ≤ m − 4}
∪{axi,j |1 ≤ i ≤ m and i 6= 3, 5, m − 4,m − 2, 1 ≤ j ≤ 2}
∪{x1,jx2,k, x1,jx3,k, x1,jx4,k, x2,jx3,k, x2,jx5,k, x3,jx4,k|1 ≤ j, k ≤ 2}
∪{xm−4,jxm−1,k, xm−3,jxm−2,k, xm−3,jxm,k, xm−2,jxm−1,k,

xm−2,jxm,k, xm−1,jxm,k|1 ≤ j, k ≤ 2}.

Then, as we shall see below, Gm is 9-connected, and has 2m − 7 9-shredders.
{xi−4,1, xi−4,2, xi+4,1, xi+4,2, αi−2, αi−1, αi, αi+1, a} (6 ≤ i ≤ m − 5),
{xi−1,1, xi−1,2, xi,1, xi,2, xi+1,1, xi+1,2, xi+2,1, xi+2,2, a} (4 ≤ i ≤ m − 4),
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{x1,1, x1,2, x2,1, x2,2, x9,1, x9,2, α4, α5, α6, },
{xm−8,1, xm−8,2, xm−1,1, xm−1,2, xm,1, xm,2, αm−6, αm−5, αm−4},
{x1,1, x1,2, x3,1, x3,2, x8,1, x8,2, α4, α5, a},
{xm−7,1, xm−7,2, xm−4,1, xm−4,2, xm,1, xm,2, αm−5, αm−4, a},
{x1,1, x1,2, x2,1, x2,2, x4,1, x4,2, x7,1, x7,2α4},
{xm−6,1, xm−6,2, xm−3,1, xm−3,2, xm−1,1, xm−1,2, xm,1, xm,2αm−4},
{x1,1, x1,2, x3,1, x3,2, x5,1, x5,2, x6,1, x6,2, a},
{xm−5,1, xm−5,2, xm−4,1, xm−4,2, xm−1,1, xm−1,2, xm,1, xm,2, a},
{x2,1, x2,2, x3,1, x3,2, x4,1, x4,2, x5,1, x5,2, a},
{xm−4,1, xm−4,2, xm−3,1, xm−3,2, xm−2,1, xm−2,2, xm−1,1, xm−1,2, a}.

Thus the number of 9-shredders of Gm is 2m − 7 = (2(3m − 6) − 9)/3 =
(2|V (Gm)| − 9)/3.

When m = 14, we obtain the Figure 1.
For completeness, we include the proof of the assertion that G is 9-connected.

The following property of Hm plays an important role in our proof.

Lemma 1.1. Let S ⊆ V (Hm) be a cutset of Hm such that |S| ≤ 3. Then one
of the following holds:

(i) there exist integers t, k, l with 2 ≤ t ≤ 5, k ≡ t (mod 4), l ≥ 2 and 2 ≤
k < k +4l ≤ m− 1 such that {vk, vk+4l} ⊆ S ∩{vt+4p|0 ≤ p ≤ 1

4(m− t−
1)} ⊆ {vk, vk+4, vk+8, · · · , vk+4l−4, vk+4l} and {vk+4, vk+8, · · · , vk+4l−4}
−S 6= φ;

(ii) S = {v1, v2, v5+4l} or {vm, vm−1, vm−4−4l} for some l with 1 ≤ l ≤
1
4(m − 6); or

(iii) S = {v1, v3, v4+4l} or {vm, vm−2, vm−3−4l} for some l with 1 ≤ l ≤
1
4(m − 5).

Proof. For each r with 2 ≤ r ≤ 5, set Vr = {vr+4p|0 ≤ p ≤ 1
4(m − r − 1)}.

Then V (Hm) = V2 ∪ V3 ∪ V4 ∪ V5 ∪ {v1, vm} (disjoint union). Note that for
each r, 〈{v1} ∪ Vr〉 and〈Vr ∪ {vm}〉 are connected.

