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Abstract. Let G(n; θ2k+1,≥ δ) denote the class of non-bipartite θ2k+1-free
graphs on n vertices and minimum degree at least δ and let f(n; θ2k+1,≥ δ) =
max{E(G) : G ∈ G(n; θ2k+1,≥ δ)}. In this paper we determine an upper bound

of f(n; θ7,≥ 25) by proving that for large n, f(n; θ7,≥ 25) ≤
j

(n−2)2

4

k
+3. Our

result confirm the conjecture made in [1], ”Some extermal problems in graph
theory”, Ph.D thesis, Curtin University of Technology, Australia (2007), in case
k = 3 and δ = 25.
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§1. Introduction

For our purposes a graph G is finite, undirected and has no loops or multiple
edges. We denote the vertex set of G by V (G) and the edge set of G by E(G).
The cardinalities of these sets are denoted by v(G) and E(G), respectively. The
cycle on n vertices is denoted by Cn. Let C be a cycle in a graph G, an edge
in E(G[C])\E(C)) is called a chord of C. Further, a graph G has a θk- graph
if G has a cycle Ck with a chord. The circumference of a graph G is denoted
by c(G) and defined to be the length of longest cycle. Let G be a graph and
u ∈ V (G). The degree of a vertex u in G, denoted by dG(u), is the number of
edges of G incident to u. The neighbour set of a vertex u of G in a subgraph
H of G, denoted by NH(u), consists of the vertices of H adjacent to u; we
write dH(u) = |NH(u)|. For vertex disjoint subgraphs H1 and H2 of G we let

E(H1, H2) = {xy ∈ E(G) : x ∈ V (H1), y ∈ V (H2)}

and
E(H1,H2) = |E(H1,H2)| .
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For a proper subgraph H of G we write G[V (H)] and G − V (H) simply as
G[H] and G−H respectively.

In this paper, we consider the Turán-type extremal problem with the θ-
graph being the forbidden subgraph. Since a bipartite graph contains no odd
θ-graph, we consider non-bipartite graphs. First, we recall some notation and
terminology. For a positive integer n and a set of graphs F , let G(n;F ,≥ δ)
denote the class of non-bipartite F-free graphs on n vertices and minimum
degree is at least δ, and

f(n;F ,≥ δ) = max{E(G) : G ∈ G(n;F ,≥ δ)}.
For simplicity, in case δ = 1, we write G(n;F ,≥ 1) = G(n;F) and f(n;F ,≥
1) = f(n;F).

An important problem in extremal graph theory is that of determining the
values of the function f(n;F). Further, characterized the extremal graphs
G(n;F) where f(n;F) is attained. For a given Cr, the edge maximal graphs
of G(n; Cr) have been studied by a number of authors [4, 5, 7]. Bondy [3]
proved that a Hamiltonian graph G on n vertices without a cycle of length r
has at most 1

2n2 edges with equality holding if and only if n is even and r is
odd.

Häggkvist et al. [6] proved that f(n; Cr) ≤
⌊

(n−1)2

4

⌋
+ 1 for all r. This

result is sharp only for r = 3. Jia [8] proved that for n ≥ 9, f(n; C5) =⌊
(n−2)2

4

⌋
+ 3, and he characterized the extremal graphs as well. In the same

work, Jia conjectured that f(n; C2k+1) =
⌊

(n−2)2

4

⌋
+3 for n ≥ 4k+2. Recently,

Bataineh [1] confirmed positively the above conjecture for large n. Moreover,
Bataineh conjectured that for k ≥ 3, f(n; θ2k+1) =

⌊
(n−2)2

4

⌋
+3. Most recently,

Bataineh et al. [2], proved that for n ≥ 9, f(n; θ5) =
⌊

(n−1)2

4

⌋
+ 1. In

this paper, we confirm the above conjecture in case k = 3 by proving that
f(n; θ7,≥ 25) ≤

⌊
(n−2)2

4

⌋
+ 3. Further, we give a class of graphs to show that

f(n; θ7,≥ 1) ≥
⌊

(n−2)2

4

⌋
+ 3.

§2. Edge-maximal θ7-free graphs

We state a number of results which we make use of in our work.

