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Edge-maximal graphs without 6;-graphs
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Abstract. Let G(n;02;+1,> 0) denote the class of non-bipartite 6a511-free
graphs on n vertices and minimum degree at least § and let f(n;02x4+1,> §) =
max{&€(G) : G € G(n;02,+1,> d)}. In this paper we determine an upper bound

of f(n;07,> 25) by proving that for large n, f(n; 07, > 25) < {%J +3. Our

result confirm the conjecture made in [1], ”Some extermal problems in graph
theory”, Ph.D thesis, Curtin University of Technology, Australia (2007), in case
k=3 and § = 25.
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81. Introduction

For our purposes a graph G is finite, undirected and has no loops or multiple
edges. We denote the vertex set of G by V(G) and the edge set of G by E(G).
The cardinalities of these sets are denoted by v(G) and £(G), respectively. The
cycle on n vertices is denoted by C,,. Let C be a cycle in a graph G, an edge
in E(G[C])\E(C)) is called a chord of C. Further, a graph G has a 6j- graph
if G has a cycle Cj with a chord. The circumference of a graph G is denoted
by ¢(G) and defined to be the length of longest cycle. Let G be a graph and
u € V(G). The degree of a vertex v in G, denoted by dg(u), is the number of
edges of G incident to u. The neighbour set of a vertex u of GG in a subgraph
H of G, denoted by Np(u), consists of the vertices of H adjacent to u; we
write dgy(u) = |[Ng(u)|. For vertex disjoint subgraphs Hy and Hs of G we let

E(Hy,Hy) ={zy € E(G):x € V(Hy),y € V(H2)}

and
E(Hy, Hy) = |[E(Hy, Ha)| .
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For a proper subgraph H of G we write G[V(H)| and G — V(H) simply as
G[H] and G — H respectively.

In this paper, we consider the Turan-type extremal problem with the 6-
graph being the forbidden subgraph. Since a bipartite graph contains no odd
f-graph, we consider non-bipartite graphs. First, we recall some notation and
terminology. For a positive integer n and a set of graphs F, let G(n; F,> 9)
denote the class of non-bipartite F-free graphs on n vertices and minimum
degree is at least J, and

f(n; F,>90) =max{&(G) : G € G(n; F,> 9)}.

For simplicity, in case § = 1, we write G(n; F,> 1) = G(n; F) and f(n; F, >
1) = f(n; F).

An important problem in extremal graph theory is that of determining the
values of the function f(n;F). Further, characterized the extremal graphs
G(n; F) where f(n;F) is attained. For a given C,, the edge maximal graphs
of G(n;C,) have been studied by a number of authors [4, 5, 7]. Bondy [3]
proved that a Hamiltonian graph G on n vertices without a cycle of length r
has at most %n2 edges with equality holding if and only if n is even and r is
odd.

Héaggkvist et al. [6] proved that f(n;C,) < L%J + 1 for all r. This
result is sharp only for » = 3. Jia [8] proved that for n > 9, f(n;C5) =
{%J + 3, and he characterized the extremal graphs as well. In the same

work, Jia conjectured that f(n; Cori1) = L%J +3 for n > 4k+2. Recently,

Bataineh [1] confirmed positively the above conjecture for large n. Moreover,
Bataineh conjectured that for k > 3, f(n;0x11) = L(nf)w +3. Most recently,

Bataineh et al. [2], proved that for n > 9, f(n;65) = [%J +1. In

this paper, we confirm the above conjecture in case k = 3 by proving that
2
f(n;67,>25) < L(H_TQ)J + 3. Further, we give a class of graphs to show that

f(n;07,> 1) > L%J +3.

§2. Edge-maximal 0;-free graphs

We state a number of results which we make use of in our work.

Lemma 2.1 (Woodall ) Let G be a graph on n wvertices with no cycles
of length greater than k. Then £(G) < 3k(n — 1) — Sr(k — r — 1) where

r=(n-1)—(k—1) Mz:}” :
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Theorem 2.1( Bataineh ) Let G € G(n;Caxy1). For large n,

(n - 2)?

f(n; Coky1) = { 1

|+
Furthermore, equaility holds only if and only if G € G*(n) where G*(n) is the
class of graphs obtained by adding a triangle, two vertices of which are new,
to the complete bipartite graph KUH,Q)J "(n,2>".

= Tz

Lemma 2.2 (Bondy) Let G be a graph on n vertices with £(G) > L%J, then
c(G) > LRTJF?)J and G contains the cycles of every length 1 for 3 <1 < ¢(G).

