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Abstract. In this paper, we investigate symmetry properties of lightlike
hypersurfaces in indefinite Sasakian manifolds, tangent to the structure vec-
tor field. Theorems on locally symmetric, semi-symmetric and Ricci semi-
symmetric lightlike hypersurfaces are obtained. We show that, under some
conditions, these hypersurfaces are totally geodesic. The non-existence condi-
tions of specific lightlike hypersurfaces are given. We prove, under a certain
condition, that in lightlike hypersurfaces of an indefinite Sasakian space form,
tangent to the structure vector field, the local symmetry and semi-symmetry
notions are equivalent. This equivalence is extended to the Ricci semi-symmetry
notion when the lightlike hypersurfaces are considered to be η-totally umbilical.
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§1. Introduction

It is natural to impose condition on semi-Riemannian manifold that its Rie-
mannian curvature tensor R be parallel, that is, have vanishing covariant dif-
ferential, ∇R = 0, where ∇ is the Levi-Civita connection on semi-Riemannian
manifold and R is the corresponding curvature tensor. Such a manifold is said
to be locally symmetric. This class of manifolds contains one of manifolds of
constant curvature. A semi-Riemannian manifold is called semi-symmetric, if
R ·R = 0, which is the integrability condition of ∇R = 0. The semi-symmetric
manifolds have been classified, in Riemannian case, by Szabo in [19] and [20].
A semi-Riemannian manifold is called Ricci semi-symmetric, if R · Ric = 0.

We are interested to answer to the following question: “Are conditions
∇R = 0 and R·R = 0 equivalent on lightlike hypersurfaces of semi-Riemannian
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manifolds?” This equivalence is not true in general. Ryan [17] raised the fol-
lowing question for hypersurfaces of Euclidean spaces in 1972: Are conditions
R · R = 0 and R · Ric = 0 equivalent for hypersurfaces of Euclidean spaces?
However, there are many results which contributed to the solution of the above
question in the affirmative under some conditions (see [5], [6], [16] and refer-
ences therein). In [1], the authors gave an explicit example of a hypersurface
in Euclidean space En+1(n ≥ 4) that is Ricci semi-symmetric but not semi-
symmetric (see [7] for another example). This result shows that the conditions
R ·R = 0 and R ·Ric = 0 also are not equivalent for hypersurfaces of Euclidean
space in general. In [7] a survey on Ricci semi-symmetric spaces and contri-
butions to the solution of above problem are given. In virtue of results given
by Günes, Sahin and Kiliç ([10], Theorem 3.1) and Sahin ([18], Theorem 4.2),
we see that the conditions ∇R = 0 and R · R = 0 are equivalent for lightlike
hypersurfaces of semi-Euclidean space under conditions Ric(E,X) = 0 and
ANE a vector field non-null. In this paper we give an affirmative answer to
this question for lightlike hypersurfaces of an indefinite Sasakian space form
M(c), under some conditions (Theorem 8 and Theorem 12).

The general theory of lightlike submanifolds was introduced and presented
in [9] by K.L. Duggal and A. Bejancu. The theory of lightlike submanifolds is
a new area of differential geometry and it is very different from Riemannian
geometry as well as semi-Riemannian geometry.

In the present paper, we study the symmetry properties of lightlike hyper-
surfaces in indefinite Sasakian manifolds, tangent to the structure vector field,
by particularly paying attention to the locally symmetric, semi-symmetric
and Ricci semi-symmetric lightlike hypersurfaces. The paper is organized as
follows. In section 2, we recall some basic definitions and formulas for indefi-
nite Sasakian manifolds supported by an example and lightlike hypersurfaces
of semi-Riemannian manifolds. In section 3, we give the decomposition of al-
most contact metrics of lightlike hypersurfaces in indefinite Sasakian manifolds
which are tangential to the structure vector field. In section 4, we consider a
lightlike hypersurface M of an indefinite Sasakian space form M(c) and study
local symmetry conditions on this hypersurface. It is known (cf. [10]) that in
locally symmetric semi-Riemannian manifold M , the locally symmetric light-
like hypersurfaces are totally geodesic, under condition that the vector field
ANE is non-null. Here we show that there are no locally symmetric lightlike
hypersurfaces in indefinite Sasakian space form M(c 6= 1). On the other hand
we prove that, in indefinite Sasakian space form M(c = 1), any lightlike hy-
persurface is totally geodesic (Theorem 2). We give some theorems on totally
contact umbilical, η-totally umbilical lightlike hypersurfaces of an indefinite
Sasakian space form. We also prove, in the same section, that local symmetry
property of a screen integrable lightlike hypersurface of an indefinite Sasakian
space form is related with local symmetry property of leaves of its screen
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distribution (Theorem 5). In section 5, we study semi-symmetric lightlike
hypersurfaces of indefinite Sasakian space forms. We give a characterization
of semi-symmetric lightlike hypersurfaces and we prove, under a certain con-
dition, that in lightlike hypersurfaces of an indefinite Sasakian space form,
tangent to the structure vector field, the local symmetry and semi-symmetry
notions are equivalent (Theorem 8). In section 6, we give a characterization
of Ricci semi-symmetric lightlike hypersurfaces of an indefinite Sasakian space
form, tangent to the structure vector field. We show that, under a certain con-
dition, a Ricci semi-symmetric lightlike hypersurfaces of indefinite Sasakian
space form M(c = 1) are totally geodesic ( Theorem 11). By Theorem 12,
we extend the equivalence given in Theorem 8 to Ricci semi-symmetry notion
when the lightlike hypersurfaces are considered to be η-totally umbilical.

§2. Preliminaries

Let M be a (2n + 1)-dimensional manifold endowed with an almost contact
structure (φ, ξ, η), i.e. φ is a tensor field of type (1, 1), ξ is a vector field, and
η is a 1-form satisfying

(2.1) φ
2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0 and rankφ = 2n.

Then (φ, ξ, η, g) is called an almost contact metric structure on M if (φ, ξ, η)
is an almost contact structure on M and g is a semi-Riemannian metric on M
such that, for any vector field X, Y on M ,

g(ξ, ξ) = ε = ±1, η(X) = εg(ξ, X),
g(φ X, φ Y ) = g(X, Y ) − ε η(X) η(Y ).(2.2)

If, moreover, dη(X, Y ) = −g(φX, Y ) and (∇Xφ)Y = g(X, Y )ξ − ε η(Y )X,
where ∇ is the Levi-Civita connection for the semi-Riemannian metric g, we
call M an indefinite Sasakian manifold. From the first equation of (2.2), ξ is
never a lightlike vector field on M .

Sasakian manifolds with indefinite metrics have been first considered by
Takahashi [21]. Their importance for physics have been point out by Duggal
[8]. We have two classes of indefinite Sasakian manifolds [8]: ξ is spacelike
(ε = 1 and the index of g is an even number ν = 2r) and ξ is timelike (ε = −1
and the index of g is an odd number ν = 2r + 1).

Takahashi [21] shows that it suffices to consider those indefinite almost
contact manifolds with space-like ξ. Hence, from now on, we shall restrict
ourselves to the case of ξ a space-like unit vector (that is g(ξ, ξ) = 1).

In this case, the equality

(∇Xφ)Y = g(X, Y )ξ − η(Y )X
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implies ∇Xξ = −φ(X), ξ is Killing vector field and (∇Xη)Y = −g(φ X, Y )
(see [3] for details).

As an example, we have

Example 1. Let R7 be the 7-dimensional real number space. We consider
{xi}1≤i≤7 as cartesian coordinates on R7 and define with respect to the natural

field of frames
{

∂
∂xi

}
a tensor field φ of type (1, 1) by its matrix:

φ(
∂

∂x1
) =

∂

∂x4
, φ(

∂

∂x2
) = − ∂

∂x5
, φ(

∂

∂x3
) =

∂

∂x6
,

φ(
∂

∂x4
) = − ∂

∂x1
− x4

∂

∂x7
, φ(

∂

∂x5
) =

∂

∂x2
+ x5

∂

∂x7
,

φ(
∂

∂x6
) = − ∂

∂x3
− x6

∂

∂x7
, φ(

∂

∂x7
) = 0.(2.3)

The differential 1-form η is defined by

(2.4) η =
1
2
(dx7 − x4dx1 − x5dx2 − x6dx3).