First we consider the case where there exists t with 2 ≤ t ≤ 5 such that
|S ∩ Vt| ≥ 2. If |S ∩ Vt| = 2, write S ∩ Vt = {vk, vk+4l} (l ≥ 1); if |S ∩ Vt| = 3,
write S ∩ Vt = {vk, vk+4l′ , vk+4l} (l > l′ and l ≥ 1). We show that l ≥ 2. Note
that since 〈{v1}∪Vr〉 and 〈Vr ∪{vm}〉 are connected for each r ∈ {2, 3, 4, 5}−
{t}, 〈V (Hm) − Vt − {vm}〉 and 〈V (Hm) − Vt − {v1}〉 are connected.

By way of contradiction, suppose that l = 1. Then S ∩ Vt = {vk, vk+4}.
Assume for the moment that S = {vk, vk+4, v1}. Then V (Hm)−S = (V (Hm)−
Vt − {v1}) ∪ {vt+4p|0 ≤ p ≤ 1

4(k − t − 4)} ∪ {vk+4+4p|1 ≤ p ≤ 1
4(m − k − 5)}.

Since 〈V (Hm) − Vt − {v1}〉 and 〈{vk+4+4p|1 ≤ p ≤ 1
4(m − k − 5)} ∪ {vm}〉 are

connected, 〈(V (Hm)−Vt−{v1})∪{vk+4+4p|1 ≤ p ≤ 1
4(m−k−5)}〉 is connected.
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Figure 1: m = 14
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Since 〈{v2, v3, v4, v5}〉 and 〈{vt+4p|0 ≤ p ≤ 1
4(k − t − 4)}〉 are connected, this

implies that Hm −S is connected, which contradicts the assumption that S is
a cutset. By symmetry, we also see that if S = {vk, vk+4, vm}, then Hm −S is
connected, a contradiction. Finally if S = {vk, vk+4} or S = {vk, vk+4, vi} with
vi ∈ V (Hm) − Vt − {v1, vm}, then it easily follows that Hm − S is connected,
a contradiction. Thus l ≥ 2, as desired.

Now if S ∩ Vt = {vk, vk+4l}, then (i) holds. Thus we may assume S ∩
Vt = {vk, vk+4l′ , vk+4l}. If l = 2, then l′ = 1 and Hm − S is connected, a
contradiction. Thus l ≥ 3. Hence (i) holds.

Next we consider the case where |S∩Vr| ≤ 1 for each 2 ≤ r ≤ 5. In this case,
if S ∩{v1, vm} = φ, then Hm −S is clearly connected. Thus S ∩{v1, vm} 6= φ.
If S ⊇ {v1, vm}, then since 〈{v2, v3, v4, v5, }〉 and 〈{vm−1, vm−2, vm−3, vm−4}〉
are connected, Hm − S is connected. Thus |S ∩ {v1, vm}| = 1. By symmetry,
we may assume S∩{v1, vm} = {v1}. If |S∩{v2, v3, v4, v5}| = 2, then Hm−S is
connected. Thus |S∩{v2, v3, v4, v5}| ≤ 1. If S∩{v2, v3, v4, v5, } = φ, then since
〈{v2, v3, v4, v5}〉 is connected, Hm−S is connected. Thus |S∩{v2, v3, v4, v5}| =
1. Write S ∩{v2, v3, v4, v5} = {vs}. Since Hm −{v1, vs} is connected, we have
|S| = 3. Write S = {v1, vs, vi}. Then 6 ≤ i ≤ m − 1. Note that vi 6∈ Vs

by assumption. If s = 4 or 5, then 〈{v2, v3, v4, v5} − {vs}〉 is connected,
and hence Hm − S is connected. Thus s = 2 or 3. Note that {2, 3, 4, 5} =
{s, 5−s, s+2, 7−s}. If vi ∈ V5−s∪Vs+2, then since v5−svs+2 ∈ E(Hm), Hm−S
is connected. Thus vi ∈ V7−s. Consequently (ii) or (iii) holds according as
s = 2 or s = 3. This completes the proof of the lemma.

