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Abstract. The symmetric rank-one (SR1) method is one of the well-known
quasi-Newton methods, and many researchers have studied the SR1 method.
On the other hand, to accelerate quasi-Newton methods, some researchers have
proposed variants of the secant condition. In this paper, we propose SR1 meth-
ods based on some modified secant conditions. We analyze local behaviors of
the methods. In order to establish the global convergence of the methods, we
apply the trust region method to our methods.
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§1. Introduction

We consider the following unconstrained minimization problem:

(1.1) minimize f(x), f : Rn → R, x ∈ Rn

where f is sufficiently smooth and its gradient g and Hessian H are available.
Quasi-Newton methods for solving (1.1) are iterative methods of the form:

(1.2) xk+1 = xk + sk.

In quasi-Newton methods, the step sk is generated based on an approximation
to the Hessian H(xk), say Bk. Most of quasi-Newton methods generate Bk

which satisfies the secant condition:

(1.3) Bk+1sk = yk,
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where yk = g(xk+sk)−gk and gk = g(xk). There are some updating formulas
for Bk that include the BFGS update, the DFP update and the symmetric
rank-one (SR1) update, for instance.

We do not specify how to compute sk in (1.2). If we use a line search tech-
nique, then sk is defined by sk = −αkB

−1
k gk, where αk > 0 is an appropriate

stepsize. On the other hand, if we use a trust region technique, then sk is an
approximate solution of the following subproblem:

min
s∈Rn

gTk s+
1

2
sTBks subject to ‖s‖ ≤ ∆k,

where ∆k > 0 is a trust region radius. In trust region techniques, sk is not
always a “step” but is only an “approximate solution”, and hence we set
xk+1 = xk if sk is not appropriate as a step. Thus we should note that (1.2)
is not necessarily satisfied in trust region approaches.

The SR1 update formula is defined by

Bk+1 = Bk +
rkr

T
k

rTk sk
,

where rk = yk − Bksk. Many researchers have studied the SR1 method. For
example, Conn et al. [2] showed that the approximate matrix Bk based on the
SR1 update converges to the Hessian at the solution. Khalfan et al. [7] proved
the R-superlinear convergence of the SR1 method under mild assumptions.
Byrd et al. [1] proposed a quasi-Newton method with the SR1 update based
on the trust region technique. There are many other studies on SR1 methods
which include [8, 9, 11,14,15,17].

On the other hand, to accelerate quasi-Newton methods, some researchers
have proposed variants of the secant condition (1.3) including [5,10,16,18,19].
In this paper, we treat SR1 update formula based on some modified secant
conditions, and analyze local behaviors of quasi-Newton methods based on
those SR1 update formulas.

This paper is organized as follows. In Section 2, we state some modified
secant conditions and give SR1 update formulas based on these modified secant
conditions. In Section 3, we analyze local behaviors of the SR1 methods given
in Section 2. In Section 4, in order to establish the global convergence of the
methods, we apply the trust region method to the SR1 methods described in
Section 2. Finally, in Section 5, preliminary numerical results are given.

In this paper, we use the symbol ‖ · ‖ to denote the usual `2-norm of a
vector or the corresponding induced matrix norm.
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§2. SR1 update formulas based on modified secant conditions

In this section, we consider SR1 update formulas based on some modified
secant conditions. To this end, we briefly review those modified secant condi-
tions.

Zhang et al. [18, 19] set the equation:

sTkBk+1sk = sTk yk + θk,

where
θk = 6(f(xk)− f(xk + sk)) + 3(gk + g(xk + sk))

T sk.

Based on the above equation, Zhang et al. gave a modified secant condition:

(2.1) Bk+1sk = zk, zk = yk +
θk

sTk uk
uk,

where uk ∈ Rn is any vector such that sTk uk 6= 0. If ‖sk‖ is sufficiently small,
then we have, for any vector uk satisfying sTk uk 6= 0, that

sTk (H(xk + sk)sk − yk) = O(‖sk‖3),
sTk (H(xk + sk)sk − zk) = O(‖sk‖4).

It follows from these relations that the curvature sTkBk+1sk given by any quasi-
Newton update with condition (2.1) approximates the second-order curvature
sTkH(xk+ sk)sk with a higher precision than the curvature sTkBk+1sk with the
condition (1.3) does.

Wei et al. [16] consider another equation:

sTkBk+1sk = sTk yk + ηk,

where

(2.2) ηk = 2(f(xk)− f(xk + sk)) + (gk + g(xk + sk))
T sk.