In this section we give an upper bound of f(n; 67, > 25) by proving that for
large n, f(n;07,> 25) < L%
(G1 be a graph on 7 vertices, G5 be a graph on 8 vertices, G3 be a graph on 9
vertices and G4 be a graph on 10 vertices as shown in Figure 1. Observe that
each of G1,G2,G3 and G4 has no 07 as a subgraph and £(G1) = 16,E(G3) =
18,£(Gs) = 21 and £(Gy4) = 25.

J + 3. We begin with some constructions. Let

Lemma 2.3 Let G be a graph on n(7 < n < 10) wvertices. If G has no
07-graph as subgraph, then

a) If n =17, then E(G) < 16 and the bound is best possible.

b) If n =8, then £(G) < 18 and the bound is best possible.

c) If n =29, then £(G) < 21 and the bound is best possible.

d) If n =10, then £(G) < 25 and the bound is best possible.

Proof. a) n=17 :If G is a bipartite graph, then £(G) < 12. Assume that
E(G) > 17. Then by Lemma 2.2 we have ¢(G) > 5 and G is pancyclic. So,
we have 3 cases to consider according to the value of ¢(G).

Casel: ¢(G) = 7. Let C' be the cycle of length 7 in G. Observe that, if we
add any edge to C, then G would have 07 subgraph. So, £(G) < 7. This is a
contradiction.

Case 2: ¢(G) = 6. Let x1xow3x4251621 be the cycle of length 6 in G. Define
A = G[x1,x2, 23,14, 25, 6] and let y be the remaining vertex. Then observe
that £(y, A) < 3 with equality hold only if Nyg(y) = {z;, i12, Xit14}, otherwise
c¢(G) = 7. If [INa(y)| = 3, without loss of generality assume that Na(y) =
{x1, 23, 25}. Observe that xoxy, zoxs and x4z ¢ E(G), otherwise ¢(G) = 7.
So,

E(A) < 15-3
= 12.
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Figure 1:

Thus,

£(G) = E(A)+E(y,4)
1243
15.

IN

This is a contradiction. If |[N4(y)| = 2, then the neighbors of y must be non-
consecutive, otherwise ¢(G) = 7. Also, if Na(y) = {x;, iy}, then z; 11245 ¢
E(G) and z; 112,43 ¢ E(G), otherwise ¢(G) = 7. Furthermore, if Ng(y) =
{xi, zitys}, then zoxivs ¢ E(G) and zi112i44 ¢ E(G), otherwise ¢(G) = 7.
Thus,

E(A) < 15-2
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Consequently, we have,

E(G) = E(A)+E(y, A)
= 13+2
= 15.

This is a contradiction. If [N4(y)| = 1, then

E(G) = &(A)+E&(y,4)
15+ 1
16.

IN

This is a contradiction.
Case 3: ¢(G) = 5. Since ¢(G) = 5, then by Lemma 2.1, we have

£G) < 9
< 16.

This is a contradiction.

b) n = 8 : Assume that £(G) > 19. Then by Lemma 2.2, we have ¢(G) > 5
and G is pancylic. So, we have 3 cases according to the value of ¢(G).
Case 1: ¢(G) < 6. Then by Lemma 2.1, we have

@) < 15
< 18.

This is a contradiction.

Case 2: ¢(G) = 7. Let z1xoxsxaxsrer721 be the cycle of length 7 in G. Define
A = Glx1,x9,x3, T4, x5, T6, 7] and let y be the remaining vertex in G. Ob-
serve that if £(y, A) > 4, then G would have 07 as a subgraph. So £(y, A) <3
with equality hold only if N4(y) = {x;, 11, Tive} or {z;, xit1, x4}, other-
wise 67 is produced. Further £(G) < 7, thus

E(G) = &(A)+E(y,4)
< 7T+3
= 10.

This is a contradiction.
Case 3: ¢(G) = 8. Then G must have a cycle of length 7. From Case 2 we
have £(G) < 10. This is a contradiction.
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c) n=9: Assume that £(G) > 22. Then by Lemma 2.2 we have ¢(G) > 6
and G is pancylic. So, we have two cases according to the value of ¢(G).
Case 1: 7 < ¢(G) < 9. Then G must have a cycle of length 7, say C.
Let y1,y2 be the remaining vertices in G. Observe that £(y;,C) < 3 and
E(y2,C) < 3. Therefore,

< 7434341
= 14.

This is a contradiction.
Case 2: ¢(G) < 6. Then by Lemma 2.1 we have

£G) < 18
< 21.

This is a contradiction.

d) n = 10: Suppose that £(G) > 26. Then by Lemma 2.2 we have ¢(G) > 6
and G is pancyclic. So, we have two cases according to the value of ¢(G).
Case 1: 7 < ¢(G) < 10. Then G must have a cycle of length 7. Let
T1Tox3x4T5T¢r7x1 be a cycle of length 7 in G and y1, y2, y3 be the remaining
vertices in G. Define A = G[z1,x2, 23,24, 25, T6, 7] and B = G[y1, y2, y3].
Recall that E(y;, A) < 3 for i = 1,2,3 with equality hold only if N4(y;) =
{xj, xj41, x40} or {xj, 241,44}, otherwise G would have 07 as a subgraph.
Note that £(B) < 3. Thus,

E(G) = E(B)+E(B,A)+E(A)
3+9+7
19

25.