We also make use of the following lemma, which is easily verified.

Lemma 1.2. Let G be a connected graph, and let S ⊆ V (G) be a cutset with
minimum cardinality. Let u, v be two vertices of G such that NG(u) = NG(v).
Then we have {u, v} ⊆ S or {u, v} ∩ S = ∅.

Now let G = Gm, and set A = {αi|4 ≤ i ≤ m − 4}, Xi = {xi,1, xi,2}
(1 ≤ i ≤ m), Yr = ∪0≤p≤(m−r−1)/4Xr+4p (2 ≤ r ≤ 5), and B = ∪1≤i≤mXi.
Thus B = Y2 ∪ Y3 ∪ Y4 ∪ Y5 ∪ X1 ∪ Xm (disjoint union). Note that for each
r (2 ≤ r ≤ 5), 〈X1 ∪ Yr〉 and 〈Yr ∪ Xm〉 are connected. Let S ⊆ V (G) be a
cutset of G with minimum cardinality and, by way of contradiction, suppose
that |S| ≤ 8.

Claim 1.1. S ∩ ({a} ∪ A) 6= ∅

Proof. Suppose that S ∩ ({a} ∪ A) = ∅. By the definition of G, 〈{a} ∪ A〉
is connected and NG(x) ∩ ({a} ∪ A) 6= ∅ for each x ∈ B. Hence G − S is
connected, which contradicts the assumption that S is a cutset of G.
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Claim 1.2. 〈B − S〉 is disconnected.

Proof. Suppose that 〈B−S〉 is connected. Since |S| ≤ 8, it follows from Claim
1.1 that |S∩B| ≤ 7. On the other hand, |NG(α)∩B| ≥ 8 for each α ∈ {a}∪A
by the definition of G. Hence NG(α) ∩ (B − S) 6= ∅ for each α ∈ {a} ∪ A,
which means that G − S is connected, a contradiction.

Since |S ∩ B| ≤ 7 by Claim 1.1, the following claim follows from Lemmas
1.1 and 1.2 and Claim 1.2.

Claim 1.3. One of the following holds:

(i) |S∩B| = 4 or 6, and there exist integers t, k, l with 2 ≤ t ≤ 5, k ≡ t (mod 4),
l ≥ 2 and 2 ≤ k < k+4l ≤ m−1 such that Xk∪Xk+4l ⊆ S∩Yt ⊆ Xk∪Xk+4∪
Xk+8 ∪ · · · ∪ Xk+4l−4 ∪ Xk+4l and (Xk+4 ∪ Xk+8 ∪ · · · ∪ Xk+4l−4) − S 6= φ;

(ii) |S ∩ B| = 6, and S ∩ B = X1 ∪ X2 ∪ X5+4l or Xm ∪ Xm−1 ∪ Xm−4−4l for
some l with 1 ≤ l ≤ 1

4(m − 6); or

(iii) |S ∩ B| = 6, and S ∩ B = X1 ∪ X3 ∪ X4+4l or Xm ∪ Xm−2 ∪ Xm−3−4l for
some l with 1 ≤ l ≤ 1

4(m − 5).

First we consider the case where (i) of Claim 1.3 holds. Let t, k, l be the
integers as in Claim 1.3(i). Since 〈X1 ∪ Yr〉 and 〈Yr ∪ Xm〉 are connected for
each r ∈ {2, 3, 4, 5} − {t}, 〈B − Yt − Xm〉 and 〈B − Yt − X1〉 are connected.
Let B1 = (Xk+4 ∪ Xk+8 ∪ · · · ∪ Xk+4l−4) − S and B2 = B − S − B1. By the
condition that S ∩Yt ⊆ Xk ∪Xk+4 ∪ · · · ∪Xk+4l, we have B2 = (B −Yt −S)∪
(∪0≤p≤(k−t−4)/4Xt+4p) ∪ (∪1≤p≤(m−k−4l−1)/4Xk+4l+4p).