Based on the above equation, Wei et al. gave another modified secant condi-
tion:

(2.3) Bk+1sk = zk, zk = yk +
ηk

sTk uk
uk,

where uk ∈ Rn is any vector such that sTk uk 6= 0. Note that the approximation
matrix based on the above secant condition satisfies the following relation:

f(xk) = f(xk + sk) + g(xk + sk)
T (−sk) +

1

2
(−sk)

TBk+1(−sk).

Now we estimate zk in secant conditions (2.1) and (2.3). To this end, we
give the following assumption and lemma.
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Assumption.

A1. The objective function f is twice continuously differentiable everywhere,
and the Hessian H is Lipschitz continuous, that is, there exists a constant
L such that

‖H(x)−H(y)‖ ≤ L‖x− y‖

for all x, y ∈ Rn.

Lemma 2.1. Assume that Assumption A1 holds and there exists a positive
constant γ such that |sTk uk| ≥ γ‖sk‖‖uk‖ > 0 for all k. Then∥∥∥∥ ηk

sTk uk
uk

∥∥∥∥ ≤ L

γ
‖sk‖2

holds for any k.

Proof. We first note that g(xk + sk) = gk +
∫ 1
0 H(xk + tsk)sk dt. Then, from

(2.2) and the mean value theorem, we have, for all k,

|ηk| = |2(f(xk)− f(xk + sk)) + (gk + g(xk + sk))
T sk|

=

∣∣∣∣2(−gTk sk −
1

2
sTkH(xk + ξsk)sk) + (2gTk sk +

∫ 1

0
sTkH(xk + tsk)sk dt)

∣∣∣∣
=

∣∣∣∣∫ 1

0
sTk (H(xk + tsk)−H(xk + ξsk))sk dt

∣∣∣∣
≤ ‖sk‖2

∫ 1

0
‖H(xk + tsk)−H(xk + ξsk)‖ dt

≤ L‖sk‖2
∫ 1

0
‖(xk + tsk)− (xk + ξsk)‖ dt

= L‖sk‖3
∫ 1

0
|t− ξ| dt

≤ L‖sk‖3,

where ξ ∈ (0, 1), the second inequality follows from the Lipschitz continuity
of H, and the last inequality from |t − ξ| ≤ 1. Since we have from |sTk uk| ≥
γ‖sk‖‖uk‖ that ‖uk‖/|sTk uk| ≤ 1/(γ‖sk‖), the proof is complete.

Let x∗ be a local solution of (1.1) and, for any i ≤ j, define

εi,j = max{‖xt − x∗‖, ‖xt + st − x∗‖ | i ≤ t ≤ j}.

Then we have ‖sk‖ ≤ ‖xk+sk−x∗‖+‖xk−x∗‖ ≤ 2εk,k. Hence, by Lemma 2.1,
zk in (2.3) can be estimated by

(2.4) zk = yk +
ηk

sTk uk
uk = yk +O(‖sk‖2) = yk +O(εk,k‖sk‖).
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From the relation θk = 3ηk, zk in (2.1) also can be estimated by

(2.5) zk = yk +
θk

sTk uk
uk = yk +O(εk,k‖sk‖).

Li and Fukushima [10] proposed the following Levenberg-Marquardt type
secant condition:

(2.6) Bk+1sk = zk, zk = yk + νksk,

where νk is a positive parameter such that νk = O(‖gk‖) or O(1). By choosing
νk appropriately, zTk sk > 0 can be ensured. Li and Fukushima show the global
convergence of the BFGS method based on (2.6) for nonconvex unconstrained
optimization problems. We assume, in this paper, νk = O(‖gk‖) to establish
a fast rate of convergence of our modified SR1 method. Then we can estimate
zk in (2.6) by

(2.7) zk = yk + νksk = yk +O(‖gk‖‖sk‖) = yk +O(εk,k‖sk‖),

where the last equality follows from the relation ‖gk‖ = ‖gk − g(x∗)‖ and the
Lipschitz continuity of g.

From estimates (2.4), (2.5) and (2.7), we can treat secant conditions (2.1),
(2.3) and (2.6) as members of the following unified secant condition:

Bk+1sk = zk, zk = yk + qk,(2.8)

where qk is a vector such that

‖qk‖ ≤ τεk,k‖sk‖,(2.9)

and τ is a nonnegative constant. Based on the modified secant condition (2.8),
we will construct the modified SR1 update formula:

Bk+1 = Bk +
r̂kr̂

T
k

r̂Tk sk
,(2.10)

where r̂k = zk−Bksk. In the paper, we consider the method which uses (2.10)
and zk = yk + qk with (2.9), and call this method MRS1 (Modified SR1).