VAN VAN VAN

This is a contradiction.
Case 2: ¢(G) = 6. Then by Lemma 2.1 we have

(@) < 23
< 25.

This is a contradiction. This completes the proof.

Now we determine the maximum number of edges when 67 being the for-
bidden subgraph.
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Theorem 2.2 For n > 10, let G be a graph on n vertices. If G has no 07

as a subgraph, then
n

o<,

Proof. Let k be the maximum number of vertex disjoint cycles of length 7
in G. We prove it by induction on the value of k. For k = 0, we have by

Theorem 2.1, £(G) < L”;J For k = 1. Let C' = z1xox3z4w5062721 be a cycle
of length 7 in G. Define R = G — C. Observe that R has no cycle of length 7.
If |R| > 10, then by induction hypotheses we have

E(R) < V”;”QJ .

Now, for any vertex y € R, observe that if £(y, C) > 4, then 07 is produced. So,
E(y,C) <3 for all y € R with equality hold only if Neo(y) = {xi, it1, Tivo}
or No(y) = {zi, xiy1, 244} for i = 1,2,...,7(mod 7). Otherwise G would
have 07 subgraph. Thus,
E(R,C) < 3|R|
= 3(n-—"7)
= 3n—21.

So,
E(G) = ER)+ER,C)+E(C)

2
< (n 47)J+3n21+7
< n% — 14n + 49 + 12n — 56
- L 4
n2—2n—7J
< |7
- L 4
12
< | 1)J—2
-0 4
n2
< — .
< _4J

So we need to consider the case when |R| < 9. For |R| = 9. Then we have

£(@) E(R) + E(R,C) + £(C)
< 2142747

)

IN
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Similarly, we can do the same arguments for 6 < |R| < 8. Now, suppose the
result holds when G has less than k vertex-disjoint cycle of length 7.

Let G has k vertex disjoint cycles of length 7 and C' be a cycle of length 7
in G. Set R = G —C. Note that R has (k— 1) vertex disjoint cycles of length
7, thus by induction hypothesis we have

sty < [T

Also, recall that £(y,C) < 3 for all y € R.Thus,

E(R,C) < 3R
= 3(n—"1).

So,
E(G) = ER)+ER,C)+E(0O)

—7)2
< ("4 )J+3(n7)+7
-t
_ nl4n+49J+3n_14
i 4
- n? — 14n + 49 + 12n — 56
- | 4
B n?—9n—17
L 4
(n—1)?
< |2 ]9
- | 4
n2
< _
< _4J

This completes the proof.

We start with the follwoing construction: Let G*(n) be the class of graphs
obtained by adding a triangle, two vertices of which are new, to the complete
bipartite graph KLL—QJ [n=2]- Note that if G € G*(n), then G is a free of 67.

2 ’ 2

Furthermore, if G € G*(n), then £(G) = [%J + 3. Thus, we established

that f(n;07,> 1) > [%J + 3. Now, in the following theorem we give an
upper bound of f(n; 607, > 25).

Theorem 2.3 For sufficiently large n, let G € G(n;67,> 25). Then

01|05 o
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Proof. Let G € G(n;07). If G has no cycle of length 7 as a subgraph, then
by Theorem 2.1 we have that £(G) < {%

the case when G has a cycle of length 7. Let xizoxsrirsre2721 be a cycle of
length 7 in G. Define A = G[x1, x9, x3, 24, T5, Tg, 7]. Observe that £(A) = 7.
Now, we consider two cases according to whether G has 6, as a subgraph or

J + 3. So, we need to consider

not.

Case 1: G has no 04 as a subgraph. Let v € G—A. If £(x, A) > 4, then 07 is
produced. So, £(x, A) < 3 with equality hold only if Na(x) = {z, zit1,Tita}
(mod 7), as otherwise G would have 07 or 64 as a subgraphs. Now, define
B={veV(G-A):Ew,A) =3}

Claim: |B| < 1.

Proof of the claim: Suppose that x,y € B and x # y, we conceder two cases:
Case I: zy € E(G). Note that £(z, A) = 3 and Na(z) = {4, it1, Tita}. So,
without loss of generality, we assume that N4(z) = {1, 22, z5}. Then we have
the following observations:

1) If y is adjacent to z1, then the trail zyzixozz; would form 64 as a
subgraph.

