Edge-maximal graphs without θ_{7}-graphs

M.S.A. Bataineh ${ }^{1}$, M.M.M. Jaradat ${ }^{1,2}$ and I.Y.A. Al-Shboul ${ }^{1}$

(Received September 8, 2010; Revised July 26, 2011)

Abstract

Let $\mathcal{G}\left(n ; \theta_{2 k+1}, \geq \delta\right)$ denote the class of non-bipartite $\theta_{2 k+1}$-free graphs on n vertices and minimum degree at least δ and let $f\left(n ; \theta_{2 k+1}, \geq \delta\right)=$ $\max \left\{\mathcal{E}(G): G \in \mathcal{G}\left(n ; \theta_{2 k+1}, \geq \delta\right)\right\}$. In this paper we determine an upper bound of $f\left(n ; \theta_{7}, \geq 25\right)$ by proving that for large $n, f\left(n ; \theta_{7}, \geq 25\right) \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$. Our result confirm the conjecture made in [1], "Some extermal problems in graph theory", Ph.D thesis, Curtin University of Technology, Australia (2007), in case $k=3$ and $\delta=25$.

AMS 2010 Mathematics Subject Classification. Primary 05C38; Secondary 05C35.

Key words and phrases. Extremal graph, theta graph, cycle.

§1. Introduction

For our purposes a graph G is finite, undirected and has no loops or multiple edges. We denote the vertex set of G by $V(G)$ and the edge set of G by $E(G)$. The cardinalities of these sets are denoted by $v(G)$ and $\mathcal{E}(G)$, respectively. The cycle on n vertices is denoted by C_{n}. Let C be a cycle in a graph G, an edge in $E(G[C]) \backslash E(C))$ is called a chord of C. Further, a graph G has a $\theta_{k^{-}}$graph if G has a cycle C_{k} with a chord. The circumference of a graph G is denoted by $c(G)$ and defined to be the length of longest cycle. Let G be a graph and $u \in V(G)$. The degree of a vertex u in G, denoted by $d_{G}(u)$, is the number of edges of G incident to u. The neighbour set of a vertex u of G in a subgraph H of G, denoted by $N_{H}(u)$, consists of the vertices of H adjacent to u; we write $d_{H}(u)=\left|N_{H}(u)\right|$. For vertex disjoint subgraphs H_{1} and H_{2} of G we let

$$
E\left(H_{1}, H_{2}\right)=\left\{x y \in E(G): x \in V\left(H_{1}\right), y \in V\left(H_{2}\right)\right\}
$$

and

$$
\mathcal{E}\left(H_{1}, H_{2}\right)=\left|E\left(H_{1}, H_{2}\right)\right| .
$$

For a proper subgraph H of G we write $G[V(H)]$ and $G-V(H)$ simply as $G[H]$ and $G-H$ respectively.

In this paper, we consider the Turán-type extremal problem with the θ graph being the forbidden subgraph. Since a bipartite graph contains no odd θ-graph, we consider non-bipartite graphs. First, we recall some notation and terminology. For a positive integer n and a set of graphs \mathcal{F}, let $\mathcal{G}(n ; \mathcal{F}, \geq \delta)$ denote the class of non-bipartite \mathcal{F}-free graphs on n vertices and minimum degree is at least δ, and

$$
f(n ; \mathcal{F}, \geq \delta)=\max \{\mathcal{E}(G): G \in \mathcal{G}(n ; \mathcal{F}, \geq \delta)\}
$$

For simplicity, in case $\delta=1$, we write $\mathcal{G}(n ; \mathcal{F}, \geq 1)=\mathcal{G}(n ; \mathcal{F})$ and $f(n ; \mathcal{F}, \geq$ 1) $=f(n ; \mathcal{F})$.

An important problem in extremal graph theory is that of determining the values of the function $f(n ; \mathcal{F})$. Further, characterized the extremal graphs $\mathcal{G}(n ; \mathcal{F})$ where $f(n ; \mathcal{F})$ is attained. For a given C_{r}, the edge maximal graphs of $\mathcal{G}\left(n ; C_{r}\right)$ have been studied by a number of authors [4, 5, 7]. Bondy [3] proved that a Hamiltonian graph G on n vertices without a cycle of length r has at most $\frac{1}{2} n^{2}$ edges with equality holding if and only if n is even and r is odd.