Claim 1.4. 〈B2〉 is connected.

Proof. Note that |S∩(B−Yt)| ≤ 2. Hence by Lemma 1.2, we have S∩(B−Yt) =
X1 and B2 ⊇ Xm, or S ∩ (B −Yt) = Xm and B2 ⊇ X1, or B2 ⊇ X1 ∪Xm. As-
sume first that S ∩ (B − Yt) = X1 and B2 ⊇ Xm. Then B2 = (B − Yt −X1)∪
(∪0≤p≤(k−t−4)/4Xt+4p) ∪ (∪1≤p≤(m−k−4l−1)/4Xk+4l+4p). Since 〈B − Yt − X1〉
is connected and since 〈(∪1≤p≤(m−k−4l−1)/4Xk+4l+4p) ∪ Xm〉 is connected if
m−k−4l ≥ 5, we see that 〈(B−Yt−X1)∪(∪1≤p≤(m−k−4l−1)/4Xk+4l+4p)〉 is con-
nected. Since 〈X2∪X3∪X4∪X5〉 is connected and since 〈∪0≤p≤(k−t−4)/4Xt+4p〉
is connected if k − t ≥ 8, this implies that 〈B2〉 is connected. By symmetry,
we also see that if S ∩ (B − Yt) = Xm and B2 ⊇ X1, then 〈B2〉 is connected.
Assume now that B2 ⊇ X1 ∪ Xm. Since |S ∩ (B − Yt − X1 − Xm)| ≤ 2,
〈B −Yt −S〉 is connected. Since B2 = (B −Yt −S)∪ (∪0≤p≤(k−t−4)/4Xt+4p)∪
(∪1≤p≤(m−k−4l−1)/4Xk+4l+4p), this implies that 〈B2〉 is connected, as desired.
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Claim 1.5. 〈B2 ∪ (({a} ∪ A) − S)〉 is connected.

Proof. Take α ∈ ({a} ∪A)−S. If α ∈ A, |NG(α)∩ (B − Yt)| = |NG(α)∩B| −
|NG(α)∩Yt| = 6; if α = a, |NG(α)∩(B−Yt)| ≥ |X1∪Xm∪((X2∪X4)−Xt)| ≥ 6.
Thus |NG(α) ∩ (B − Yt)| ≥ 6. Since |S ∩ (B − Yt)| ≤ 2 and B − Yt − S ⊆ B2,
it follows that NG(α) ∩ B2 6= φ. Since α ∈ ({a} ∪ A) − S is arbitrary, this
together with Claim 1.4 implies that 〈B2 ∪ (({a} ∪ A) − S)〉 is connected.

Now take x ∈ B1. Note that x ∈ Xi for some i with k+4 ≤ i ≤ k+4(l−1).
Then 6 ≤ i ≤ m−5, and hence |NG(x)∩ ({a}∪A)| = 5 by the definition of G.
Since |S∩({a}∪A)| ≤ 8−|S∩B| ≤ 4, it follows that NG(x)∩(({a}∪A)−S) 6= φ.
Since x ∈ B1 is arbitrary, this together with Claim 1.5 implies that G − S =
〈B1 ∪ B2 ∪ (({a} ∪ A) − S)〉 is connected, which contradicts the assumption
that S is a cutset of G.