§3. Local behavior of MSR1

In this section, we investigate the local behavior of MSR1. We now make
assumptions on the approximate matrices Bk and the sequence of iterates
generated by the MSR1.
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Assumption.

A2. There exists a positive constant c1 such that

|r̂Tk sk| ≥ c1‖r̂k‖‖sk‖ > 0(3.1)

holds for all k.

A3. The sequence {xk} converges to a local solution x∗.

A4. The sequence {sk} is uniformly linearly independent, that is, there exist
a positive constant c2 and positive integers k0 and m such that, for all
k ≥ k0, one can choose n distinct indices

k ≤ k1 < · · · < kn ≤ k +m

with

σmin(Sk) ≥ c2,

where σmin(Sk) is the minimum singular value of the matrix

Sk =

(
sk1
‖sk1‖

, · · · , skn
‖skn‖

)
.

We need the condition (3.1) in the convergence analysis of MSR1. On the
other hand, if the condition (3.1) does not hold and if |r̂Tk sk| is very small,
then we have zTk sk ≈ sTkBksk. Hence in actual computations, we can use Bk

instead of Bk+1 if (3.1) does not hold.
We define here the matrix

Ĥ` =

∫ 1

0
H(x` + ts`)dt(3.2)

for each `. Recall that the relation y` = Ĥ`s` holds, which will be used in the
sequel. In order to investigate the rate of convergence of the MSR1, we give
the following useful lemma (see also [2, Lemma 1] and [7, Lemma 3.1]).

Lemma 3.1. Assume that Assumptions A1 and A2 hold. Let {xk} be a se-
quence generated by the MSR1. Then the following statements hold:

‖zj −Bj+1sj‖ = 0(3.3)

for all j and

‖zj −Bisj‖ ≤ 2

c1
(L+ τ)

(
1 +

2

c1

)i−j−2

εj,i−1‖sj‖(3.4)

for all j and i ≥ j + 1.
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Proof. We first see that (3.3) and (3.4) with i = j+1 immediately result from
(2.8). Next, we show (3.4) by using induction on i. We choose k ≥ j + 1 and
assume that (3.4) holds for all i = j +1, . . . , k. It follows from (2.8) and (2.9)
that, for k ≥ j + 1,

|zTk sj − sTk zj | ≤ |yTk sj − sTk yj |+ |qTk sj − sTk qj |
≤ |yTk sj − sTk yj |+ ‖qk‖‖sj‖+ ‖sk‖‖qj‖
≤ |yTk sj − sTk yj |+ τεk,k‖sk‖‖sj‖+ τεj,j‖sk‖‖sj‖
≤ |yTk sj − sTk yj |+ 2τεj,k‖sk‖‖sj‖,

where the last inequality used εj,j , εk,k ≤ εj,k. Thus from the induction
assumption, we have that, for k ≥ j + 2,

|r̂Tk sj | = |zTk sj − sTkBksj |(3.5)

≤ |zTk sj − sTk zj |+ |sTk (zj −Bksj)|
≤ |yTk sj − sTk yj |+ 2τεj,k‖sk‖‖sj‖

+
2

c1
(L+ τ)

(
1 +

2

c1

)k−j−2

εj,k−1‖sk‖‖sj‖,

while we have from (3.3) that, for k = j + 1,

|r̂Tj+1sj | = |zTj+1sj − sTj+1Bj+1sj |(3.6)

= |zTj+1sj − sTj+1zj |
≤ |yTj+1sj − sTj+1yj |+ 2τεj,j+1‖sj+1‖‖sj‖.

Next note from the relation y` = Ĥ`s` that we obtain

|yTk sj − sTk yj | = |sTk (Ĥk − Ĥj)sj | ≤ ‖Ĥk − Ĥj‖‖sk‖‖sj‖.

Since it follows from the Lipschitz continuity of H that

‖Ĥk − Ĥj‖ =

∥∥∥∥∫ 1

0
(H(xk + tsk)−H(xj + tsj))dt

∥∥∥∥
≤

∫ 1

0
‖H(xk + tsk)−H(xj + tsj)‖dt

≤ L

∫ 1

0
‖xk + tsk − xj − tsj‖dt

≤ L

∫ 1

0
(t‖xk + sk − x∗‖+ (1− t)‖xk − x∗‖) dt

+L

∫ 1

0
(t‖xj + sj − x∗‖+ (1− t)‖xj − x∗‖) dt

≤ Lεk,k + Lεj,j

≤ 2Lεj,k,
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where the third inequality comes from xk + tsk − x∗ = t(xk + sk − x∗) + (1−
t)(xk − x∗), we get

|yTk sj − sTk yj | ≤ 2Lεj,k‖sk‖‖sj‖.