Häggkvist et al. [6] proved that $f\left(n ; C_{r}\right) \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1$ for all r. This result is sharp only for $r=3$. Jia [8] proved that for $n \geq 9, f\left(n ; C_{5}\right)=$ $\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$, and he characterized the extremal graphs as well. In the same work, Jia conjectured that $f\left(n ; C_{2 k+1}\right)=\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$ for $n \geq 4 k+2$. Recently, Bataineh [1] confirmed positively the above conjecture for large n. Moreover, Bataineh conjectured that for $k \geq 3, f\left(n ; \theta_{2 k+1}\right)=\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$. Most recently, Bataineh et al. [2], proved that for $n \geq 9, f\left(n ; \theta_{5}\right)=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1$. In this paper, we confirm the above conjecture in case $k=3$ by proving that $f\left(n ; \theta_{7}, \geq 25\right) \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$. Further, we give a class of graphs to show that $f\left(n ; \theta_{7}, \geq 1\right) \geq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$.

§2. Edge-maximal θ_{7}-free graphs

We state a number of results which we make use of in our work.
Lemma 2.1 (Woodall) Let G be a graph on n vertices with no cycles of length greater than k. Then $\mathcal{E}(G) \leq \frac{1}{2} k(n-1)-\frac{1}{2} r(k-r-1)$ where $r=(n-1)-(k-1)\left\lfloor\frac{(n-1)}{(k-1)}\right\rfloor$.

Theorem 2.1(Bataineh) Let $G \in \mathcal{G}\left(n ; C_{2 k+1}\right)$. For large n,

$$
f\left(n ; C_{2 k+1}\right)=\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3
$$

Furthermore, equaility holds only if and only if $G \in \mathcal{G}^{*}(n)$ where $\mathcal{G}^{*}(n)$ is the class of graphs obtained by adding a triangle, two vertices of which are new, to the complete bipartite graph $K_{\left\lfloor\frac{(n-2)}{2}\right\rfloor,\left\lceil\frac{(n-2)}{2}\right\rceil \text {. }}$

Lemma 2.2 (Bondy) Let G be a graph on n vertices with $\mathcal{E}(G)>\left\lfloor\frac{n^{2}}{4}\right\rfloor$, then $c(G) \geq\left\lfloor\frac{n+3}{2}\right\rfloor$ and G contains the cycles of every length l for $3 \leq l \leq c(G)$.

In this section we give an upper bound of $f\left(n ; \theta_{7}, \geq 25\right)$ by proving that for large $n, f\left(n ; \theta_{7}, \geq 25\right) \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$. We begin with some constructions. Let G_{1} be a graph on 7 vertices, G_{2} be a graph on 8 vertices, G_{3} be a graph on 9 vertices and G_{4} be a graph on 10 vertices as shown in Figure 1. Observe that each of G_{1}, G_{2}, G_{3} and G_{4} has no θ_{7} as a subgraph and $\mathcal{E}\left(G_{1}\right)=16, \mathcal{E}\left(G_{2}\right)=$ $18, \mathcal{E}\left(G_{3}\right)=21$ and $\mathcal{E}\left(G_{4}\right)=25$.

Lemma 2.3 Let G be a graph on $n(7 \leq n \leq 10)$ vertices. If G has no θ_{7}-graph as subgraph, then
a) If $n=7$, then $\mathcal{E}(G) \leq 16$ and the bound is best possible.
b) If $n=8$, then $\mathcal{E}(G) \leq 18$ and the bound is best possible.
c) If $n=9$, then $\mathcal{E}(G) \leq 21$ and the bound is best possible.
d) If $n=10$, then $\mathcal{E}(G) \leq 25$ and the bound is best possible.

Proof. a) $\mathbf{n}=\mathbf{7}$: If G is a bipartite graph, then $\mathcal{E}(G) \leq 12$. Assume that $\mathcal{E}(G) \geq 17$. Then by Lemma 2.2 we have $c(G) \geq 5$ and G is pancyclic. So, we have 3 cases to consider according to the value of $c(G)$.
Case1: $c(G)=7$. Let C be the cycle of length 7 in G. Observe that, if we add any edge to C, then G would have θ_{7} subgraph. So, $\mathcal{E}(G) \leq 7$. This is a contradiction.
Case 2: $c(G)=6$. Let $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{1}$ be the cycle of length 6 in G. Define $A=G\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]$ and let y be the remaining vertex. Then observe that $\mathcal{E}(y, A) \leq 3$ with equality hold only if $N_{A}(y)=\left\{x_{i}, x_{i+2}, x_{i+4}\right\}$, otherwise $c(G)=7$. If $\left|N_{A}(y)\right|=3$, without loss of generality assume that $N_{A}(y)=$ $\left\{x_{1}, x_{3}, x_{5}\right\}$. Observe that $x_{2} x_{4}, x_{2} x_{6}$ and $x_{4} x_{6} \notin E(G)$, otherwise $c(G)=7$. So,