The vector field ξ is defined by ξ = 2 ∂
∂x7

. It is easy to check (2.1) and thus
(φ, ξ, η) is an almost contact structure on R7. Finally we define the metric g
on R7 by

g =
1
4

{
(x2

4 − 1)dx2
1 + (x2

5 + 1)dx2
2 + (x2

6 + 1)dx2
3 − dx2

4 + dx2
5 + dx2

6

+dx2
7 + x4x5dx1 ⊗ dx2 + x4x5dx2 ⊗ dx1 + x4x6dx1 ⊗ dx3

+x4x6dx3 ⊗ dx1 + x5x6dx2 ⊗ dx3 + x5x6dx3 ⊗ dx2 − x4dx1 ⊗ dx7(2.5)
−x4dx7 ⊗ dx1 − x5dx2 ⊗ dx7 − x5dx7 ⊗ dx2 − x6dx3 ⊗ dx7

−x6dx7 ⊗ dx3} ,

with respect to the natural field of frames. It is easy to check that g is a semi-
Riemannian metric of index 2 and (φ, ξ, η, g) given by (2.3)-(2.5) is a Sasakian
structure on R7. Therefore, (R7, φ, ξ, η, g) is an indefinite Sasakian space form
of constant φ-sectional curvature c = −3.

A plane section σ in TpM is called a φ-section if it is spanned by X and φ X,
where X is a unit tangent vector field orthogonal to ξ. The sectional curvature
of a φ-section σ is called a φ-sectional curvature. A Sasakian manifold M with
constant φ-sectional curvature c is said to be a Sasakian space form and is
denoted by M(c). The curvature tensor R of a Sasakian space form M(c) is
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given in [15]: for any X, Y , Z ∈ Γ(TM),

R(X, Y )Z =
c + 3

4
(
g(Y , Z)X − g(X, Z)Y

)
+

c − 1
4

(
η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y , Z)η(X)ξ(2.6)
+g(φY , Z)φ X − g(φ X, Z)φ Y − 2g(φ X, Y )φ Z

)
.

Let (M, g) be a (2n + 1)-dimensional semi-Riemannian manifold with con-
stant index ν, 0 < ν < 2n + 1 and let (M, g) be a hypersurface of M , with
g = g|M . M is said to be a lightlike hypersurface of M if g is of constant
rank 2n − 1 and the normal bundle TM⊥ is a distribution of rank 1 on M .
A complementary bundle of TM⊥ in TM is a rank 2n − 1 non-degenerate
distribution over M . It is called a screen distribution and is often denoted by
S(TM). A lightlike hypersurface endowed with a specific screen distribution is
denoted by the triple (M, g, S(TM)). As TM⊥ lies in the tangent bundle, the
following result has an important role in studying the geometry of a lightlike
hypersurface [9].

Theorem 1. (Duggal-Bejancu) Let (M, g, S(TM)) be a lightlike hypersur-
face of (M, g). Then there exists a unique vector bundle tr(TM) of rank 1 over
M such that for any non-zero section E of TM⊥ on a coordinate neighborhood
U ⊂ M , there exists a unique section N of tr(TM) on U satisfying

(2.7) g(N,E) = 1, g(N,N) = g(N,W ) = 0, ∀W ∈ Γ(S(TM)|U )

Throughout the paper, all manifolds are supposed to be paracompact and
smooth. We denote by Γ(F ) the smooth sections of the vector bundle F . Also
by ⊥ and ⊕ we denote the orthogonal and nonorthogonal direct sum of two
vector bundles. By Theorem 1 we may write down the following decomposi-
tions

TM = S(TM) ⊥ TM⊥,(2.8)
TM = TM ⊕ tr(TM) = S(TM) ⊥ {TM⊥ ⊕ tr(TM)}.(2.9)

Let ∇ be the Levi-Civita connection on (M, g), then by using the decomposi-
tion (2.9) and considering a normalizing pair {E,N} as in Theorem 1, we have
the Gauss and Weingarten formulae in the form, for any X, Y ∈ Γ(TM|U ),

(2.10) ∇XY = ∇XY + h(X,Y ) and ∇XN = −ANX + ∇⊥
XN,

where ∇XY,ANX ∈ Γ(TM). ∇ is an induced symmetric linear connection on
M , ∇⊥ is a linear connection on the vector bundle tr(TM), h is a symmetric
bilinear form and AN is the shape operator of M .



182 O. LUNGIAMBUDILA, F. MASSAMBA AND J. TOSSA

Equivalently, consider a normalizing pair {E,N} as in Theorem 1. Then
(2.10) takes the form, for any X, Y ∈ Γ(TM|U ),

(2.11) ∇XY = ∇XY + B(X,Y )N and ∇XN = −ANX + τ(X)N.

It is important to mention that the second fundamental form B is independent
of the choice of screen distribution, in fact, from (2.11), we obtain X, Y ∈
Γ(TM|U ),

(2.12) B(X,Y ) = g(∇XY,E) and τ(X) = g(∇⊥
XN,E).

Let P be the projection morphism of TM on S(TM) with respect to the
orthogonal decomposition (2.8). We have for any X,Y ∈ Γ(TM|U ),

(2.13) ∇XPY = ∇∗
XPY + C(X,PY )E and ∇XE = −A∗

EX − τ(X)E,

where ∇∗
XPY and A∗

EX belong to Γ(S(TM)). C, A∗
E and ∇∗ are called the

local second fundamental form, the local shape operator and the induced con-
nection on S(TM). The induced linear connection ∇ is not a metric connection
and we have

(2.14) (∇Xg)(Y,Z) = B(X,Y )θ(Z) + B(X,Z)θ(Y ), ∀X,Y ∈ Γ(TM|U ),

where θ is a differential 1-form locally defined on M by θ(X) := g(N,X), ∀X ∈
Γ(TM). The local second fundamental form B of M satisfies B(X,PY ) =
g(A∗

EX,PY ), B(X,E) = 0, B(A∗
EX,Y ) = B(X,A∗

EY ) and g(A∗
EX,N) =

0. The local second fundamental form C of S(TM) satisfies C(X,PY ) =
g(ANX,PY ).

Denote by R and R the Riemann curvature tensors of M and M , respec-
tively. From Gauss-Codazzi equations [9], we have the following, for any X,
Y , Z ∈ Γ(TM|U ),

R(X,Y )Z = R(X,Y )Z + B(X,Z)ANY − B(Y,Z)ANX(2.15)
+ {(∇XB)(Y,Z) − (∇Y B)(X,Z)
+ τ(X)B(Y,Z) − τ(Y )B(X,Z)}N,

g(R(X,Y )Z,N) = g(R(X,Y )Z,N),(2.16)
g(R(X,Y )PZ,N) = (∇XC)(Y, PZ) − (∇Y C)(X,PZ)(2.17)

+ τ(Y )C(X,PZ) − τ(X)C(Y, PZ),
g(R(X,Y )E,N) = C(Y,A∗

EX) − C(X,A∗
EY ) − 2dτ(X,Y ).(2.18)
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§3. Lightlike hypersurfaces of indefinite Sasakian manifolds

Let (M, φ, ξ, η, g) be an indefinite Sasakian manifold and let (M, g) be a light-
like hypersurface, tangent to the structure vector field ξ (ξ ∈ TM). If E is
a local section of TM⊥, then g(φE,E) = 0, and φE is tangent to M . Thus
φ(TM⊥) is a distribution on M of rank 1 such that φ(TM⊥) ∩ TM⊥ = {0}.
This enables us to choose a screen distribution S(TM) such that it contains
φ(TM⊥) as a vector subbundle. If we consider a local section N of tr(TM).
Since g(φN,E) = −g(N, φE) = 0, we deduce that φE belongs to S(TM). On
the other hand, since g(φN,N) = 0, we see that the component of φN with
respect to E vanishes. Thus φN ∈ Γ(S(TM)). From the last equation of
(2.2), we have g(φN, φE) = 1. Therefore, φ(TM⊥) ⊕ φ(tr(TM)) (direct sum
but not orthogonal) is a non-degenerate vector subbundle of S(TM) of rank
two.

It is known [4] that if M is tangent to the structure vector field ξ, then ξ
belongs to S(TM). using this and since g(φE, ξ) = g(φN, ξ) = 0, there exists
a non-degenerate distribution D0 of rank 2n − 4 on M such that

(3.1) S(TM) = {φ(TM⊥) ⊕ φ(tr(TM))} ⊥ D0 ⊥< ξ >,

where < ξ >= Span{ξ}. It is easy to check that the distribution D0 is
invariant under φ, i.e. φ(D0) = D0.