Then, for k ≥ j + 2, (3.5) yields

|r̂Tk sj | ≤ 2(L+ τ)εj,k‖sk‖‖sj‖(3.7)

+
2

c1
(L+ τ)

(
1 +

2

c1

)k−j−2

εj,k−1‖sk‖‖sj‖,

while we have from (3.6) that, for k = j + 1,

|r̂Tj+1sj | ≤ 2(L+ τ)εj,j+1‖sj+1‖‖sj‖.(3.8)

It follows from (2.10), (3.1) and (3.7) that, for k ≥ j + 2,

‖zj −Bk+1sj‖ =

∥∥∥∥zj −Bksj −
r̂kr̂

T
k sj

r̂Tk sk

∥∥∥∥
≤ ‖zj −Bksj‖+

|r̂Tk sj |
c1‖sk‖

≤ 2

c1
(L+ τ)

(
1 +

2

c1

)k−j−2

εj,k−1‖sj‖+
2

c1
(L+ τ)εj,k‖sj‖

+
2

c1
(L+ τ)

(
1 +

2

c1

)k−j−2

εj,k−1‖sj‖

=
4

c1
(L+ τ)

(
1 +

2

c1

)k−j−2

εj,k−1‖sj‖+
2

c1
(L+ τ)εj,k‖sj‖.

Since c1 ∈ (0, 1) and k ≥ j + 2 yield 1 ≤ (1 + 2/c1)
k−j−2 and 3 < 1 + 2/c1,

and since εj,k−1 ≤ εj,k, we have, for k ≥ j + 2, that

‖zj −Bk+1sj‖ ≤ 4

c1
(L+ τ)

(
1 +

2

c1

)k−j−2

εj,k‖sj‖

+
2

c1
(L+ τ)

(
1 +

2

c1

)k−j−2

εj,k‖sj‖

=
6

c1
(L+ τ)

(
1 +

2

c1

)k−j−2

εj,k‖sj‖

≤ 2

c1
(L+ τ)

(
1 +

2

c1

)k−j−1

εj,k‖sj‖.
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Similarly, we have from (2.10), (3.1), (3.3) and (3.8) that, for k = j + 1,

‖zj −Bj+2sj‖ ≤

∥∥∥∥∥zj −Bj+1sj −
r̂j+1r̂

T
j+1sj

r̂Tj+1sj+1

∥∥∥∥∥
=

‖r̂j+1‖ |r̂Tj+1sj |
|r̂Tj+1sj+1|

≤
|r̂Tj+1sj |
c1‖sj+1‖

≤ 2

c1
(L+ τ)εj,j+1‖sj‖.

These inequalities give (3.4) for i = k+1 where k ≥ j +1, and therefore (3.4)
follows.

By using Lemma 3.1, we have the next theorem.

Theorem 3.1. Assume that Assumptions A1–A4 hold. Let {xk} be a sequence
generated by the MSR1. Then there exists a positive constant c3 such that, for
all k ≥ k0,

‖Bk+m+1 −H(x∗)‖ ≤ c3εk,k+m,(3.9)

where k0 and m are positive integers given in Assumption A4. Moreover, we
have

lim
k→∞

‖Bk −H(x∗)‖ = 0.(3.10)

Proof. Since we have, from (3.2) and the Lipschitz continuity of H, that

‖Ĥj −H(x∗)‖ ≤ L

∫ 1

0
‖xj + tsj − x∗‖ dt

≤ L

∫ 1

0
(t‖xj + sj − x∗‖+ (1− t)‖xj − x∗‖) dt

≤ Lεj,j

holds for all j ≥ 1, it follows from (2.8) and yj = Ĥjsj that

‖zj −H(x∗)sj‖ = ‖(Ĥj −H(x∗))sj + qj‖(3.11)

≤ ‖Ĥj −H(x∗)‖‖sj‖+ ‖qj‖
≤ Lεk,k+m‖sj‖+ τεk,k+m‖sj‖
= M1εk,k+m‖sj‖
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for any j ∈ {k, k+1, . . . , k+m}, where M1 = L+τ , and the second inequality
used (2.9) and εj,j ≤ εk,k+m. Moreover, since (k+m+1)− j − 2 < m for any
such j, we have from (3.4) that