Lemma 2.1 (Woodall ) Let G be a graph on n vertices with no cycles
of length greater than k. Then E(G) ≤ 1

2k(n − 1) − 1
2r(k − r − 1) where

r = (n− 1)− (k − 1)
⌊

(n−1)
(k−1)

⌋
.
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Theorem 2.1( Bataineh ) Let G ∈ G(n; C2k+1). For large n,

f(n; C2k+1) =
⌊

(n− 2)2

4

⌋
+ 3.

Furthermore, equaility holds only if and only if G ∈ G∗(n) where G∗(n) is the
class of graphs obtained by adding a triangle, two vertices of which are new,
to the complete bipartite graph Kj (n−2)

2

k
,
l

(n−2)
2

m.

Lemma 2.2 (Bondy) Let G be a graph on n vertices with E(G) >
⌊

n2

4

⌋
, then

c(G) ≥ ⌊
n+3

2

⌋
and G contains the cycles of every length l for 3 ≤ l ≤ c(G).

In this section we give an upper bound of f(n; θ7,≥ 25) by proving that for
large n, f(n; θ7,≥ 25) ≤

⌊
(n−2)2

4

⌋
+3. We begin with some constructions. Let

G1 be a graph on 7 vertices, G2 be a graph on 8 vertices, G3 be a graph on 9
vertices and G4 be a graph on 10 vertices as shown in Figure 1. Observe that
each of G1, G2, G3 and G4 has no θ7 as a subgraph and E(G1) = 16, E(G2) =
18, E(G3) = 21 and E(G4) = 25.

Lemma 2.3 Let G be a graph on n(7 ≤ n ≤ 10) vertices. If G has no
θ7-graph as subgraph, then

a) If n = 7, then E(G) ≤ 16 and the bound is best possible.
b) If n = 8, then E(G) ≤ 18 and the bound is best possible.
c) If n = 9, then E(G) ≤ 21 and the bound is best possible.
d) If n = 10, then E(G) ≤ 25 and the bound is best possible.

Proof. a) n = 7 : If G is a bipartite graph, then E(G) ≤ 12. Assume that
E(G) ≥ 17. Then by Lemma 2.2 we have c(G) ≥ 5 and G is pancyclic. So,
we have 3 cases to consider according to the value of c(G).
Case1: c(G) = 7. Let C be the cycle of length 7 in G. Observe that, if we
add any edge to C, then G would have θ7 subgraph. So, E(G) ≤ 7 . This is a
contradiction.
Case 2: c(G) = 6. Let x1x2x3x4x5x6x1 be the cycle of length 6 in G. Define
A = G[x1, x2, x3, x4, x5, x6] and let y be the remaining vertex. Then observe
that E(y, A) ≤ 3 with equality hold only if NA(y) = {xi, xi+2, xi+4}, otherwise
c(G) = 7. If |NA(y)| = 3, without loss of generality assume that NA(y) =
{x1, x3, x5}. Observe that x2x4, x2x6 and x4x6 /∈ E(G), otherwise c(G) = 7.
So,

E(A) ≤ 15− 3
= 12.
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  G2 

 

  G3 

 

  G4 

Figure 1:

Thus,

E(G) = E(A) + E(y, A)
≤ 12 + 3
= 15.

This is a contradiction. If |NA(y)| = 2, then the neighbors of y must be non-
consecutive, otherwise c(G) = 7. Also, if NA(y) = {xi, xi+2}, then xi+1xi+5 /∈
E(G) and xi+1xi+3 /∈ E(G), otherwise c(G) = 7. Furthermore, if NA(y) =
{xi, xi+3}, then xi+2xi+5 /∈ E(G) and xi+1xi+4 /∈ E(G), otherwise c(G) = 7.
Thus,

E(A) ≤ 15− 2
= 13.
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Consequently, we have,

E(G) = E(A) + E(y, A)
= 13 + 2
= 15.

This is a contradiction. If |NA(y)| = 1, then

E(G) = E(A) + E(y, A)
≤ 15 + 1
= 16.

This is a contradiction.
Case 3: c(G) = 5. Since c(G) = 5, then by Lemma 2.1, we have

E(G) ≤ 9
< 16.

This is a contradiction.

b) n = 8 : Assume that E(G) ≥ 19. Then by Lemma 2.2, we have c(G) ≥ 5
and G is pancylic. So, we have 3 cases according to the value of c(G).
Case 1: c(G) ≤ 6. Then by Lemma 2.1, we have

E(G) ≤ 15
< 18.