Example 2. Let M be a hypersurface of (R7, φ, ξ, η, g) (indefinite Sasakian
manifold defined in Example 1) given by

M =
{
(x1, ..., x7) ∈ R7 : x5 = x4

}
,

where (x1, ..., x7) is a local coordinate system in R7. Thus, the tangent space
TM is spanned by {Ui}1≤i≤6, where U1 = ∂

∂x1
, U2 = ∂

∂x2
, U3 = ∂

∂x3
, U4 =

∂
∂x4

+ ∂
∂x5

, U5 = ∂
∂x6

, U6 = ξ and the distribution TM⊥ of rank 1 is spanned
by E = ∂

∂x4
+ ∂

∂x5
. It follows that TM⊥ ⊂ TM . Then M is a 6-dimensional

lightlike hypersurface of R7. Also, the transversal bundle tr(TM) is spanned
by N = 2(− ∂

∂x4
+ ∂

∂x5
). On the other hand, by using the almost contact

structure (φ, ξ, η) of R7 and also by taking into account the decomposition
of screen distribution S(TM) given in (3.1), the distribution D0 is spanned
by {U5, φU5 = −U3 − 1

2x6ξ}, and the distributions < ξ >, φ(TM⊥) and
φ(tr(TM)) are spanned, respectively, by ξ, φE = −U1 +U2 and φN = 2(U1 +
U2 + x4ξ). Hence M is a lightlike hypersurface of (R7, φ, ξ, η, g).

Moreover, from (2.8) and (2.9) we obtain the decompositions

(3.2) TM = {φ(TM⊥) ⊕ φ(tr(TM))} ⊥ D0 ⊥< ξ >⊥ TM⊥,
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(3.3) TM |M = {φ(TM⊥) ⊕ φ(tr(TM))} ⊥ D0 ⊥< ξ >⊥ (TM⊥ ⊕ tr(TM)).

Now, we consider the distributions on M ,

(3.4) D := TM⊥ ⊥ φ(TM⊥) ⊥ D0 and D′ := φ(tr(TM)).

Then D is invariant under φ and

(3.5) TM =
(
D ⊕ D′) ⊥< ξ > .

Let us consider the local lightlike vector fields U := −φN , V := −φE. Then,
from (3.5), any X ∈ Γ(TM) is written as

(3.6) X = RX + QX + η(X)ξ, QX = u(X)U,

where R and Q are the projection morphisms of TM into D and D′, respec-
tively, and u is a differential 1-form locally defined on M by u(X) = g(X,V ).
Applying φ to (3.6), using (2.1) and noting that φ

2
N = −N , we obtain

(3.7) φX = φX + u(X)N,

where φ is a tensor field of type (1, 1) defined on M by φX := φRX, for any
X ∈ Γ(TM). Again, applying φ to (3.7) and using (2.1), we also have

(3.8) φ2X = −X + η(X)ξ + u(X)U, ∀X ∈ Γ(TM)

Now applying φ to the equation (3.8) and since φU = 0, we obtain φ3 +φ = 0,
which shows that φ is an f -structure [9] of constant rank.

As was proved in Bejancu-Duggal [9] any non-degenerate real hypersurface
of an indefinite almost Hermitian manifold M inherits an almost contact metric
structure. However, this is not the case for a lightlike hypersurface of the
indefinite Sasakian manifold. More precisely, by using (2.2) and (3.7) we
derive that, for any X, Y ∈ Γ(TM),

(3.9) g(φX, φY ) = g(X,Y ) − η(X)η(Y ) − u(Y )v(X) − u(X)v(Y ),

where v is a 1-form locally defined on M by v(X) = g(X,U), ∀X ∈ Γ(TM).
By direct calculations, we have the following useful identities

∇Xξ = −φX,(3.10)
B(X, ξ) = −u(X),(3.11)
C(X, ξ) = −v(X),(3.12)
B(X,U) = C(X,V ),(3.13)
(∇Xu)Y = −B(X,φY ) − u(Y )τ(X),(3.14)
(∇Xφ)Y = g(X,Y )ξ − η(Y )X − B(X,Y )U + u(Y )ANX.(3.15)
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§4. Locally symmetric lightlike hypersurfaces in indefinite
Sasakian spaces form

Let M be a lightlike hypersurface of an indefinite Sasakian space form M(c)
with ξ ∈ TM . Let us consider the pair {E,N} on U ⊂ M (Theorem 1). By
using (2.6 ), (2.15) and (3.7), and comparing the tangential and transversal
parts of the both sides, we have, for any X, Y , Z ∈ Γ(TM),

R(X,Y )Z =
c + 3

4
{g(Y,Z)X − g(X,Z)Y } +

c − 1
4

{η(X)η(Z)Y(4.1)

− η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ + g(φY,Z)φX

− g(φX,Z)φY − 2g(φX, Y )φZ} + B(Y,Z)ANX − B(X,Z)ANY,

and

(∇XB)(Y,Z) − (∇Y B)(X,Z) = τ(Y )B(X,Z) − τ(X)B(Y,Z)(4.2)

+
c − 1

4
{g(φY,Z)u(X) − g(φX,Z)u(Y ) − 2g(φX, Y )u(Z)}.

A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian manifold
(M, g) is said to be locally symmetric, if and only if, for any X, Y , Z, T ,
W ∈ Γ(TM) and N ∈ Γ(tr(TM)), the following hold ([10]):

(4.3) g((∇W R)(X,Y )Z,PT ) = 0 and g((∇W R)(X,Y )Z,N) = 0.

That is,
(∇W R)(X,Y )Z = 0.

Using the lemma 3.2 in [10], for any W , X, Y , Z ∈ Γ(TM), T ∈ Γ(S(TM))
and N ∈ Γ(tr(TM)), we have,

g((∇W R)(X,Y )Z, T ) = g((∇W R)(X,Y )Z, T ) + (∇W B)(X,Z)C(Y, T )
+ B(X,Z)g((∇W AN )Y, T ) − (∇W B)(Y,Z)C(X,T )
− B(Y,Z)g((∇W AN )X,T ) − B(Y,Z)τ(X)C(W,T )(4.4)
+ (∇Y B)(X,Z)C(W,T ) − (∇XB)(Y,Z)C(W,T )
+ B(X,Z)τ(Y )C(W,T ) − B(W,X)R(N,Y, Z, T )
− B(W,Y )R(X,N,Z, T ) − B(W,Z)R(X,Y,N, T )

and

g((∇W R)(X,Y )Z,N) = g((∇W R)(X,Y )Z,N)(4.5)
+ B(X,Z)g((∇W (ANY ), N) − B(Y,Z)g((∇W (ANX), N)
− B(W,X)R(N,Y, Z,N) − B(W,Y )R(X,N,Z,N).
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Lemma 1. Let (M(c), g) be an indefinite Sasakian space form and R the
Riemann curvature tensor of Levi-Civita connection ∇. Then we have, for
any W , X, Y , Z ∈ Γ(TM),

(∇W R)(X,Y )Z =
c − 1

4
{−g(φW,X)η(Z)Y − g(φW,Z)η(X)Y(4.6)

+ g(φW, Y )η(Z)X + g(φW,Z)η(Y )X − g(X,Z)g(φW, Y )ξ
− g(X,Z)η(Y )φW + g(Y,Z)g(φW,X)ξ + g(Y,Z)η(X)φW

+ g(W,Y )η(Z)φX − g(W,Z)η(Y )φX + g(φY,Z)g(W,X)ξ
− g(φY,Z)η(X)W − g(W,X)η(Z)φY + g(W,Z)η(X)φY

− g(φX,Z)g(W,Y )ξ + g(φX,Z)η(Y )W − 2g(W,X)η(Y )φZ

+ 2g(W,Y )η(X)φZ − 2g(φX, Y )g(W,Z)ξ + 2g(φX, Y )η(Z)W}.

Proof. Using the relation (2.6), let decompose the Riemann curvature R on
M by R = R1 + R2, where, for any X, Y , Z ∈ Γ(TM),

R1(X,Y )Z =
c + 3

4
{g(Y,Z)X − g(X,Z)Y },(4.7)

R2(X,Y )Z =
c − 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ(4.8)

− g(Y,Z)η(X)ξ + g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}.

By covariant derivation of R, we have,

(∇W R)(X,Y )Z = (∇W R2)(X,Y )Z = ∇W (R2(X,Y )Z) − R2(∇W X,Y )Z
− R2(X,∇W Y )Z − R2(X,Y )∇W Z.(4.9)

By direct calculation, using (4.8) and the definition of covariant derivative of
differential forms, we obtain the result.