$$
\begin{aligned}
\mathcal{E}(A) & \leq 15-3 \\
& =12
\end{aligned}
$$

Figure 1:

Thus,

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(A)+\mathcal{E}(y, A) \\
& \leq 12+3 \\
& =15 .
\end{aligned}
$$

This is a contradiction. If $\left|N_{A}(y)\right|=2$, then the neighbors of y must be nonconsecutive, otherwise $c(G)=7$. Also, if $N_{A}(y)=\left\{x_{i}, x_{i+2}\right\}$, then $x_{i+1} x_{i+5} \notin$ $E(G)$ and $x_{i+1} x_{i+3} \notin E(G)$, otherwise $c(G)=7$. Furthermore, if $N_{A}(y)=$ $\left\{x_{i}, x_{i+3}\right\}$, then $x_{i+2} x_{i+5} \notin E(G)$ and $x_{i+1} x_{i+4} \notin E(G)$, otherwise $c(G)=7$. Thus,

$$
\begin{aligned}
\mathcal{E}(A) & \leq 15-2 \\
& =13 .
\end{aligned}
$$

Consequently, we have,

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(A)+\mathcal{E}(y, A) \\
& =13+2 \\
& =15 .
\end{aligned}
$$

This is a contradiction. If $\left|N_{A}(y)\right|=1$, then

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(A)+\mathcal{E}(y, A) \\
& \leq 15+1 \\
& =16 .
\end{aligned}
$$

This is a contradiction.
Case 3: $c(G)=5$. Since $c(G)=5$, then by Lemma 2.1, we have

$$
\begin{aligned}
\mathcal{E}(G) & \leq 9 \\
& <16 .
\end{aligned}
$$

This is a contradiction.
b) $\mathbf{n}=8$: Assume that $\mathcal{E}(G) \geq 19$. Then by Lemma 2.2, we have $c(G) \geq 5$ and G is pancylic. So, we have 3 cases according to the value of $c(G)$.
Case 1: $c(G) \leq 6$. Then by Lemma 2.1, we have

$$
\begin{aligned}
\mathcal{E}(G) & \leq 15 \\
& <18
\end{aligned}
$$

This is a contradiction.
Case 2: $c(G)=7$. Let $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{1}$ be the cycle of length 7 in G. Define $A=G\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right]$ and let y be the remaining vertex in G. Observe that if $\mathcal{E}(y, A) \geq 4$, then G would have θ_{7} as a subgraph. So $\mathcal{E}(y, A) \leq 3$ with equality hold only if $N_{A}(y)=\left\{x_{i}, x_{i+1}, x_{i+2}\right\}$ or $\left\{x_{i}, x_{i+1}, x_{i+4}\right\}$, otherwise θ_{7} is produced. Further $\mathcal{E}(G) \leq 7$, thus

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(A)+\mathcal{E}(y, A) \\
& \leq 7+3 \\
& =10 .
\end{aligned}
$$

This is a contradiction.
Case 3: $c(G)=8$. Then G must have a cycle of length 7. From Case 2 we have $\mathcal{E}(G) \leq 10$. This is a contradiction.
c) $\mathbf{n}=\mathbf{9}$: Assume that $\mathcal{E}(G) \geq 22$. Then by Lemma 2.2 we have $c(G) \geq 6$ and G is pancylic. So, we have two cases according to the value of $c(G)$.
Case 1: $7 \leq c(G) \leq 9$. Then G must have a cycle of length 7 , say C. Let y_{1}, y_{2} be the remaining vertices in G. Observe that $\mathcal{E}\left(y_{1}, C\right) \leq 3$ and $\mathcal{E}\left(y_{2}, C\right) \leq 3$. Therefore,