This is a contradiction.
Case 2: c(G) = 7. Let x1x2x3x4x5x6x7x1 be the cycle of length 7 in G. Define
A = G[x1, x2, x3, x4, x5, x6, x7] and let y be the remaining vertex in G. Ob-
serve that if E(y, A) ≥ 4, then G would have θ7 as a subgraph. So E(y, A) ≤ 3
with equality hold only if NA(y) = {xi, xi+1, xi+2} or {xi, xi+1, xi+4}, other-
wise θ7 is produced. Further E(G) ≤ 7, thus

E(G) = E(A) + E(y, A)
≤ 7 + 3
= 10.

This is a contradiction.
Case 3: c(G) = 8. Then G must have a cycle of length 7. From Case 2 we
have E(G) ≤ 10. This is a contradiction.
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c) n = 9: Assume that E(G) ≥ 22. Then by Lemma 2.2 we have c(G) ≥ 6
and G is pancylic. So, we have two cases according to the value of c(G).
Case 1: 7 ≤ c(G) ≤ 9. Then G must have a cycle of length 7, say C.
Let y1, y2 be the remaining vertices in G. Observe that E(y1, C) ≤ 3 and
E(y2, C) ≤ 3. Therefore,

E(G) = E(C) + E(y1, C) + E(y2, C) + E(y1, y2)
≤ 7 + 3 + 3 + 1
= 14.

This is a contradiction.
Case 2: c(G) ≤ 6. Then by Lemma 2.1 we have

E(G) ≤ 18
< 21.

This is a contradiction.
d) n = 10: Suppose that E(G) ≥ 26. Then by Lemma 2.2 we have c(G) ≥ 6
and G is pancyclic. So, we have two cases according to the value of c(G).
Case 1: 7 ≤ c(G) ≤ 10. Then G must have a cycle of length 7. Let
x1x2x3x4x5x6x7x1 be a cycle of length 7 in G and y1, y2, y3 be the remaining
vertices in G. Define A = G[x1, x2, x3, x4, x5, x6, x7] and B = G[y1, y2, y3].
Recall that E(yi, A) ≤ 3 for i = 1, 2, 3 with equality hold only if NA(yi) =
{xj , xj+1, xj+2} or {xj , xj+1, xj+4}, otherwise G would have θ7 as a subgraph.
Note that E(B) ≤ 3. Thus,

E(G) = E(B) + E(B, A) + E(A)
≤ 3 + 9 + 7
≤ 19
< 25.

This is a contradiction.
Case 2: c(G) = 6. Then by Lemma 2.1 we have

E(G) ≤ 23
< 25.

This is a contradiction. This completes the proof.

Now we determine the maximum number of edges when θ7 being the for-
bidden subgraph.
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Theorem 2.2 For n ≥ 10, let G be a graph on n vertices. If G has no θ7

as a subgraph, then

E(G) ≤
⌊

n2

4

⌋
.

Proof. Let k be the maximum number of vertex disjoint cycles of length 7
in G. We prove it by induction on the value of k. For k = 0, we have by
Theorem 2.1, E(G) ≤

⌊
n2

4

⌋
. For k = 1. Let C = x1x2x3x4x5x6x7x1 be a cycle

of length 7 in G. Define R = G−C. Observe that R has no cycle of length 7.
If |R| ≥ 10, then by induction hypotheses we have

E(R) ≤
⌊

(n− 7)2

4

⌋
.

Now, for any vertex y ∈ R, observe that if E(y, C) ≥ 4, then θ7 is produced. So,
E(y, C) ≤ 3 for all y ∈ R with equality hold only if NC(y) = {xi, xi+1, xi+2}
or NC(y) = {xi, xi+1, xi+4} for i = 1, 2, . . . , 7(mod 7). Otherwise G would
have θ7 subgraph. Thus,

E(R, C) ≤ 3 |R|
= 3(n− 7)
= 3n− 21.

So,

E(G) = E(R) + E(R,C) + E(C)

≤
⌊

(n− 7)2

4

⌋
+ 3n− 21 + 7

≤
⌊

n2 − 14n + 49 + 12n− 56
4

⌋

≤
⌊

n2 − 2n− 7
4

⌋

≤
⌊

(n− 1)2

4

⌋
− 2

≤
⌊

n2

4

⌋
.