It is known that in locally symmetric semi-Riemannian manifold M , the
locally symmetric lightlike hypersurfaces are totally geodesic lightlike hyper-
surfaces if the vector field ANE is non-null (see [10]). Also, by using Lemma
1, we infer that all locally symmetric indefinite Sasakian space forms M(c)
have φ-sectional curvature c = 1. So, in indefinite Sasakian space form M(c)
we have the following.

Theorem 2. There are no locally symmetric lightlike hypersurfaces of indefi-
nite Sasakian space forms M(c) (c 6= 1), tangent to the structure vector field
ξ. Moreover, if M is a lightlike hypersurface of an indefinite Sasakian space
form M(c = 1) of constant curvature c = 1 with ξ ∈ TM , then M is locally
symmetric if and only if it is totally geodesic.
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Proof. Let M be a locally symmetric lightlike hypersurface of an indefinite
Sasakian space form M(c). Suppose c 6= 1. From (4.6), we have, for any W ,
X, Y , Z ∈ Γ(TM),

g((∇W R)(X,Y )Z,N)(4.10)

=
c − 1

4
{−g(φW,X)η(Z)θ(Y ) − g(φW,Z)η(X)θ(Y )

+ g(φW, Y )η(Z)θ(X) + g(φW,Z)η(Y )θ(X) − g(X,Z)η(Y )v(W )
+ g(Y,Z)η(X)v(W ) + g(W,Y )η(Z)v(X) − g(W,Z)η(Y )v(X)
− g(φY,Z)η(X)θ(W ) − g(W,X)η(Z)v(Y ) + g(W,Z)η(X)v(Y )
+ g(φX,Z)η(Y )θ(W ) − 2g(W,X)η(Y )v(Z) + 2g(W,Y )η(X)v(Z)
+ 2g(φX, Y )η(Z)θ(W )}.

From relation (2.6), we have R(E,N,E,N) = c+3
4 . By taking X = E and

Z = E in (4.5) and (4.10), we obtain for any Y , W ∈ Γ(TM),

(4.11) −c + 3
4

B(W,Y ) = g((∇W R)(E, Y )E,N) =
c − 1

4
g(φW,E)η(Y ).

That is,

(4.12) −c + 3
4

B(W,Y ) =
c − 1

4
u(W )η(Y ).

Since the local second fundamental form B is symmetric, the relation (4.12)
leads to

(c − 1) {u(W )η(Y ) − u(Y )η(W )} = 0.

Taking Y = ξ and W = U , we have c = 1 which is a contradiction. Hence,
the claim hold. On the other hand, let M is a lightlike hypersurface of an
indefinite Sasakian space form M(c = 1) of constant curvature c = 1 with
ξ ∈ TM . If M is locally symmetric, we have again the relation (4.12) which
implies B = 0. Conversely if (M, g) is totally geodesic, using (4.4), (4.5) and
(4.6), g((∇W R)(X,Y )Z,PT ) = 0 and g((∇W R)(X,Y )Z,N) = 0, that is, M
is locally symmetric. This completes the proof.

Theorem 2 generates some lightlike geometric aspects on locally symmetric
lightlike hypersurfaces of an indefinite Sasakian space form M(c = 1) by using,
for instance, the Duggal-Bejancu Theorem ([9], Theorem 2.2 page 88).

Note that the result of Theorem 2 is similar to the one from Theorem 3.1
in [10] where the ambient manifold was considered to be locally symmetric
together with a supplementary condition on the shape operator of its sub-
manifold. This is not the case in our considered ambient manifold. In case of
Sasakian manifolds, Theorem 2 contains Theorem 3.1 in [10].



188 O. LUNGIAMBUDILA, F. MASSAMBA AND J. TOSSA

Now, we pay attention to a specific example of the non-existence of lightlike
locally symmetric hypersurfaces in indefinite Sasakian space forms M(c) (c 6=
1), tangent to the structure vector field ξ (Theorem 2).

A submanifold M is said to be totally umbilical lightlike hypersurface of a
semi-Riemannian manifold M if the local second fundamental form B of M
satisfies ([9])

B(X,Y ) = ρg(X,Y ), ∀X, Y ∈ Γ(TM),(4.13)

where ρ is a smooth function on U ⊂ M . The Gauss formula implies that
φX = −∇Xξ = −∇Xξ − B(X, ξ)N . Since φξ = 0, we have B(ξ, ξ) = 0.

If we assume that M is totally umbilical lightlike hypersurface of a semi-
Riemannian manifold M , then we have B(X,Y ) = ρg(X,Y ), for any X, Y ∈
Γ(TM), which implies that 0 = B(ξ, ξ) = ρ. Hence M is totally geodesic.
Also, φX = φX −ρη(X)N = φX, that is M is invariant in M . It follows from
this that a Sasakian M(c) does not admit any non-totally geodesic, totally
umbilical lightlike hypersurface. From this point of view, Bejancu [2] con-
sidered the concept of totally contact umbilical semi-invariant submanifolds.
The notion of totally contact umbilical submanifolds was first defined by Kon
[11]. We follow Bejancu [2] definition of totally contact umbilical submani-
folds and state the following definition for totally contact umbilical lightlike
hypersurfaces.

A submanifold M is said to be totally contact umbilical lightlike hypersur-
face of a semi-Riemannian manifold M if the second fundamental form h of
M satisfies ([15])

(4.14) h(X,Y ) = {g(X,Y ) − η(X)η(Y )}H + η(X)h(Y, ξ) + η(Y )h(X, ξ),

for any X, Y ∈ Γ(TM), where H is a normal vector field on M (that is,
H = λN , λ being a smooth function on U ⊂ M). The notion of totally contact
umbilical submanifolds of Sasakian manifolds corresponds to that of totally
umbilical submanifolds of Kählerian manifolds (see [11] for more details). The
totally contact umbilical condition (4.14) can be rewritten as,

h(X,Y ) = B(X,Y )N = {B1(X,Y ) + B2(X,Y )}N,(4.15)

where B1(X,Y ) = λ {g(X,Y ) − η(X)η(Y )} and B2(X,Y ) = −η(X)u(Y ) −
η(Y )u(X). If the λ = 0 (that is, B1 = 0), then the lightlike hypersurface M
is said to be totally contact geodesic. The notion of totally contact geodesic
submanifolds of Sasakian manifolds corresponds to that of totally geodesic
submanifolds of Kählerian manifolds.

In [12], Massamba showed that if M is a totally contact umbilical lightlike
hypersurface of an indefinite Sasakian space form M(c) with ξ ∈ TM , that
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is, the second fundamental form h of M satisfies (4.14), then c = −3 and λ
satisfies the partial differential equations

E · λ + λτ(E) − λ2 = 0(4.16)

and

PX · λ + λτ(PX) = 0, ∀X ∈ Γ(TM).(4.17)

These equations are similar to those of the indefinite Kählerian case (see [9]
for details). However, there are non trivial differences arising in the details
of the proof [12]. We also note that the partial differential equations (4.16)
and the modified (4.17), PX · λ + λτ(PX) = 0 with PX ∈ Γ(S(TM) − 〈ξ〉)
(that is, we exclude the partial differential equation in terms of ξ) arise when
the submanifold M is a D ⊕ D′-totally umbilical lightlike hypersurface, that
is, B(X,Y ) = ρg(X,Y ), for any X, Y ∈ Γ(D ⊕D′). Because, in the direction
of D ⊕ D′, the function ρ is nowhere vanishing. In general, such a concept is
called proper totally umbilical [9]. The terminology of proper also is going to
be used in the case of totally contact umbilical, that is, when, in the relation
(4.14), the smooth function λ is nowhere vanishing.

Suppose c = −3, then the relation (4.1) becomes

R(X,Y )Z = η(Y )η(Z)X − η(X)η(Z)Y − g(X,Z)η(Y )ξ(4.18)
+ g(Y,Z)η(X)ξ − g(φY,Z)φX + g(φX,Z)φY + 2g(φX, Y )φZ

+ B(Y,Z)ANX − B(X,Z)ANY.