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(C)+\mathcal{E}\left(y_{1}, C\right)+\mathcal{E}\left(y_{2}, C\right)+\mathcal{E}\left(y_{1}, y_{2}\right) \\
& \leq 7+3+3+1 \\
& =14
\end{aligned}
$$

This is a contradiction.
Case 2: $c(G) \leq 6$. Then by Lemma 2.1 we have

$$
\begin{aligned}
\mathcal{E}(G) & \leq 18 \\
& <21
\end{aligned}
$$

This is a contradiction.
d) $\mathbf{n}=10$: Suppose that $\mathcal{E}(G) \geq 26$. Then by Lemma 2.2 we have $c(G) \geq 6$ and G is pancyclic. So, we have two cases according to the value of $c(G)$.
Case 1: $7 \leq c(G) \leq 10$. Then G must have a cycle of length 7. Let $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{1}$ be a cycle of length 7 in G and y_{1}, y_{2}, y_{3} be the remaining vertices in G. Define $A=G\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right]$ and $B=G\left[y_{1}, y_{2}, y_{3}\right]$. Recall that $\mathcal{E}\left(y_{i}, A\right) \leq 3$ for $i=1,2,3$ with equality hold only if $N_{A}\left(y_{i}\right)=$ $\left\{x_{j}, x_{j+1}, x_{j+2}\right\}$ or $\left\{x_{j}, x_{j+1}, x_{j+4}\right\}$, otherwise G would have θ_{7} as a subgraph. Note that $\mathcal{E}(B) \leq 3$. Thus,

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(B)+\mathcal{E}(B, A)+\mathcal{E}(A) \\
& \leq 3+9+7 \\
& \leq 19 \\
& <25 .
\end{aligned}
$$

This is a contradiction.
Case 2: $c(G)=6$. Then by Lemma 2.1 we have

$$
\begin{aligned}
\mathcal{E}(G) & \leq 23 \\
& <25 .
\end{aligned}
$$

This is a contradiction. This completes the proof.
Now we determine the maximum number of edges when θ_{7} being the forbidden subgraph.

Theorem 2.2 For $n \geq 10$, let G be a graph on n vertices. If G has no θ_{7} as a subgraph, then

$$
\mathcal{E}(G) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor
$$

Proof. Let k be the maximum number of vertex disjoint cycles of length 7 in G. We prove it by induction on the value of k. For $k=0$, we have by Theorem 2.1, $\mathcal{E}(G) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$. For $k=1$. Let $C=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{1}$ be a cycle of length 7 in G. Define $R=G-C$. Observe that R has no cycle of length 7 . If $|R| \geq 10$, then by induction hypotheses we have

$$
\mathcal{E}(R) \leq\left\lfloor\frac{(n-7)^{2}}{4}\right\rfloor
$$

Now, for any vertex $y \in R$, observe that if $\mathcal{E}(y, C) \geq 4$, then θ_{7} is produced. So, $\mathcal{E}(y, C) \leq 3$ for all $y \in R$ with equality hold only if $N_{C}(y)=\left\{x_{i}, x_{i+1}, x_{i+2}\right\}$ or $N_{C}(y)=\left\{x_{i}, x_{i+1}, x_{i+4}\right\}$ for $i=1,2, \ldots, 7(\bmod 7)$. Otherwise G would have θ_{7} subgraph. Thus,

$$
\begin{aligned}
\mathcal{E}(R, C) & \leq 3|R| \\
& =3(n-7) \\
& =3 n-21
\end{aligned}
$$

So,

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(R)+\mathcal{E}(R, C)+\mathcal{E}(C) \\
& \leq\left\lfloor\frac{(n-7)^{2}}{4}\right\rfloor+3 n-21+7 \\
& \leq\left\lfloor\frac{n^{2}-14 n+49+12 n-56}{4}\right\rfloor \\
& \leq\left\lfloor\frac{n^{2}-2 n-7}{4}\right\rfloor \\
& \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor-2 \\
& \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor
\end{aligned}
$$

So we need to consider the case when $|R| \leq 9$. For $|R|=9$. Then we have

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(R)+\mathcal{E}(R, C)+\mathcal{E}(C) \\
& \leq 21+27+7 \\
& \leq\left\lfloor\frac{16^{2}}{4}\right\rfloor
\end{aligned}
$$

Similarly, we can do the same arguments for $6 \leq|R| \leq 8$. Now, suppose the result holds when G has less than k vertex-disjoint cycle of length 7 .