So we need to consider the case when |R| ≤ 9. For |R| = 9. Then we have

E(G) = E(R) + E(R, C) + E(C)
≤ 21 + 27 + 7

≤
⌊

162

4

⌋
.
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Similarly, we can do the same arguments for 6 ≤ |R| ≤ 8. Now, suppose the
result holds when G has less than k vertex-disjoint cycle of length 7.

Let G has k vertex disjoint cycles of length 7 and C be a cycle of length 7
in G. Set R = G−C. Note that R has (k−1) vertex disjoint cycles of length
7, thus by induction hypothesis we have

E(R) ≤
⌊

(n− 7)2

4

⌋
.

Also, recall that E(y, C) ≤ 3 for all y ∈ R.Thus,

E(R, C) ≤ 3 |R|
= 3(n− 7).

So,

E(G) = E(R) + E(R,C) + E(C)

≤
⌊

(n− 7)2

4

⌋
+ 3(n− 7) + 7

=
⌊

n2 − 14n + 49
4

⌋
+ 3n− 14

≤
⌊

n2 − 14n + 49 + 12n− 56
4

⌋

=
⌊

n2 − 2n− 7
4

⌋

≤
⌊

(n− 1)2

4

⌋
− 2

≤
⌊

n2

4

⌋
.

This completes the proof.

We start with the follwoing construction: Let G∗(n) be the class of graphs
obtained by adding a triangle, two vertices of which are new, to the complete
bipartite graph Kbn−2

2 c,dn−2
2 e. Note that if G ∈ G∗(n), then G is a free of θ7.

Furthermore, if G ∈ G∗(n), then E(G) =
⌊

(n−2)2

4

⌋
+ 3. Thus, we established

that f(n; θ7,≥ 1) ≥
⌊

(n−2)2

4

⌋
+ 3. Now, in the following theorem we give an

upper bound of f(n; θ7,≥ 25).

Theorem 2.3 For sufficiently large n, let G ∈ G(n; θ7,≥ 25). Then

E(G) ≤
⌊

(n− 2)2

4

⌋
+ 3.
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Proof. Let G ∈ G(n; θ7). If G has no cycle of length 7 as a subgraph, then
by Theorem 2.1 we have that E(G) ≤

⌊
(n−2)2

4

⌋
+ 3. So, we need to consider

the case when G has a cycle of length 7. Let x1x2x3x4x5x6x7x1 be a cycle of
length 7 in G. Define A = G[x1, x2, x3, x4, x5, x6, x7]. Observe that E(A) = 7.
Now, we consider two cases according to whether G has θ4 as a subgraph or
not.
Case 1: G has no θ4 as a subgraph. Let x ∈ G−A. If E(x,A) ≥ 4, then θ7 is
produced. So, E(x,A) ≤ 3 with equality hold only if NA(x) = {xi, xi+1, xi+4}
(mod 7), as otherwise G would have θ7 or θ4 as a subgraphs. Now, define
B = {v ∈ V (G−A) : E(v,A) = 3}.
Claim: |B| ≤ 1.
Proof of the claim: Suppose that x, y ∈ B and x 6= y, we conceder two cases:
Case I: xy ∈ E(G). Note that E(x,A) = 3 and NA(x) = {xi, xi+1, xi+4}. So,
without loss of generality, we assume that NA(x) = {x1, x2, x5}. Then we have
the following observations:

1) If y is adjacent to x1, then the trail xyx1x2xx1 would form θ4 as a
subgraph.

2) If y is adjacent to x2, then the trail xyx2x1xx2 would form θ4 as a
subgraph.

3) If y is adjacent to x4, then the trail xyx4x5x6x7x1xx5 would form θ7 as
a subgraph.

4) If y is adjacent to x5, then the trail xyx5x6x7x1x2xx1 would form θ7 as
a subgraph.

5) If y is adjacent to x6, then the trail xyx6x5x4x3x2xx5 would form θ7 as
a subgraph.

From the above observation, we have E(y, A) ≤ 2 which contradict that
y ∈ B. Thus, |B| ≤ 1.

Case II: xy /∈ E(G). Recall that NA(x) = {x1, x2, x5}. We consider two
subcases a according to the value of |NA(x) ∩NA(y)|.