Next we consider the case where (ii) or (iii) of Claim 1.3 holds. By sym-
metry, we may assume that S ∩ B = X1 ∪ X2 ∪ X5+4l for some l with
1 ≤ l ≤ 1

4(m − 6) or S ∩ B = X1 ∪ X3 ∪ X4+4l for some l with 1 ≤ l ≤
1
4(m − 5). If S ∩ B = X1 ∪ X2 ∪ X5+4l, let t = 5 and B1 = ∪0≤p≤l−1X5+4p;
if S ∩ B = X1 ∪ X3 ∪ X4+4l, let t = 4 and B1 = ∪0≤p≤l−1X4+4p. Also let
B2 = B − S − B1. The following claim follows from the definition of G.

Claim 1.6. 〈B2〉 is connected.

Claim 1.7. 〈B2 ∪ (({a} ∪ A) − S)〉 is connected.

Proof. Take α ∈ ({a} ∪ A) − S. As in the proof of Claim 1.5, we obtain
|NG(α)∩(B−Yt)| ≥ 6. Since |S∩(B−Yt)| ≤ 4, it follows that NG(α)∩B2 6= φ.
Since α ∈ ({a}∪A)−S is arbitrary, this together with Claim 1.6 implies that
〈B2 ∪ (({a} ∪ A) − S)〉 is connected.

Now take x ∈ B1. Note that x ∈ Xi for some i with t ≤ i ≤ t+4(l−1). Then
4 ≤ i ≤ m−5, and hence |NG(x)∩ ({a}∪A)| ≥ 3 by the definition of G. Since
|S ∩ ({a}∩A)| ≤ 8− |S ∩B| = 2, it follows that NG(x)∩ (({a}∪A)−S) 6= φ.
Since x ∈ B1 is arbitrary, this together with Claim 1.7 implies that G − S is
connected, which contradicts the assumption that S is a cutset of G.

This completes the proof of the assertion that G is 9-connected.

§2. Preliminary Result

Throughout the rest of this paper, let G be a 9-connected graph, and let
S denote the set of 9-shredders of G. For each S ∈ S , we define K (S),
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L (S) and L(S) as follows. Let S ∈ S . We let K (S) denote the set of
components of G − S. Write K (S) = {H1, · · · ,Hs} (s = |K (S)|). We may
assume |V (H1)| ≥ |V (H2)| ≥ · · · ≥ |V (Hs)| (any such labeling will do). Under
this notation, we let L (S) = K (S) − {H1} and L(S) = ∪2≤i≤sV (Hi); thus
L(S) = ∪C∈L (S)V (C). Now let L = ∪S∈S L (S). A member F of L is said to
saturated if there exists a subset C of L −{F} such that V (F ) = ∪C∈C V (C).

Let S, T ∈ S with S 6= T . We say that S meshes with T if S intersects
with at least two members of K (T ). It is easy to see that if S meshes with
T , then T intersects with all members of K (S), and hence T meshes with S
and S intersects with all members of K (T ) (see [1; Lemma 4.3 (1)]).

The following two lemmas are proved in [4; Lemmas 2.1 and 3.1] (see also
[2; Lemmas 3.2 and 3.4]).

Lemma 2.1. Let S, T ∈ S with S 6= T , and suppose that S does not mesh
with T . Then one of the following holds:

(i) L(S) ∩ L(T ) = ∅, (L(S) ∪ L(T )) ∩ (S ∪ T ) = ∅, and no edge of G joins
a vertex in L(S) and a vertex in L(T );

(ii) there exists C ∈ L (S) such that V (C) ⊇ L(T ) (so L(S) ⊇ L(T )); or

(iii) there exists D ∈ L (T ) such that V (D) ⊇ L(S) (so L(T ) ⊇ L(S)).

Lemma 2.2. Let S, T ∈ S with S 6= T , and suppose that S meshes with T .
Then the following hold.

(i) S ⊇ L(T ) or T ⊇ L(S).

(ii) L(S) ∩ L(T ) = ∅.

The following lemma is proved in [2; Lemma 3.6].

Lemma 2.3. Let F ∈ L , and suppose that F is saturated. Then |V (F )| ≥ 4.