Let G has k vertex disjoint cycles of length 7 and C be a cycle of length 7 in G. Set $R=G-C$. Note that R has $(k-1)$ vertex disjoint cycles of length 7 , thus by induction hypothesis we have

$$
\mathcal{E}(R) \leq\left\lfloor\frac{(n-7)^{2}}{4}\right\rfloor .
$$

Also, recall that $\mathcal{E}(y, C) \leq 3$ for all $y \in R$.Thus,

$$
\begin{aligned}
\mathcal{E}(R, C) & \leq 3|R| \\
& =3(n-7)
\end{aligned}
$$

So,

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(R)+\mathcal{E}(R, C)+\mathcal{E}(C) \\
& \leq\left\lfloor\frac{(n-7)^{2}}{4}\right\rfloor+3(n-7)+7 \\
& =\left\lfloor\frac{n^{2}-14 n+49}{4}\right\rfloor+3 n-14 \\
& \leq\left\lfloor\frac{n^{2}-14 n+49+12 n-56}{4}\right\rfloor \\
& =\left\lfloor\frac{n^{2}-2 n-7}{4}\right\rfloor \\
& \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor-2 \\
& \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor
\end{aligned}
$$

This completes the proof.
We start with the follwoing construction: Let $\mathcal{G}^{*}(n)$ be the class of graphs obtained by adding a triangle, two vertices of which are new, to the complete bipartite graph $K_{\left\lfloor\frac{n-2}{2}\right\rfloor,\left\lceil\frac{n-2}{2}\right\rceil}$. Note that if $G \in \mathcal{G}^{*}(n)$, then G is a free of θ_{7}. Furthermore, if $G \in \mathcal{G}^{*}(n)$, then $\mathcal{E}(G)=\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$. Thus, we established that $f\left(n ; \theta_{7}, \geq 1\right) \geq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$. Now, in the following theorem we give an upper bound of $f\left(n ; \theta_{7}, \geq 25\right)$.

Theorem 2.3 For sufficiently large n, let $G \in G\left(n ; \theta_{7}, \geq 25\right)$. Then

$$
\mathcal{E}(G) \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3 .
$$

Proof. Let $G \in \mathcal{G}\left(n ; \theta_{7}\right)$. If G has no cycle of length 7 as a subgraph, then by Theorem 2.1 we have that $\mathcal{E}(G) \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$. So, we need to consider the case when G has a cycle of length 7 . Let $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{1}$ be a cycle of length 7 in G. Define $A=G\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right]$. Observe that $\mathcal{E}(A)=7$. Now, we consider two cases according to whether G has θ_{4} as a subgraph or not.
Case 1: G has no θ_{4} as a subgraph. Let $x \in G-A$. If $\mathcal{E}(x, A) \geq 4$, then θ_{7} is produced. So, $\mathcal{E}(x, A) \leq 3$ with equality hold only if $N_{A}(x)=\left\{x_{i}, x_{i+1}, x_{i+4}\right\}$ $(\bmod 7)$, as otherwise G would have θ_{7} or θ_{4} as a subgraphs. Now, define $B=\{v \in V(G-A): \mathcal{E}(v, A)=3\}$.
Claim: $|B| \leq 1$.
Proof of the claim: Suppose that $x, y \in B$ and $x \neq y$, we conceder two cases:
Case I: $x y \in E(G)$. Note that $\mathcal{E}(x, A)=3$ and $N_{A}(x)=\left\{x_{i}, x_{i+1}, x_{i+4}\right\}$. So, without loss of generality, we assume that $N_{A}(x)=\left\{x_{1}, x_{2}, x_{5}\right\}$. Then we have the following observations:

1) If y is adjacent to x_{1}, then the trail $x y x_{1} x_{2} x x_{1}$ would form θ_{4} as a subgraph.
2) If y is adjacent to x_{2}, then the trail $x y x_{2} x_{1} x x_{2}$ would form θ_{4} as a subgraph.
3) If y is adjacent to x_{4}, then the trail $x y x_{4} x_{5} x_{6} x_{7} x_{1} x x_{5}$ would form θ_{7} as a subgraph.
4) If y is adjacent to x_{5}, then the trail $x y x_{5} x_{6} x_{7} x_{1} x_{2} x x_{1}$ would form θ_{7} as a subgraph.
5) If y is adjacent to x_{6}, then the trail $x y x_{6} x_{5} x_{4} x_{3} x_{2} x x_{5}$ would form θ_{7} as a subgraph.