Subcase II.I: |NA(x) ∩NA(y)| = 0. Since y ∈ B, we have NA(y) of
the form {xi, xi+1, xi+4}. This only happen when NA(y) = {x3, x4, x7}
or NA(y) = {x3, x6, x7}. If NA(y) = {x3, x4, x7}, then the trail
xx5x4yx7x1x2xx1 would form θ7 as a subgraph. If NA(y) = {x3, x6, x7},
then the trail xx5x6yx7x1x2xx1 would form θ7 as a subgraph. Thus, we have
|NA(x) ∩NA(y)| > 0.

Subcase II.II: |NA(x) ∩NA(y)| ≥ 1. Suppose y is adjacent to x1. Then
we have the following observation:

1) If y is adjacent to x2, then trail x1xx2yx1x2 would form θ4 as a subgraph.
2) If y is adjacent to x3, then trail xx5x4x3yx1x2xx1 would form θ7 as

asubgraph.
3) If y is adjacent to x5, then trail xx2x3x4x5yx1xx5 would form θ7 as a
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subgraph.

4) If y is adjacent to x7, then trail xx5x6x7yx1x2xx1 would form θ7 as a
subgraph.

From the above observations y can be adjacent only to x4 and x6, but the
trial yx6x5x4x3x2x1yx4 forms θ7 as a subgraph. Thus, E(y, A) ≤ 2 this is a
contradiction. Suppose that x2 ∈ NA(y)∩NA(x). Then we have the following
observation:

1) x1 /∈ NA(y) from the previous observations.

2) If y is adjacent to x3, then the trail xx1x2yx3x4x5xx2 would form θ7

as a subgraph.

3) If y is adjacent to x5, then the trail xx2yx5x6x7x1xx5 would form θ7 as
a subgraph.

4) If y is adjacent to x7, then the trail xx5x6x7yx2x1xx2 would form θ7

as a subgraph.

Thus, y can be adjacent to at most x4 and x6, but the trail yx4x5x6x7x1x2yx6

forms θ7 as a subgraph. Thus, we have E(y,A) ≤ 2. Suppose that x5 ∈
NA(x) ∩NA(y). Then, we have the following observations:

1) x1, x2 /∈ NA(y) form the previous observations.

2) If y is adjacent to x4, then the trail xx1x2x3x4yx5xx2 would form θ7 as
a subgraph.

3) If y is adjacent to x6, then the trail xx5yx6x7x1x2xx1 would form θ7 as
a subgraph.

Thus, y can be adjacent to at most x3 and x7, but the trail yx3x2xx5x6x7yx5

forms θ7 as a subgraph. Thus, E(y,A) ≤ 2. This is a contradiction. Proof of
the claim is complete. Hence,

E(G−A,A) ≤ 3 |B|+ 2(|G−A| − |B|)
= 3 + 2(n− 8)
= 2n− 13.
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Thus, using Theorem 2.2, we have

E(G) = E(G−A) + E(G−A,A) + E(A)

≤
⌊

(n− 7)2

4

⌋
+ 2n− 13 + 7

≤ n2 − 14n + 49 + 8n− 24
4

=
n2 − 6n + 25

4

≤
⌈

(n− 3)2

4

⌉
+ 4

<

⌊
(n− 2)2

4

⌋
+ 3.

Case 2: G has θ4 as a subgraph. Let x1x2x3x4 be θ4 with x2x4 be the chord.
Note that the vertices in G have degree more than or equal 25 in G. For
i = 1, 2, 3, let Ai be a set that consist of 7 neighbors of xi in G selected so that
Ai ∩ Aj = φ for i 6= j. Let T = G[x1, x2, x3, x4, A1, A2, A3] and H = G − T.
The situation as shown in Figure 2:
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A1 

A2 

 

 

                           x3                                 x2 

                          x4                       x1    

 

       H    

Figure 2:

Let u ∈ V (H). If u is adjacent to a vertex in one of the sets A1, A2 and A3,
then u can not be adjacent to a vertex in the other two sets as otherwise, G
would have a θ7-graph. Thus,

E({u}, T ) ≤ 11.
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Consequently, we have,

E(H,T ) ≤ 11(n− 25).

Now,

E(G) = E(H) + E(H, T ) + E(T )

≤ (n− 25)2

4
+ 11(n− 25) +

(25)2

4

≤ n2 − 50n + 625 + 44n− 1100 + 625
4

≤ n2 − 6n + 150
4

<

⌊
(n− 2)2

4

⌋
+ 3.

This completes the proof.
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