From (2.8), the curvature tensor R is written as

R(X,Y )Z = R(PX,PY )PZ + θ(X)R(E,PY )PZ + θ(Y )R(PX,E)PZ

+ θ(Z)R(PX,PY )E + θ(X)θ(Z)R(E,PY )E
+ θ(Y )θ(Z)R(PX,E)E,(4.19)

where, in particular and using (4.18), the component R(E, .)E is given by

R(E,PY )E = 3u(PY )V.(4.20)
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Using (4.18), the covariant derivative of R is given by, for any W ∈ Γ(TM),

(∇W R)(E,PY )E = ∇W R(E,PY )E − R(∇W E,PY )E(4.21)
− R(E,∇W PY )E − R(E,PY )∇W E

= 3W.u(PY )V + 3u(PY )∇W V + g(φPY,E)φ∇W E

− g(φ∇W E,E)φPY − 2g(φ∇W E,PY )φE + g(φ∇W PY,E)φE

− 2g(φE,∇W PY )φE − η(PY )η(∇W E)E + g(φPY,∇W E)φE

− g(φE,∇W E)φPY − 2g(φE,PY )φ∇W E − B(PY,∇W E)ANE

= 3W.u(PY )V + 3u(PY )∇W V + u(PY )φ∇W E − u(∇W E)φPY

+ 2g(φ∇W E,PY )V − u(∇W PY )V − 2u(∇W PY )V
− η(PY )η(∇W E)E − g(φPY,∇W E)V + u(∇W E)φPY

+ 2u(PY )φ∇W E − B(PY,∇W E)ANE

which implies

g((∇W R)(E,PY )E,N) = 3u(PY )g(∇W V,N) + u(PY )g(φ∇W E,N)
− η(PY )η(∇W E) + 2u(PY )g(φ∇W E,N)

= − η(PY )u(W ).(4.22)

Taking PY = ξ and W = U in (4.22), we obtain g((∇ξR)(E, ξ)E,N) = −1.
This means that a totally contact umbilical lightlike hypersurfaces of an in-
definite Sasakian space form M(c) with ξ ∈ TM cannot be locally symmetric.
Therefore, there are no totally contact umbilical lightlike hypersurfaces of in-
definite Sasakian space forms M(c) with ξ ∈ TM which are locally symmetric.

Apart from totally contact umbilical lightlike hypersurfaces, we have

Example 3. Let M be a hypersurface of (R7, φ, ξ, η, g), of Example 2, given
by

M =
{
(x1, ..., x7) ∈ R7 : x5 = x4

}
,

where (x1, ..., x7) is a local coordinate system in R7. As explained in Example
2, M is a lightlike hypersuface of R7 having a local quasi-orthogonal field of
frames {U1 = ∂

∂x1
, U2 = ∂

∂x2
, U3 = ∂

∂x3
, U4 = E = ∂

∂x4
+ ∂

∂x5
, U5 = ∂

∂x6
, U6 =

ξ, N = 2(− ∂
∂x4

+ ∂
∂x5

)} along M . Then, by straightforward calculations, we
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obtain

∇U1N = x4(U1 + U2) +
1
2
(1 + 2x2

4)ξ,

∇U2N = x4(U1 + U2) +
1
2
(2x2

4 − 1)ξ,

∇U3N = x6(U1 + U2) + x4x6ξ,

∇U6N = U, ∇U4N = ∇U5N = 0,

∇U1E = −1
2
x4V − 1

4
ξ, ∇U2E = −1

2
x4V − 1

4
ξ,

∇U3E = −1
2
x6V, ∇U6E = V,

∇U4E = ∇U5E = 0.

Using these equations above, the differential 1-form τ vanishes i.e. τ(X) = 0,
for any X ∈ Γ(TM). So, from Gauss and Weingarten formulae we infer

ANU1 = −x4(U1 + U2) −
1
2
(1 + 2x2

4)ξ,

ANU2 = −x4(U1 + U2) −
1
2
(2x2

4 − 1)ξ,

ANU3 = −x6(U1 + U2) − x4x6ξ,

ANU6 = −U, ANU4 = ANU5 = 0,

A∗
EU1 =

1
2
x4V +

1
4
ξ, A∗

EU2 =
1
2
x4V +

1
4
ξ,

A∗
EU3 =

1
2
x6V, A∗

EU4 = A∗
EU5 = 0, A∗

EU6 = −V.

One of the components of the covariant derivative of the curvature tensor R
of M is given

(∇U1R)(ξ, E)ξ = ∇U1R(ξ, E)ξ − R(∇U1ξ, E)ξ − R(ξ,∇U1E)ξ
−R(ξ, E)∇U1ξ

=
1
2
x4V +

1
4
ξ − 1

2
x4V(4.23)

=
1
4
ξ,

which implies

g((∇U1R)(ξ, E)ξ, ξ) = g(
1
4
ξ, ξ) =

1
4
.

This means that M is a lightlike hypersurface of an indefinite Sasakian space
form (R7, φ, ξ, η, g) of constant curvature c = −3 non locally symmetric.
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Next, we give an example on the second assertion of Theorem 2. The second
fundamental form h = B ⊗ N of M is said to be parallel if

(∇Xh)(Y,Z) = 0,(4.24)

for any X, Y , Z ∈ Γ(TM). That is,

(∇XB)(Y,Z) = −τ(X)B(Y,Z).(4.25)

A submanifold of a semi-Riemannian manifold with parallel fundamental form
h is called a parallel submanifold. So, as was proved in [15], there are no
parallel lightlike hypersurfaces of indefinite Sasakian space forms M(c 6= 1),
tangent to the structure vector field ξ.

If M is parallel, then, by Lemma 3.6 in [15], c = 1 and from (4.1), the
curvature tensor R of M is given by, for any X,Y, Z ∈ Γ(TM),

(4.26) R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + B(Y,Z)ANX − B(X,Z)ANY.

Using (4.25), the covariant derivative of R is given by

(∇W R)(X,Y )Z = (∇W g)(Y,Z)X − (∇W g)(X,Z)Y − (∇W B)(X,Z)ANY

+ (∇W B)(Y,Z)ANX − B(X,Z)(∇W AN )Y
+ B(Y,Z)(∇W AN )X

= {B(W,Y )θ(Z) + B(W,Z)θ(Y )}X − {B(W,X)θ(Z)(4.27)
+ B(W,Z)θ(X)}Y + τ(W )B(X,Z)ANY

− τ(W )B(Y,Z)ANX − B(X,Z)(∇W AN )Y
+ B(Y,Z)(∇W AN )X.

Taking X = Z = E into (4.27) and since B(·, E) = 0, we have

g((∇W R)(E, Y )Z,N) = B(W,Y ).(4.28)

We have the following result.

Theorem 3. Let M(c) be an indefinite Sasakian space form. Let M be a
lightlike hypersurface of M(c) with ξ ∈ TM . If M is parallel, then M is locally
symmetric if and only if M is totally geodesic.

Proof. The converse of the Theorem follows from (4.27).

Note that the covariant derivative of the second fundamental form h de-
pends on ∇, N and τ which depend on the choice of the screen vector bundle.
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Suppose a screen S(TM) changes to another screen S(TM)′. Following are
the local transformation equations due to this change (see [9], page 87):

W ′
i =

2n−1∑
j=1

W j
i (Wj − εjcjE),

N ′ = N − 1
2

{
2n−1∑
i=1

εi(ci)2
}

E +
2n−1∑
i=1

ciWi,

τ ′(X) = τ(X) + B(X,N ′ − N),

∇′
XY = ∇XY + B(X,Y ){1

2
(
2n−1∑
i=1

εi(ci)2)E −
2n−1∑
i=1

ciWi},(4.29)

where {Wi} and {W ′
i} are the local orthonormal bases of S(TM) and S(TM)′

with respective transversal sections N and N ′ for the same null section E.
Here ci and W j

i are smooth functions on U and {ε1, ..., ε2n−1} is the signature
of the basis {W1, ...,W2n−1}. The covariant derivatives ∇ of h = B⊗N and ∇′

of h′ = B ⊗ N ′ in the screen distributions S(TM) and S(TM)′, respectively,
are related as follows: for any X, Y , Z ∈ Γ(TM),

g((∇′
Xh′)(Y,Z), E) = g((∇Xh)(Y,Z), E) + L(X,Y, Z),(4.30)

where L is given by L(X,Y, Z) = B(X,Y )B(Z,W ) + B(X,Z)B(Y,W ) +
B(Y,Z)B(X,W ), with W =

∑2n−1
i=1 ciWi. It is easy to check that the par-

allelism of h is independent of the screen distribution S(TM) (∇′h′ ≡ ∇h) if
and only if the second fundamental form B of M vanishes identically on M .