From the above observation, we have $\mathcal{E}(y, A) \leq 2$ which contradict that $y \in B$. Thus, $|B| \leq 1$.
Case II: $x y \notin E(G)$. Recall that $N_{A}(x)=\left\{x_{1}, x_{2}, x_{5}\right\}$. We consider two subcases a according to the value of $\left|N_{A}(x) \cap N_{A}(y)\right|$.

Subcase II.I: $\left|N_{A}(x) \cap N_{A}(y)\right|=0$. Since $y \in B$, we have $N_{A}(y)$ of the form $\left\{x_{i}, x_{i+1}, x_{i+4}\right\}$. This only happen when $N_{A}(y)=\left\{x_{3}, x_{4}, x_{7}\right\}$ or $N_{A}(y)=\left\{x_{3}, x_{6}, x_{7}\right\}$. If $N_{A}(y)=\left\{x_{3}, x_{4}, x_{7}\right\}$, then the trail $x x_{5} x_{4} y x_{7} x_{1} x_{2} x x_{1}$ would form θ_{7} as a subgraph. If $N_{A}(y)=\left\{x_{3}, x_{6}, x_{7}\right\}$, then the trail $x x_{5} x_{6} y x_{7} x_{1} x_{2} x x_{1}$ would form θ_{7} as a subgraph. Thus, we have $\left|N_{A}(x) \cap N_{A}(y)\right|>0$.

Subcase II.II: $\left|N_{A}(x) \cap N_{A}(y)\right| \geq 1$. Suppose y is adjacent to x_{1}. Then we have the following observation:

1) If y is adjacent to x_{2}, then trail $x_{1} x x_{2} y x_{1} x_{2}$ would form θ_{4} as a subgraph.
2) If y is adjacent to x_{3}, then trail $x x_{5} x_{4} x_{3} y x_{1} x_{2} x x_{1}$ would form θ_{7} as asubgraph.
3) If y is adjacent to x_{5}, then trail $x x_{2} x_{3} x_{4} x_{5} y x_{1} x x_{5}$ would form θ_{7} as a
subgraph.
4) If y is adjacent to x_{7}, then trail $x x_{5} x_{6} x_{7} y x_{1} x_{2} x x_{1}$ would form θ_{7} as a subgraph.

From the above observations y can be adjacent only to x_{4} and x_{6}, but the trial $y x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} y x_{4}$ forms θ_{7} as a subgraph. Thus, $\mathcal{E}(y, A) \leq 2$ this is a contradiction. Suppose that $x_{2} \in N_{A}(y) \cap N_{A}(x)$. Then we have the following observation:

1) $x_{1} \notin N_{A}(y)$ from the previous observations.
2) If y is adjacent to x_{3}, then the trail $x x_{1} x_{2} y x_{3} x_{4} x_{5} x x_{2}$ would form θ_{7} as a subgraph.
3) If y is adjacent to x_{5}, then the trail $x x_{2} y x_{5} x_{6} x_{7} x_{1} x x_{5}$ would form θ_{7} as a subgraph.
4) If y is adjacent to x_{7}, then the trail $x x_{5} x_{6} x_{7} y x_{2} x_{1} x x_{2}$ would form θ_{7} as a subgraph.

Thus, y can be adjacent to at most x_{4} and x_{6}, but the trail $y x_{4} x_{5} x_{6} x_{7} x_{1} x_{2} y x_{6}$ forms θ_{7} as a subgraph. Thus, we have $\mathcal{E}(y, A) \leq 2$. Suppose that $x_{5} \in$ $N_{A}(x) \cap N_{A}(y)$. Then, we have the following observations:

1) $x_{1}, x_{2} \notin N_{A}(y)$ form the previous observations.
2) If y is adjacent to x_{4}, then the trail $x x_{1} x_{2} x_{3} x_{4} y x_{5} x x_{2}$ would form θ_{7} as a subgraph.
3) If y is adjacent to x_{6}, then the trail $x x_{5} y x_{6} x_{7} x_{1} x_{2} x x_{1}$ would form θ_{7} as a subgraph.