2) If y is adjacent to x2, then the trail zyxexizze would form 64 as a
subgraph.

3) If y is adjacent to x4, then the trail xyxsxsr62721205 Would form 607 as
a subgraph.

4) If y is adjacent to x5, then the trail zyxsrerraizore; would form 67 as
a subgraph.

5) If y is adjacent to xg, then the trail zyrgxrsrirsrorrs would form 6; as
a subgraph.

From the above observation, we have £(y, A) < 2 which contradict that
y € B. Thus, |B| <1.

Case II: zy ¢ E(G). Recall that Ng(xz) = {x1,22,25}. We consider two
subcases a according to the value of |[Na(x) N Na(y)|.

Subcase ILI: |[Na(z) N Na(y)| = 0. Since y € B, we have Ny(y) of
the form {x;,zi11,%i+a}. This only happen when Nu(y) = {z3,z4,27}
or Na(y) = A{xzs,xe,z7}. If Na(y) = {x3,x4,27}, then the trail
rxaxsrayxrrrirexx; would form 07 as a subgraph. If Na(y) = {zs3,zs, 27},
then the trail zasxgyr7rirore; would form 07 as a subgraph. Thus, we have
[Na(2) N Na(y)| > 0.

Subcase II.II: |[N4(xz) N Na(y)| > 1. Suppose y is adjacent to x;. Then
we have the following observation:

1) If y is adjacent to xo, then trail z1zxoyx1 22 would form 6, as a subgraph.

2) If y is adjacent to x3, then trail zaxszsxsyrizorar; would form 67 as
asubgraph.

3) If y is adjacent to x5, then trail xxsxsrsxsyrizas would form 07 as a



100 M.S.A. BATAINEH, M.M.M. JARADAT AND LY.A. AL-SHBOUL

subgraph.

4) If y is adjacent to x7, then trail xaszgrryrirexa; would form 07 as a
subgraph.

From the above observations y can be adjacent only to x4 and xg, but the
trial yrgrsrsrsrexiyry forms O7 as a subgraph. Thus, £(y, A) < 2 this is a
contradiction. Suppose that x2 € Na(y) N Na(x). Then we have the following
observation:

1) z1 ¢ Na(y) from the previous observations.

2) If y is adjacent to z3, then the trail xxixoyxsrsrsxas would form 67
as a subgraph.

3) If y is adjacent to x5, then the trail zxoyxsrerrairas would form 6; as
a subgraph.

4) If y is adjacent to x7, then the trail zxsrexryrexizry Would form 67
as a subgraph.

Thus, y can be adjacent to at most x4 and xg, but the trail yxqxsrerrr122Y%86
forms 67 as a subgraph. Thus, we have £(y, A) < 2. Suppose that x5 €
Na(z) N Na(y). Then, we have the following observations:

1) 1,22 ¢ Na(y) form the previous observations.

2) If y is adjacent to x4, then the trail xzzox3x4yx5222 Would form 67 as
a subgraph.

3) If y is adjacent to xg, then the trail zxsyxerrrizozr; would form 6; as
a subgraph.

Thus, y can be adjacent to at most x3 and x7, but the trail yrzxoxrsrgrryxs
forms 6; as a subgraph. Thus, £(y, A) < 2. This is a contradiction. Proof of
the claim is complete. Hence,

E(G—AA) < 3|B|+2(G—A|—|B|)
3+2(n—8)
= 2n—13.
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Thus, using Theorem 2.2, we have

E(Q) = E(G—A)+EG— A A) +EA)

—7)2
< WL v ) J+2n—13+7
n% — 14n + 49 4+ 8n — 24
= 4
 n?—6n+25
N 4

< {(n;&j +4

< V”;”J 3

Case 2: G has 04 as a subgraph. Let zjzox314 be 04 with xox4 be the chord.
Note that the vertices in G have degree more than or equal 25 in G. For
1=1,2,3, let A; be a set that consist of 7 neighbors of x; in G selected so that
A; ﬂAj = ¢ fori# j. Let T = G[$1,$2,$3,(L‘4,A1,A2,A3] and H=G—-T.

The situation as shown in Figure 2:

Figure 2:

Let uw € V(H). If u is adjacent to a vertex in one of the sets Aj, Ay and As,
then u can not be adjacent to a vertex in the other two sets as otherwise, G
would have a 67-graph. Thus,

E({u},T) < 11.
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Consequently, we have,

E(H,T) < 11(n — 25).

Now,

E(G) = E(H)+E(H,T)+&(T)

(n — 25)2 (25)2
< = 4t 11(n-2
< 1 +11(n 5) + 1
- n2 — 50n 4 625 + 44n — 1100 + 625
= 4
< n2 — 6n + 150
= 4
(n—2)?
< | =] 4+3.
el

This completes the proof.
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