‖zj −Bk+m+1sj‖ ≤ 2

c1
(L+ τ)

(
1 +

2

c1

)m

εk,k+m‖sj‖(3.12)

= M2εk,k+m‖sj‖,

where M2 = 2
c1
(L + τ)(1 + 2/c1)

m. By (3.11) and (3.12), we obtain, for any
j ∈ {k, . . . , k +m}, that

‖(Bk+m+1 −H(x∗))sj‖
‖sj‖

≤ ‖zj −H(x∗)sj‖
‖sj‖

+
‖zj −Bk+m+1sj‖

‖sj‖
(3.13)

≤ (M1 +M2)εk,k+m.

Since (3.13) holds for any j ∈ {k1, . . . , kn} (recall Assumption A4), we have

‖Bk+m+1 −H(x∗)‖ ≤ 1

c2
‖(Bk+m+1 −H(x∗))Sk‖(3.14)

≤
√

n

c2
max

j=k1,...,kn

∥∥∥∥(Bk+m+1 −H(x∗))
sj
‖sj‖

∥∥∥∥
≤

√
n

c2
(M1 +M2)εk,k+m,

where the first inequality follows from ‖A‖ ≤ ‖ASk‖‖S−1
k ‖ and ‖S−1

k ‖ =
1/σmin(Sk) ≤ 1/c2 by Assumption A4, the second inequality from

‖A‖ ≤

√√√√ n∑
j=1

‖aj‖2 ≤
√
n max

1≤j≤n
‖aj‖,

where aj denotes the jth column of A, and the last inequality from (3.13). The
relation (3.14) implies (3.9) with c3 =

√
n(M1+M2)/c2. Now Assumption A3

implies in turn that εk,k+m tends to zero, and hence (3.10) holds.

We note that Theorem 3.1 implies that Bk is necessarily positive definite
for all k sufficiently large if H(x∗) is positive definite.

Next we give the Q-superlinear rate of convergence properties of the MSR1.

Theorem 3.2. Assume that Assumptions A1–A4 hold. Assume also that
H(x∗) is positive definite, and that Bk given in (2.10) is nonsingular and
xk+1 = xk + sk with sk = −B−1

k gk for all k sufficiently large. Then {xk}
approaches x∗ Q-superlinearly.
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Proof . We have

‖(Bk −H(x∗))sk‖
‖sk‖

≤ ‖Bk −H(x∗)‖.

Therefore, if Assumptions A1–A4 hold, then we obtain from Theorem 3.1 that

lim
k→∞

‖(Bk −H(x∗))sk‖
‖sk‖

= 0.

This implies that the Dennis-Moré condition (see [4] for example) holds. There-
fore the result holds. 2

§4. MSR1 with trust region method

In the previous section, we considered the local behavior of the MSR1 under
the assumption xk → x∗. However this assumption is not necessarily satisfied.
In order to establish the global convergence of the method, we need to use
globalization techniques like line search methods or trust region methods. The
approximation matrix Bk generated by (2.10) is not always a positive definite
matrix, and hence trust region methods are more appropriate to the MSR1
than line search methods.

In this section, we apply the trust region method proposed by Shultz et al. [13]
to the MSR1. For this purpose, we give some definitions. For each iteration,
to obtain step sk, we approximately solve the following quadratic subproblem:

min
s∈Rn

mk(s) = f(xk) + gTk s+
1

2
sTBks subject to ‖s‖ ≤ ∆k,

where ∆k > 0 is the kth trust region radius. The approximate solution sk is
chosen such that

Predk ≥ σ1‖gk‖min{∆k, σ2‖gk‖/‖Bk‖}(4.1)

holds for positive constants σ1 and σ2 and such that

whenever ‖sk‖ < 0.8∆k, then Bksk = −gk,(4.2)

where Predk is the predicted reduction, which is defined by

Predk = f(xk)−mk(sk).

We also define the actual reduction by

Aredk = f(xk)− f(xk + sk).

Now we propose our algorithm, which follows the description of Algorithm 2.1
given by Byrd et al. [1].
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Algorithm TRMSR1.

Step 0. Give x0 ∈ Rn, an initial symmetric matrix B0 ∈ Rn×n, an initial
trust region radius ∆0, ξ ∈ (0, 0.1), τ1 ∈ (0, 1) and τ2 > 1. Set
k = 0.