Thus, y can be adjacent to at most x_{3} and x_{7}, but the trail $y x_{3} x_{2} x x_{5} x_{6} x_{7} y x_{5}$ forms θ_{7} as a subgraph. Thus, $\mathcal{E}(y, A) \leq 2$. This is a contradiction. Proof of the claim is complete. Hence,

$$
\begin{aligned}
\mathcal{E}(G-A, A) & \leq 3|B|+2(|G-A|-|B|) \\
& =3+2(n-8) \\
& =2 n-13
\end{aligned}
$$

Thus, using Theorem 2.2, we have

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(G-A)+\mathcal{E}(G-A, A)+\mathcal{E}(A) \\
& \leq\left\lfloor\frac{(n-7)^{2}}{4}\right\rfloor+2 n-13+7 \\
& \leq \frac{n^{2}-14 n+49+8 n-24}{4} \\
& =\frac{n^{2}-6 n+25}{4} \\
& \leq\left\lceil\left.\frac{(n-3)^{2}}{4} \right\rvert\,+4\right. \\
& <\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3
\end{aligned}
$$

Case 2: G has θ_{4} as a subgraph. Let $x_{1} x_{2} x_{3} x_{4}$ be θ_{4} with $x_{2} x_{4}$ be the chord. Note that the vertices in G have degree more than or equal 25 in G. For $i=1,2,3$, let A_{i} be a set that consist of 7 neighbors of x_{i} in G selected so that $A_{i} \cap A_{j}=\phi$ for $i \neq j$. Let $T=G\left[x_{1}, x_{2}, x_{3}, x_{4}, A_{1}, A_{2}, A_{3}\right]$ and $H=G-T$. The situation as shown in Figure 2:

Figure 2:
Let $u \in V(H)$. If u is adjacent to a vertex in one of the sets A_{1}, A_{2} and A_{3}, then u can not be adjacent to a vertex in the other two sets as otherwise, G would have a θ_{7}-graph. Thus,

$$
\mathcal{E}(\{u\}, T) \leq 11
$$

Consequently, we have,

$$
\mathcal{E}(H, T) \leq 11(n-25) .
$$

Now,

$$
\begin{aligned}
\mathcal{E}(G) & =\mathcal{E}(H)+\mathcal{E}(H, T)+\mathcal{E}(T) \\
& \leq \frac{(n-25)^{2}}{4}+11(n-25)+\frac{(25)^{2}}{4} \\
& \leq \frac{n^{2}-50 n+625+44 n-1100+625}{4} \\
& \leq \frac{n^{2}-6 n+150}{4} \\
& <\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3 .
\end{aligned}
$$

This completes the proof.
ACKNOWLEDGMENT. The authors would like to thank the anonymous referee and editor for their valuable comments and suggestions.

References

[1] M. Bataineh, "Some extermal problems in graph theory", Ph.D thesis, Curtin University of Technology, Australia (2007).
[2] M. Bataineh, M. Jaradat and E. Al-Shboul, Edge-maximal graphs without θ_{5} graph. Submitted.
[3] J. A. Bondy, Pancyclic Graphs, J. Combinatorial Theory Ser B 11, $80-84$ (1971).
[4] L. Caccetta and R. Jia, Edge maximal non-bipartite graphs without odd cycles of prescribed length, Graphs and Combinatorics, 18, 75-92 (2002).
[5] L. Caccetta and K. Vijayan, Maximal cycles in graphs, Discrete Mathematics 98, 1-7 (1991).
[6] R. Häggkvist, R.J. Faudree and R.H Schelp, Pancyclic graphs- connected Ramsey number, Ars Combin. 11, 37-49 (1981).
[7] G.R.T. Hendry and S. Brandt, An extremal problem for cycles in Hamiltonian graphs, Graphs and Combinatorics. 11, 255-262 (1995).
[8] R. Jia, "Some extermal problems in graph theory", Ph.D thesis, Curtin University of Technology, Australia (1998).
[9] D. Woodall, Maximal circuits of graphs I, Acta. Math. Sci. Hungar. 28, 77-80 (1976)
${ }^{1}$ Department of Mathematics
Yarmouk University
Irbid-Jordan
bataineh71@hotmail.com
${ }^{2}$ Department of Mathematics and Physics
Qatar University
Doha-Qatar
mmjst4@yu.edu.jo; mmjst4@qu.edu.qa