The following lemmas are proved in [3; Lemmas 2.9 through 2.12].

Lemma 2.4. Let S ∈ S , and let p = |L (S)|.
Set T = {T ∈ S |L(T ) ⊆ L(S)}. |T | ≤ (2|L(S)|− 2p+3)/3 ≤ (2|L(S)|−

1)/3.

Lemma 2.5. Let X ⊆ V (G). Set T = {T ∈ S |L(T ) ⊆ X} and L0 =
∪T∈T L (T ), and suppose that no component in L0 is saturated. Then |T | ≤
|X|/2.

Lemma 2.6. Let S, T ∈ S , and suppose that S meshes with T and L(S) * T .
Then L(T ) ⊆ S and |L(T )| ≤ 4.



9-SHREDDERS IN 9-CONNECTED GRAPHS 239

Lemma 2.7. Suppose that |V (G)| ≥ 19. Let S, T ∈ S , and suppose that S
meshes with T , L(S) ⊆ T and L(T ) ⊆ S. Then |L(S)| + |L(T )| ≤ 9.

The following lemma follows from Lemmas 2.6 and 2.7.

Lemma 2.8. Suppose that |V (G)| ≥ 19. Let S, T ∈ S , and suppose that S
meshes with T and |L(S)| ≥ 5. Then L(T ) ⊆ S and |L(T )| ≤ 4.

As an immediate corollary of Lemma 2.8, we obtain the following lemma.

Lemma 2.9. Suppose that |V (G)| ≥ 19. Let S, T ∈ S with S 6= T , and
suppose that |L(S)|, |L(T )| ≥ 5. Then S does not mesh with T .

§3. Proof of the Theorem

We continue with the notation of the preceeding section, and prove the The-
orem. Thus let |V (G)| ≥ 67 and, by way of contradiction, suppose that

(3.1) |S | ≥ (2|V (G)| − 8)/3.

We define an order relation ≤ in S as follows:

S ≤ T ⇐⇒ L(S) ⊆ L(T ) (S, T ∈ S ).

Let S1, · · · , Sm be the maximal members of S with respect to the order re-
lation ≤. We may assume |L(S1)| ≥ · · · ≥ |L(Sm)|. Let pi = |L (Si)| for
each i, and let W = V (G) − (L(S1) ∪ · · · ∪ L(Sm)). Arguing as in [3; Claims
3.2 through 3.4], we obtain the following three claims. We include sketches of
their proofs for the convenience of the reader.

Claim 3.1.

(i) m + 2|W | ≤ 8.

(ii) 2p1 + (m − 1) + 2|W | ≤ 11.

Sketch of Proof. By (3.1) and Lemma 2.4, (2|V (G)|−8)/3 ≤
∑

1≤i≤m (2|L(Si)|−
2pi + 3)/3, and hence 2(p1 + · · · + pm) − 3m + 2|W | ≤ 8. Since pi ≥ 2 for all
i, both (i) and (ii) follow from this.

Claim 3.2. |L(S1)| ≥ 5.

Sketch of Proof. If |L(S1)| ≤ 4, then by Claim 3.1 (i), |V (G)| ≤ 4m+|W | ≤ 32,
which contradicts the assumption that |V (G)| ≥ 67.

Claim 3.3. m ≥ 2 and |L(S2)| ≥ 5.
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Sketch of Proof. Suppose that m = 1 or |L(S2)| ≤ 4. Then by Claim 3.1
(ii), |V (G) − L(S1)| ≤ 4(m − 1) + |W | ≤ 44 − 8p1, and hence |V (G) − (S1 ∪
L(S1))| ≤ 35 − 8p1, which implies |L(S1)| ≤ p1(35 − 8p1). Consequently
|V (G)| ≤ p1(35 − 8p1) + 44 − 8p1 ≤ 66 because p1 ≥ 2, which contradicts the
assumption that |V (G)| ≥ 67.