Step 1. Find a feasible approximate solution sk satisfying (4.1) and (4.2) to
the subproblem:

min
s∈Rn

gTk s+
1

2
sTBks subject to ‖s‖ ≤ ∆k.

Step 2. If
Aredk
Predk

> ξ, then set xk+1 = xk + sk, else set xk+1 = xk.

Step 3. If
Aredk
Predk

> 0.75,

if ‖sk‖ < 0.8∆k, then set ∆k+1 = ∆k,
else set ∆k+1 = τ2∆k.

Else

if 0.1 ≤ Aredk
Predk

≤ 0.75, then set ∆k+1 = ∆k,

else set ∆k+1 = τ1∆k.

Step 4. Update Bk by MSR1 update formula (2.10).

Step 5. Set k = k + 1 and go to Step 1.

Note that Bk is updated in Step 4, even if xk is not updated (i.e. xk+1 =
xk). In [1, p.1028], the following comment is given: “Such updates along failed
directions seem to be necessary to the convergence analysis because if the
Hessian approximation is incorrect along such a direction and is not updated
along that direction very similar directions could, in principle, be generated
repeatedly at later iterations. Such steps would be rejected, resulting in the
trust region being reduced at these iterations, potentially keeping it small
enough that it would interfere with making a superlinear step even if the
Hessian approximation is accurate enough to provide one.”

Now we make the additional assumptions for the global convergence of
Algorithm TRMSR1.

Assumption.

A5. The sequence {xk} remains in a closed, bounded, convex set D. The ob-
jective function f has a unique stationary point x∗, and H(x∗) is positive
definite.
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A6. The sequence of matrices {Bk} generated by the MSR1 update (2.10) is
bounded, namely there exists a positive constant c4 such that ‖Bk‖ ≤ c4
holds for all k.

As stated before, note that Algorithm TRMSR1 is a trust region method
of the type considered in Byrd et. al. [1], and the difference between their
algorithm and Algorithm TRMSR1 is the update formula of Bk only. Moreover
the global convergence theorem in Byrd et. al. [1, Theorem 2.1] follows from
[13, Theorem 2.2] and its proof does not depend on update formulas of Bk.
Accordingly, we give the following theorem without proof.

Theorem 4.1. Suppose that Assumptions A1, A2, A5 and A6 hold. Let {xk}
be the sequence generated by Algorithm TRMSR1. Then the sequence {xk}
converges to x∗.

In the rest of this section, we consider the rate of convergence of Algo-
rithm TRMSR1. First, we give the following lemma that corresponds to [1,
Lemma 2.3].

Lemma 4.1. Let {xk} be a sequence of iterates which converges to the local
solution x∗, and let sk be a sequence of vectors such that xk+sk → x∗. Assume
that Assumptions A1, A2, A5 and A6 hold. Then there exists a nonnegative
integer K such that for any set of n+1 steps, S = {skj | K ≤ k1 < · · · < kn+1},
there exist an index km with m ∈ {2, 3, . . . , n+ 1} and M3 such that

‖(Bkm −H(x∗))skm‖
‖skm‖

≤ M3ε
1/n
k1,kn+1

,

where

M3 = 4

[
√
n(L+ τ)

{
1

2
+

1

c1

(
1 +

2

c1

)kn+1−k1−2
}

+ c4 + ‖H(x∗)‖

]
.

Proof. The proof of this lemma is almost the same as the proof of [7, Lemma 3.2],
and we only need to show that, for some positiveM4 that depends on k1, . . . , kn+1,

‖(Bkj −H(x∗))si‖
‖si‖

≤ M4εk1,kn+1(4.3)

holds for all j = 2, . . . , n+1 and i ∈ {k1, k2, . . . , kj−1}. Similarly to (3.13), we
have

‖(Bkj −H(x∗))si‖
‖si‖

≤ ‖zi −H(x∗)si‖
‖si‖

+
‖zi −Bkjsi‖

‖si‖
≤ (L+ τ)εk1,kn+1

+
2

c1
(L+ τ)

(
1 +

2

c1

)kn+1−k1−2

εk1,kn+1 ,
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which implies (4.3) with M4 = (L+ τ)
{
1 + 2

c1
(1 + 2/c1)

kn+1−k1−2 }.
Next we give a lemma which is obtained by applying Lemma 4.1 in a trust

region context, and corresponds to [1, Lemma 2.4]. Its proof is the same as
the proof of [1, Lemma 2.4], so we omit the proof.