As is showed above, a totally contact umbilical lightlike hypersurfaces of an
indefinite Sasakian space form M(c) with ξ ∈ TM is not locally symmetric but
it may contain a distribution in which one of the components of the covariant
derivative of curvature tensor R vanishes. Next we give a characterization of
this kind of submanifold containing such a vanishing condition on the curvature
tensor R. For any W ∈ Γ(TM),

(∇W R)(U,E)V = ∇W R(U,E)V − R(∇W U,E)V − R(U,∇W E)V(4.31)
− R(U,E)∇W V

= 2 ∇W E − W (λ)ANE − λ∇W ANE − 2τ(W )E + λτ(W )ANE

+ u(W )ξ + 2τ(W )E + λ2u(W )ANU + λAN∇W E + u(ANW )V
−2 φ∇W V − λτ(W )ANE

= 2 ∇W E − W (λ)ANE − λ∇W ANE + λτ(W )ANE + u(W )ξ
+ λ2u(W )ANU + λAN∇W E + u(ANW )V − 2φ∇W V − λτ(W )ANE.
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Consequently

g((∇W R)(U,E)V,N) = 2g(∇W E,N) − λg(∇W ANE,N) − 2g(φ∇W V,N)
= −2τ(W ) + λg(ANE,∇W N) + 2τ(W )
= −λg(ANE,ANW ).(4.32)

Theorem 4. Let (M, g, S(TM)) be a totally contact umbilical lightlike hy-
persurface of an indefinite Sasakian space form (M(c), g) with ξ ∈ TM such
that g((∇ER)(U,E)V,N) = 0 and ANE is not a null vector field. Then M is
totally contact geodesic.

Proof. The proof follows straightforward from (4.32).

From Theorem 4, we obtain

Corollary 1. There are no proper totally contact umbilical lightlike hyper-
surfaces of indefinite Sasakian space forms M(c) with ξ ∈ TM such that
g((∇ER)(U,E)V,N) = 0 and ANE is not a null vector field.

Let M be a lightlike hypersurface of an indefinite Sasakian manifolds M
with ξ ∈ TM . It is easy to check that M is (D ⊥ 〈ξ〉, D′)-mixed totally
geodesic, that is, for any X ∈ Γ(D ⊥ 〈ξ〉), B(X,U) = 0, if and only if,
ANX ∈ Γ(φ(TM⊥) ⊥ D0 ⊥ 〈ξ〉), ∀X ∈ Γ(D ⊥ 〈ξ〉) [14]. In particular
ANE ∈ Γ(φ(TM⊥) ⊥ D0), since g(ANE, ξ) = 0. That is,

ANE = v(ANE)V +
2n−4∑
i=1

C(E,Fi)
g(Fi, Fi)

Fi,(4.33)

where {Fi}1≤i≤2n−4 is an orthogonal basis of D0 and g(Fi, Fi) 6= 0. This
means that, in a (D ⊥ 〈ξ〉, D′)-mixed totally geodesic lightlike hypersurface
of an indefinite Sasakian manifolds M with ξ ∈ TM , ANE is not a null
vector. Moreover, if the lightlike vector field V is parallel with respect to ∇,
(∇W R)(U,E)V = 0 which implies that g((∇ER)(U,E)V,N) = 0.

Therefore, there exist vector fields on M which satisfy the conditions given
in the Theorem 4 and the Corollary 1.

A submanifold M is said to be an η-totally umbilical lightlike hypersurface
of a semi-Riemannian manifold M if the second fundemental form h of M
satisfies ([15]), for any X, Y ∈ Γ(TM),

h(X,Y ) = λ {g(X,Y ) − η(X)η(Y )}N.(4.34)

From this definition, we can deduce that the totally contact umbilical lightlike
hypersurface M of M is also η-totally umbilical in the direction of D ⊥ 〈ξ〉,
since the 1-form u vanishes in that direction.
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If M is an η-totally umbilical lightlike hypersurface of an indefinite Sasakian
manifold (M, g) with ξ ∈ TM , we have, for any X, Y , Z ∈ Γ(TM),

(4.35) g((∇Xh)(Y,Z), E) = (∇XB1)(Y,Z) + λτ(X) {g(Y,Z) − η(Y )η(Z)} ,

where B1 is defined in (4.15). Putting Z = ξ in (4.35), we obtain

g((∇Xh)(Y, ξ), E) = (∇XB1)(Y, ξ) + λτ(X) {g(Y, ξ) − η(Y )η(ξ)}
= λg(φX, Y ).(4.36)

If the second fundamental form h of the lightlike hypersurface M is parallel,
then, we have 0 = g((∇Xh)(Y, ξ), E) = λg(φX, Y ) which leads, by taking
X = E and Y = U , to λg(φE,U) = 0, that is λ = 0. Hence, B(X,Y ) = 0.
This means that an η-totally umbilical parallel lightlike hypersurface M of an
indefinite Sasakian manifold M with ξ ∈ TM is totally geodesic which implies
that it admits a metric connection (see [13] and [15] for details).

Also, in an η-totally umbilical lightlike hypersurface M of an indefinite
Sasakian space form M(c) of constant curvature c with ξ ∈ TM , we have, for
any Y , Z ∈ Γ(TM),

(4.37) (∇EB)(Y,Z) − (∇Y B)(E,Z) =
3
4
(c − 1)u(Y )u(Z) − τ(E)B(Y,Z).

By direct calculation, the left hand side gives

(∇EB)(Y,Z) − (∇Y B)(E,Z) = {g(Y,Z) − η(Y )η(Z)}E · λ(4.38)
+ λ{E · g(Y,Z) − η(Y )E · η(Z) − η(Z)E · η(Y )}
− λ {g(∇EY,Z) − η(∇EY )η(Z))} − λ {g(Y,∇EZ) − η(Y )η(∇EZ)}
+ λ {g(∇Y E,Z) − η(∇Y E)η(Z)} .

Putting pieces (4.37) and (4.38) together and taking Y = Z = U , we obtain,
3
4(c − 1)u(U)u(U) = 0, that is, c = 1. We have

Lemma 2. There are no η-totally umbilical lightlike hypersurfaces of indefinite
Sasakian space forms M(c 6= 1) with ξ ∈ TM .

Also, it has been proved in [13] that, when M is an η-totally umbilical
lightlike hypersurface of an indefinite Sasakian space form M(c) of constant
curvature c with ξ ∈ TM , the smooth function λ defined in (4.34) also satisfies
the partial differential equations (4.16) and (4.17).

Proposition 3. Let (M, g, S(TM)) be an η-totally umbilical lightlike hyper-
surface of an indefinite Sasakian space form (M(c), g) with ξ ∈ TM . If the
second fundamental form h of M is parallel, then M is locally symmetric.
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Proof. The proof follows from a direct calculation and the results above.

It is known that lightlike submanifolds whose screen distribution is inte-
grable have interesting properties. For any X, Y ∈ Γ(TM),

(4.39) u([X,Y ]) = B(X,φY ) − B(φX, Y ).

It is easy to check that the distribution D ⊥ 〈ξ〉 is integrable if and only if
B(X,φY ) = B(φX, Y ), ∀X, Y ∈ Γ(TM).

In the following this property is considered.

Definition 1. Let (M, g, S(TM)) be a screen integrable lightlike hypersurface
of a semi-Riemannian manifold (M, g). A leaf M ′ of S(TM) immersed in M
as a non-degenerate submanifold is said to be locally symmetric if the induced
curvature R∗ of Levi-Civita connection ∇∗ satisfies

(4.40) (∇∗
W R∗)(X,Y )Z = 0, ∀W,X, Y, Z ∈ Γ(TM ′).

In the following theorem, we show that local symmetry property of a screen
integrable lightlike hypersurface of an indefinite Sasakian space form is closely
related to the local symmetry property of leaves of its screen distribution.

Lemma 4. Let (M, g, S(TM)) be a locally symmetric lightlike hypersurface of
an indefinite Sasakian space form M(c) with ξ ∈ TM . Then, for any X, Y ,
Z, T ∈ Γ(TM), we have,

R(E, Y, Z, T ) = 0, R(X,E,Z, T ) = 0, R(X,Y,E, T ) = 0.

Proof. By Theorem 2, we have c = 1 which implies B = 0 and the proof is
completed by using relations (4.1).

In the sequel, we need the following Lemma.

Lemma 5. Let (M, g, S(TM)) be a lightlike hypersurface of a semi Rieman-
nian manifold (M, g). Then, for any X, Y ∈ Γ(TM) and Z ∈ Γ(S(TM)),

g((∇XA∗
E)Y,Z) = (∇XB)(Y,Z) and g((∇XAN )Y,Z) = (∇XC)(Y,Z).