By Lemma 2.9, Claim 3.2 and Claim 3.3 imply that S1 does not mesh
with S2. Since L(S1) ∩ L(S2) = ∅ by the maximality of L(S1) and L(S2),
L(S1) ∩ S2 = L(S2) ∩ S1 = ∅ by Lemma 2.1. Write K (S1) − L (S1) = {C1}
and K (S2)−L (S2) = {C2}; thus C1 = G−S1−L(S1) and C2 = G−S2−L(S2).
We define T 1, T 2, T 1,1, T 1,2, T 1,3, T 2,1, T 2,2, T 2,3 as follows:

T 1 = {T ∈ S |L(T ) ∩ (S1 ∪ S2) = ∅},
T 2 = {T ∈ S |L(T ) ⊆ S1 ∪ S2},
T 1,1 = {T ∈ S |L(T ) ⊆ L(S1)},
T 1,2 = {T ∈ S |L(T ) ⊆ L(S2)},

T 1,3 = {T ∈ S |L(T ) ⊆ V (C1) ∩ V (C2)},
T 2,1 = {T ∈ T 2|L(T ) ⊆ S1 − S2},
T 2,2 = {T ∈ T 2|L(T ) ⊆ S2 − S1},
T 2,3 = {T ∈ T 2|L(T ) ⊆ S1 ∩ S2}.

In view of the maximality of L(S1) and L(S2) and Claims 3.2 and 3.3, it
follows from Lemmas 2.1 and 2.8 that T 1 is the set of those members of S
which mesh with neither S1 nor S2, and T 2 is the set of those members of S
which mesh with S1 or S2. Thus S = T 1 ∪ T 2 (disjoint union). Further by
Lemma 2.1, T 1 = T 1,1 ∪ T 1,2 ∪ T 1,3 (disjoint union) and , by Lemma 2.8,
T 2 = T 2,1 ∪ T 2,2 ∪ T 2,3 (disjoint union).

The following two claims immediately follow from Lemma 2.4 (see also [3;
Claim 3.6]).

Claim 3.4. |T 1,i| ≤ (2|L(Si)| − 1)/3 (i = 1, 2).

Claim 3.5. |T 1,3| ≤ 2|V (C1) ∩ V (C2)|/3.

Since |L(T )| ≤ 4 for each T ∈ T2 by Lemma 2.8, the following claim follows
from Lemmas 2.3 and 2.5 (see also [3; Claim 3.8]).

Claim 3.6.

(i) |T 2,1| ≤ |S1 − S2|/2.

(ii) |T 2,2| ≤ |S2 − S1|/2.

(iii) |T 2,3| ≤ |S1 ∩ S2|/2.
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Now it follows from Claims 3.4, 3.5 and 3.6 that

|S | = |T 1| + |T 2|
= |T 1,1| + |T 1,2| + |T 1,3| + |T 2,1| + |T 2,2| + |T 2,3|
≤ (2|L(S1| − 1)/3 + (2|L(S2)| − 1)/3 + 2|V (C1) ∩ V (C2)|/3

+b|S1 − S2|/2c + b|S2 − S1|/2c + b|S1 ∩ S2|/2c
= (2(|L(S1)| + |L(S2)| + |V (C1) ∩ V (C2)|) − 2)/3

+2b(7 − |S1 ∩ S2|)/2c + b|S1 ∩ S2|/2c
= (2(|V (G)| − |S1 ∪ S2|) − 2)/3 + 2b(9 − |S1 ∩ S2|)/2c + b|S1 ∩ S2|/2c
= (2|V (G)| + 2|S1 ∩ S2| − 38)/3 + 2b(9 − |S1 ∩ S2|)/2c + b|S1 ∩ S2|/2c.

Since 0 ≤ |S1 ∩ S2| ≤ 8, this implies that |S | ≤ (2|V (G)| − 9)/3, which
contradicts (3.1). This completes the proof of the Theorem.
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