Lemma 4.2. Suppose that Assumptions A1, A2, A5 and A6 hold. Let {xk} be
the sequence generated by Algorithm TRMSR1. Then there exists a nonneg-
ative integer N such that, for any set of p (n < p) steps sk+1, sk+2, . . . , sk+p

with k ≥ N , there exists a set Gk of at least p− n indices contained in the set
{i | k + 1 ≤ i ≤ k + p} such that

‖(Bj −H(x∗))sj‖
‖sj‖

≤ M5ε
1/n
k+1,k+p,

holds for all j ∈ Gk, where

M5 = 4

[
√
n(L+ τ)

{
1

2
+

1

c1

(
1 +

2

c1

)p−2
}

+ c4 + ‖H(x∗)‖

]
.

Furthermore, for k sufficiently large, if j ∈ Gk, then

Aredj
Predj

≥ 0.75.

This lemma implies that, in any set of p steps by Algorithm TRMSR1,
there are at least p− n steps accepted by Algorithm TRMSR1, and for which
the approximate Hessian is accurate. Now we consider the local behaviors of
Algorithm TRMSR1.

Theorem 4.2. Suppose that Assumptions A1, A2, A5 and A6 hold. Let {xk}
be the sequence generated by Algorithm TRMSR1. Then {xk} converges to
x∗ n+1 step Q-superlinearly, i.e., limk→∞ ‖xk+n+1−x∗‖/‖xk−x∗‖ = 0 hold.
Moreover, if Assumption A4 holds and Bk is nonsingular for all k sufficiently
large, then {xk} converges to x∗ Q-superlinearly.

Proof. The n+1 step Q-superlinear convergence property of Algorithm TRMSR1
can be proven in the same way as Theorem 2.7 in [1]. This theorem is proven
by using Lemmas 2.2–2.6 and Theorem 2.1 in [1], and these results do not
depend on update formulas of Bk except Lemmas 2.3 and 2.4. We can use our
Lemmas 4.1 and 4.2 instead of Lemmas 2.3 and 2.4 in [1] respectively to prove
the n + 1 step Q-superlinear convergence property of our method. Hence we
omit the proof and we only prove the second result.
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From Theorems 3.1 and 4.1, limk→∞ ‖Bk − H(x∗)‖ = 0 holds, and hence
limk→∞ ‖Bk − Ĥk‖ = 0 also holds. Therefore, we have from ξ ∈ (0, 0.1) that

Aredk
Predk

=
gTk sk +

1
2s

T
k Ĥksk

gTk sk +
1
2s

T
kBksk

> ξ(4.4)

holds for all k sufficiently large. Thus {xk} is updated by xk+1 = xk + sk in
Step 2 for all k sufficiently large. By (4.4) and Lemma 2.2 in [1], there exists
a positive constant ∆ such that

∆k = ∆ and ‖sk‖ < 0.8∆

for all k sufficiently large, and hence {xk} is updated by xk+1 = xk − B−1
k gk.

Therefore, from Theorem 3.2, the proof of the second result is complete.

§5. Numerical results

In this section, we give some numerical results of Algorithm TRMSR1. We
examined the following methods:

BFGS : Algorithm TRMSR1 with BFGS update instead of MSR1,
SR1 : Algorithm TRMSR1 with SR1 update (namely zk = yk),
MSR1-1 : Algorithm TRMSR1 with (2.1) and uk = yk−1,
MSR1-2 : Algorithm TRMSR1 with (2.3) and uk = yk−1,
MSR1-3 : Algorithm TRMSR1 with (2.6) and νk = 0.01‖gk‖.
The test problems we used are described in Grippo et al. [6] and Moré et

al. [12]. In Table 1, the first column, the second column and the third column
denote the problem number in this paper, the problem name and the dimension
of the problem, respectively. For each problem, we used the standard initial
point x0 given by [6] and [12].

The program was coded in JAVA 1.6, and computations were carried out
on a Dell Precision 490 (Intel Xeon CPU 2.33GHz) with 4.0GB RAM. For
these numerical experiments, we set ∆0 = 1, ξ = 0.01, τ1 = 0.5 and τ2 = 2
in Algorithm TRMSR1. We used the identity matrix I as an initial matrix
B0, and did an initial sizing. Specifically, in Step 4 of k = 0, we used B̃0 =
(sT0 z0/s

T
0 s0)I instead of B0 = I before updating B0. For MSR1-1 and MSR1-

2, if |sTk uk| ≥ 10−15‖sk‖‖uk‖ was not satisfied, we set zk = yk. Moreover, if
(3.1) with c1 = 10−8 did not hold, then we did not update Bk in Step 4 of
Algorithm TRMSR1.