Proof. For any X,Y ∈ Γ(TM) and Z ∈ Γ(S(TM)) we have

g((∇XA∗
E)Y,Z) = g(∇∗

X(A∗
EY ), Z) − g(A∗

E(∇XY ), Z)
= X.g(A∗

EY,Z) − g(A∗
EY,∇∗

XZ) − B(∇XY,Z)
= X.B(Y,Z) − B(Y,∇XZ) − B(∇XY,Z)
= (∇XB)(Y,Z).

The second relation is obtained by similar calculation.



SYMMETRY PROPERTIES OF LIGHTLIKE HYPERSURFACES 197

Theorem 5. Let (M, g, S(TM)) be a screen integrable lightlike hypersurface
of an indefinite Sasakian space form M(c) with ξ ∈ TM . If M is locally
symmetric, then any leaf M ′ of S(TM) immersed in M as a non-degenerate
submanifold is locally symmetric.

Proof. Using Gauss and Weingarten equations, we have for any X, Y , Z ∈
Γ(TM ′),

R(X,Y )Z = R∗(X,Y )Z + C(X,Z)A∗
EY − C(Y,Z)A∗

EX

+
{
(∇XC)(Y,Z) − (∇Y C)(X,Z) + τ(Y )C(X,Z)

− τ(X)C(Y,Z)
}
E,(4.41)

where (∇XC)(Y,Z) = X.C(Y,Z) − C(∇∗
XY,Z) − C(Y,∇∗

XZ).
By covariant derivative, we have for any W , X, Y , Z ∈ Γ(TM ′),

(∇W R)(X,Y )Z = (∇∗
W R∗)(X,Y )Z + (∇W C)(X,Z)A∗Y(4.42)

− (∇W C)(Y,Z)A∗X + C(X,Z)(∇W A∗)Y − C(Y,Z)(∇W A∗)X
−

{
(∇XC)(Y,Z) − (∇Y C)(X,Z) + τ(Y )C(X,Z)

− τ(X)C(Y,Z)
}
A∗W +

{
(∇W∇XC)(Y,Z) − (∇W∇Y C)(X,Z)

+ C(X,Z)(∇W τ)Y − C(Y,Z)(∇W τ)X + τ(Y )(∇W C)(X,Z)
− τ(X)(∇W C)(Y,Z) + τ(W )(∇Y C)(X,Z) − τ(W )(∇XC)(Y,Z)
+ τ(W )τ(X)C(Y,Z) − τ(W )τ(Y )C(X,Z) + C(X,Z)C(W,A∗Y )
− C(Y,Z)C(W,A∗X) + (∇∇∗

W Y C)(X,Z) − (∇∇∗
W XC)(Y,Z)

+ C(W,R∗(X,Y )Z)
}
E − R(C(W,X)E, Y )Z − R(X,C(W,Y )E)Z

− R(X,Y )C(W,Z)E.

So, for any W,X, Y, Z, T ∈ Γ(TM ′), we have,

g((∇W R)(X,Y )Z, T ) = g((∇∗
W R∗)(X,Y )Z, T ) + B(Y, T )(∇W C)(X,Z)

− B(X,T )(∇W C)(Y,Z) + C(X,Z)g((∇W A∗)Y, T )
− C(Y,Z)g((∇W A∗)X,T ) + B(W,T )(∇Y C)(X,Z)
− B(W,T )(∇XC)(Y,Z) + B(W,T )τ(X)C(Y,Z)(4.43)
− B(W,T )τ(Y )C(X,Z) − C(W,X)R(E, Y, Z, T )
− C(W,Y )R(X,E,Z, T ) − C(W,Z)R(X,Y,E, T ).

By virtue of Lemma 5, we have

g((∇W A∗)Y, T ) = (∇W B)(Y, T ).

If M is locally symmetric, then, using Theorem 2, c = 1 and B = 0. By Lemma
4, g((∇∗

W R∗)(X,Y )Z, T ) = 0, that is M ′ is locally symmetric in M .
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§5. Semi-symmetric lightlike hypersurfaces in indefinite Sasakian
spaces form

In this section, we deal with semi-symmetric lightlike hypersurfaces in indef-
inite Sasakian spaces form, tangent to the structure vector field ξ. First of
all, a lightlike hypersurface M of a semi-Riemannian manifold M is said to be
semi-symmetric if the following condition is satisfied ([18])

(5.1) (R(W1,W2) · R)(X,Y, Z, T ) = 0, ∀W1,W2, X, Y, Z, T ∈ Γ(TM),

where R is the induced Riemann curvature on M . This is equivalent to

−R(R(W1,W2)X,Y, Z, T ) − ... − R(X,Y, Z,R(W1,W2)T ) = 0.

In general the condition (5.1) is not equivalent to (R(W1, W2) ·R)(X,Y )Z = 0
like in the non-degenerate case. Indeed, by direct calculation we have, for any
W1, W2, X, Y , Z, T ∈ Γ(TM),

(R(W1,W2) · R)(X,Y, Z, T ) = g((R(W1,W2) · R)(X,Y )Z, T )(5.2)
+ (R(W1,W2) · g)(R(X,Y )Z, T ).

In the sequel, we need the following proposition.

Proposition 6. Let M be a lightlike hypersurface of an indefinite Sasakian
space form M(c) with ξ ∈ TM . Then, for any W1,W2, Y, T ∈ Γ(TM) and
E ∈ Γ(TM⊥), we have

(R(W1,W2) · R)(E, Y,E, T ) = (R(W1,W2) · R)(E, Y,E, T )(5.3)
− B(W1, Y )R(E,ANW2, E, T ) + B(W2, Y )R(E,ANW1, E, T )
+ B(Y,R(W1,W2)E)g(ANE, T ) − B(W1, T )R(E, Y,E,ANW2)
+ B(W2, T )R(E, Y,E,ANW1) − {(∇W1B)(W2, T ) − (∇W2B)(W1, T )
+ τ(W1)B(W2, T ) − τ(W2)B(W1, T )}R(E, Y,E,N)
− {(∇W1B)(W2, Y ) − (∇W2B)(W1, Y ) + τ(W1)B(W2, Y )
− τ(W2)B(W1, Y )}R(E,N,E, T ) − θ(T ) {(∇EB)(Y,R(W1,W2)E)
− (∇Y B)(E,R(W1, W2)E) + τ(E)B(Y,R(W1,W2)E)} .

Proof. The proof follows from direct calculation by using (∇XB)(Y,E) =
(∇Y B)(X,E).

Next, we investigate the effect of semi-symmetry condition on geometry of
lightlike hypersurfaces in an indefinite Sasakian space form.

A submanifold M of a semi-Riemannian manifold is said to be (φ(TM⊥), D⊕
D′)-mixed totally geodesic if its second fundamental form h satisfies h(X,Y ) =
0 (equivalently B(X,Y ) = 0), for any X ∈ Γ(φ(TM⊥)) and Y ∈ Γ(D ⊕ D′).
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Theorem 6. Let M be a semi-symmetric lightlike hypersurface of indefinite
Sasakian space form M(c) with ξ ∈ TM . Then, at least one of the following
holds:

(i) c = 1,

(ii) ANE = 0,

(iii) M is (φ(TM⊥), D ⊕ D′)-mixed totally geodesic.

Proof. Let M be a semi-symmetric lightlike hypersurface of an indefinite
Sasakian space form M(c) of constant curvature c with ξ ∈ Γ(TM). From (4.1)
we have R(E,X)E = 3(c−1)

4 u(X)φE and since, by using (2.6), R(E,N,E,X) =
0 and R(E,X,E,N) = 0, by taking W1 = E and W2 = U into (5.3), we obtain,
for any Y , T ∈ Γ(TM),

(R(E,U) · R)(E, Y,E, T ) = B(Y,R(E,U)E)g(ANE, T )

= −3(c − 1)
4

B(Y, V )g(ANE, T ).(5.4)

By direct calculation, the left-hand side is given by (R(E,U)·R)(E, Y,E, T ) =
0. This equation implies, using (5.4), 3(c−1)

4 B(Y, V )g(ANE, T ) = 0, for any Y ,
T ∈ Γ(TM), which completes the proof.

Theorem 7. Let M be a lightlike hypersurface of an indefinite Sasakian space
form M(c = 1), with ξ ∈ TM and ANE is a not null vector field. Then M is
semi-symmetric if and only if it is totally geodesic.

Proof. Suppose that c = 1 and the vector field ANE non-null on M . Then the
curvature tensor R satisfies (4.26) and we have, for any X, Y , Z, T ∈ Γ(TM),

(R(E,X) · R)(E, Y, Z, T ) = −B(X,Y )B(ANE,Z)g(ANE, T )(5.5)
− B(Y,ANE)B(X,Z)g(ANE, T ) − B(Y,Z)B(X,T )g(ANE,ANE).

If M is semi-symmetric, the left-hand side of (5.5) vanishes and we have,

0 = B(X,Y )B(ANE,Z)g(ANE, T ) + B(Y,ANE)B(X,Z)g(ANE, T )
+ B(Y,Z)B(X,T )g(ANE,ANE).

which leads, by taking T = ξ and X = U , to 0 = B(Y,Z)g(ANE,ANE), that
is B(Y,Z) = 0, for any Y,Z ∈ Γ(TM). Conversely, suppose that B(X,Y ) =
0. Then, using the relation (4.26), R(W1,W2) · R = 0, that is, M is semi-
symmetric.

In virtue of Theorem 2 and Theorem 7, we have the following result.
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Theorem 8. Let M be a lightlike hypersurface of an indefinite Sasakian space
form M(c = 1) with ξ ∈ TM and ANE is a not null vector field. Then M is
locally symmetric if and only if M is semi-symmetric.

Theorem 9. Let M be a semi-symmetric lightlike hypersurface of an indefinite
Sasakian space form M(c) with ξ ∈ TM . If M is totally contact umbilical,
then M is totally contact geodesic or ANE = 0.

Proof. Let M be a totally contact umbilical lightlike hypersurface of an in-
definite Sasakian space forms M(c) with ξ ∈ TM . Then, as was mentioned
above, c = −3. If M is semi-symmetric. Using relations (4.14) and (5.4), we
obtain

−3
4
(c − 1)λu(Y )g(ANE,PT ) = 0, ∀ Y, T ∈ Γ(TM),(5.6)

which leads, by taking Y = φN , to λ = 0 or ANE = 0. This completes the
proof.

Corollary 2. There are no proper totally contact umbilical lightlike hypersur-
faces of indefinite Sasakian space forms M(c) with ξ ∈ TM and ANE 6= 0
which are semi-symmetric.

From Theorem 9, we deduce the following result.

Proposition 7. Let M be a semi-symmetric lightlike hypersurface of an in-
definite Sasakian space form M(c) with ξ ∈ TM such that ANE 6= 0. If M is
η-totally contact umbilical, then M is totally geodesic.

§6. Ricci semi-symmetric lightlike hypersurfaces in indefinite
Sasakian spaces form

In this section, we study Ricci semi-symmetric lightlike hypersurfaces of an
indefinite Sasakian spaces form, tangent to the structure vector field ξ. We
prove that Ricci semi-symmetric lightlike hypersurfaces are totally geodesic
under some condition.

A lightlike submanifold M of a semi-Riemannian manifold M is said to be
Ricci semi-symmetric if the following condition is satisfied ([7])

(6.1) (R(W1,W2) · Ric)(X,Y ) = 0, ∀W1,W2, X, Y ∈ Γ(TM),

where R and Ric are induced Riemannian curvature and Ricci tensor on M ,
respectively. The latter condition is eqivalent to

−Ric((R(W1,W2)X,Y ) − Ric(X, (R(W1,W2)Y ) = 0.
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By Proposition 5 in [14], we have, for any X,Y ∈ Γ(TM),

(6.2) Ric(X,Y ) = ag(X,Y ) − bη(X)η(Y ) + B(X,Y )trAN − B(ANX,Y ),

where a = (2n+1)(c+3)−8
4 and b = (2n+1)(c−1)

4 and trace tr is written with
respect to g restricted to S(TM).

In the following theorem we give result which shows the effect of Ricci semi-
symmetric condition on the geometry of lightlike hypersurfaces of an indefinite
Sasakian space form.

Theorem 10. Let M be a Ricci semi-symmetric lightlike hypersurface of an
indefinite Sasakian space form M(c) with ξ ∈ TM . Then either c = 1 or
Ric(E, V ) = 0. Moreover, if c = 1, then either M is totally geodesic or
Ric(E,ANE) = 0.

Proof. Let M be a lightlike hypersurface of an indefinite Sasakian space form
M(c) with ξ ∈ Γ(TM). We have, for any X, Y ,

(R(E,X) · Ric)(E, Y ) =
c − 1

4
{3au(X)u(Y ) + 3u(X)B(V, Y )trAN(6.3)

− 3u(X)B(ANV, Y ) − g(φX, Y )B(ANE, V ) + u(Y )B(ANE, φX)
+ 2u(X)B(ANE, φY )} + B(X,Y )B(ANE,ANE).

If M is Ricci semi-symmetric, then, by taking Y = E into (6.3), we obtain

3
4
(c − 1)u(X)B(φE,ANE) = 0

which implies, for X = φN , 3
4(c − 1)Ric(E, φE) = 0, since B(φE,ANE) =

−Ric(E, φE). On the other hand, suppose that c = 1. Using (6.3) and
B(ANE,ANE) = −Ric(E,ANE), we have B(X,Y )Ric(E,ANE) = 0 which
completes the proof.

From Theorem 10, we have the following result.

Theorem 11. Let M be a lightlike hypersurface of an indefinite Sasakian
space form M(c = 1) with ξ ∈ TM and Ric(E,ANE) 6= 0. Then M is Ricci
semi-symmetric if and only if M is totally geodesic.

Proof. The converse follows from (4.26), (6.1) and (6.2).

Let M be a lightlike hypersurface of an indefinite Sasakian space form M(c)
with ξ ∈ TM . If M is η-totally umbilical, then, by Lemma 2, c = 1 and using
the relation (6.3), we have

(R(E,X) · Ric)(E, Y ) = B(X,Y )B(ANE,ANE)
= λ2 {g(X,Y ) − η(X)η(Y )} g(ANE,ANE)(6.4)
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which leads, by taking X = V and Y = U , to

(R(E, V ) · Ric)(E,U) = λ2g(ANE,ANE)(6.5)

and we have the following result.

Proposition 8. Let M be an η-totally umbilical lightlike hypersurface of an
indefinite Sasakian space form M(c) with ξ ∈ TM and ANE is a not null
vector field. Then M is Ricci semi-symmetric if and only if M is totally
geodesic.

By Theorem 8 and Proposition 8, we have

Theorem 12. In η-totally umbilical lightlike hypersurfaces of indefinite Sasakian
space forms M(c), tangent to the structure vector field ξ such that ANE is a
not null vector field, the conditions (4.3), (5.1) and (6.1) are equivalent.

It is well known that the second fundamental form and the shape operator of
a non-degenerate hypersurface (in general, submanifold) are related by means
of the metric tensor field. Contrary to this, we see from (2.10)- (2.13) that
in the case of lightlike hypersurfaces, there are interrelations between these
geometric objects and those of its screen distributions. So, the geometry
of lightlike hypersurfaces depends on the vector bundles S(TM), S(TM⊥)
and N(TM). However, it is important to investigate the relationship between
some geometrical objects induced, studied above, with the change of the screen
distributions. In this case, it is known that the local second fundamental form
of M on U is independent of the choice of the above vector bundles. This
means that all results of this paper which depend only on B are stable with
respect to any change of those vector bundles.

Let P and P ′ be projections of TM on S(TM) and S(TM)′, respectively
with respect to the orthogonal decomposition of TM . So, any vector field X
on M can be written as

X = PX + θ(X)E = P ′X + θ(X)E + ω(X)E,

where ω is the dual 1-form of W =
∑2n−1

i=1 ciWi, characteristic vector field of
the screen change, with respect to the induced metric g of M defined as ω(·) =
g(·,W ). Then, using (4.29) we have P ′X = PX − ω(X)E and C ′(X,P ′Y ) =
C ′(X,PY ), for any X, Y ∈ Γ(TM). The relationship between the second
fundamental forms C and C ′ of the screen distribution S(TM) and S(TM)′,
respectively, is given by (using (4.29))

C ′(X,PY ) = C(X,PY ) − 1
2
ω(∇XPY + B(X,Y )W ).(6.6)
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All results above depending only on the the local second fundamental form
C (making equations non unique) are independent of the screen distribution
S(TM) if and only if ω(∇XPY + B(X,Y )W ) = 0, ∀X, Y ∈ Γ(TM).

Acknowledgement: The authors are grateful to the referee for helping them
to improve the presentation.
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