For solving a subproblem in Step 1, we used Hebden’s method (see Algo-
rithm 7.2.1 in [3], for example). In Hebden’s method, if ‖B−1

k gk‖ ≥ 0.8∆k,
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Table 1: Test problems
P Name Dimension n

1 Extended Rosenbrock function [12] 100
2 Extended Powell singular function [12] 100
3 Trigonometric function [12] 100
4 Oren function [6] 20
5 Dixon function [6] 10
6 Variably dimensioned function [12] 10
7 Wood function [12] 4
8 Helical valley function [12] 3
9 Cube function [6] 2
10 Freudenstein and Roth function [12] 2

nonlinear equation in µ

1

‖(Bk + µI)−1gk‖
− 1

∆k
= 0

is solved by the Newton method. We stopped the Newton method if (4.1) with
σ1 = 0.1 and σ2 = 0.75 was satisfied.

The stopping condition was

‖gk‖ ≤ 10−5.

We also stopped the algorithm if the number of iterations exceeds 1000.
The numerical results of our experiment are reported in Table 2. The

numerical results are given in the form of “the number of iterations / the
number of inner iterations”. Note that the number of inner iterations means
sum of iterations of the Newton method in Step 1. If the number of iterations
exceeds 1000, then we denote “Failed ”.

We see from Table 2 that SR1 and MSR1-3 performed better than the
other three methods in these limited numerical experiments: for Problem 1,
SR1 outperformed MSR1-3; for Problem 3, MSR1-3 was superior to SR1; and
for the other eight problems, MSR1-3 was comparable to SR1.

§6. Concluding remarks

In this paper, we treated SR1 method based on some modified secant con-
ditions (MSR1) and investigated local behaviors of MSR1. In addition, we
applied trust region methods to MSR1 to establish its global convergence. Al-
though we used trust region methods in this paper, we can also consider MSR1
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Table 2: Numerical results of Algorithm TRMSR1
P n BFGS SR1 MSR1-1 MSR1-2 MSR1-3

1 100 87/54 78/56 42/59 65/23 213/167
2 100 91/5 53/13 73/52 69/29 54/25
3 100 46/0 180/117 85/5 97/32 71/7
4 20 544/2 187/2 183/4 188/2 190/2
5 10 217/116 67/16 Failed Failed 60/14
6 10 23/2 23/2 23/2 24/2 25/2
7 4 89/3 44/43 135/43 35/3 43/44
8 3 12/6 18/24 85/28 95/118 19/27
9 2 73/17 48/33 Failed 68/44 45/30
10 2 42/6 16/4 19/5 17/5 17/4

with line search methods. Since the positive definiteness of the approximation
matrix Bk is very important for line search methods, we need to establish
r̂Tk sk > 0 for all k. By choosing qk appropriately, we may be able to establish
r̂Tk sk > 0 for all k. It is our further study.
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[4] J. E. Dennis and J.J. Moré, A characterization of superlinear convergence and its
application to quasi-Newton methods, Mathematics of Computation, 28 (1974),
549–560.



42 Y. NARUSHIMA

[5] J.A. Ford and I.A. Moghrabi, Multi-step quasi-Newton methods for optimization,
Journal of Computational and Applied Mathematics, 50 (1994), 305–323.

[6] L. Grippo, F. Lampariello and S. Lucidi, A truncated Newton method with non-
monotone line search for unconstrained optimization, Journal of Optimization
Theory and Applications, 60 (1989), 401–419.

[7] H.F. Khalfan, R.H. Byrd and R.B. Schnabel, A theoretical and experimental study
of the symmetric rank-one update, SIAM Journal on Optimization, 3 (1993), 1–
24.

[8] C.T. Kelley and E.S. Sachs, Local convergence of the symmetric rank-one itera-
tion, Computational Optimization and Applications, 9 (1998), 43–63.

[9] W.J. Leong and M.A. Hassan, A restarting approach for the symmetric rank one
update for unconstrained optimization, Computational Optimization and Appli-
cations, 42 (2009), 327–334.

[10] D.H. Li and M. Fukushima, A modified BFGS method and its global convergence
in nonconvex minimization, Journal of Computational and Applied Mathematics,
129 (2001), 15–35.

[11] S. Linping, Updating the self-scaling symmetric rank one algorithm with limited
memory for large-scale unconstrained optimization, Computational Optimization
and Applications, 27 (2004), 23–29.
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