Mean Labeling of Some Graphs

D. Ramya and P. Jeyanthi

(Received January 28, 2011; Revised November 11, 2011)

Abstract. Let *G* be a (p,q) graph and $f: V(G) \rightarrow \{0,1,2,3,\ldots,q\}$ be an injection. For each edge $e = uv$, let $f^*(e) = \left[\frac{f(u) + f(v)}{2}\right]$ \int . Then *f* is called a mean labeling if $\{f^*(e) : e \in E(G)\} = \{1, 2, 3, \ldots, q\}$. A graph that admits a mean labeling is called a *mean graph*. In this paper, we prove $T\hat{o}C_n$, $T\tilde{o}C_n$, $T\mathbb{Q}P_n$, $T\mathbb{Q}2P_n$, where *T* is a T_p -tree, are mean graphs.

AMS 2010 *Mathematics Subject Classification.* 05C78.

Key words and phrases. Mean labeling, mean graph, *Tp*-tree.

*§***1. Introduction**

By a graph, we mean a finite simple and undirected one. The vertex set and the edge set of a graph *G* are denoted by $V(G)$ and $E(G)$ respectively. The disjoint union of *m* copies of the graph G is denoted by mG . The union of two graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. A vertex of degree one is called a pendant vertex. The corona $G_1 \odot G_2$ of the graphs G_1 and G_2 is obtained by taking one copy of G_1 (with p vertices) and p copies of G_2 and joining the i^{th} vertex of G_1 to every vertex of the i^{th} copy of G_2 .

Let *T* be a tree and u_0 and v_0 be two adjacent vertices in $V(T)$. Let there be two pendant vertices *u* and *v* in *T* such that the length of u_0 -*u* path is equal to the length of v_0 -*v* path. If the edge u_0v_0 is deleted from *T* and *u, v* are joined by an edge *uv,* then such a transformation of *T* is called an elementary parallel transformation (or an EPT) and the edge u_0v_0 is called a transformable edge. If by a sequence of EPT's *T* can be reduced to a path, then *T* is called a T_p -tree (transformed tree) and any such sequence regarded as a composition of mappings (EPT's) denoted by *P,* is called a parallel transformation of *T.* The path, the image of *T* under *P* is denoted as *P*(*T*)*.*

Let *T* be a T_p -tree with *m* vertices. Let $T\hat{o}C_n$ be a graph obtained from *T* and *m* copies of C_n by identifying a vertex of i^{th} copy of C_n with i^{th} vertex of *T*. Let $T\tilde{o}C_n$ be a graph obtained from *T* and *m* copies of C_n by joining a vertex of i^{th} copy of C_n with i^{th} vertex of T by an edge. Let $T \mathbb{Q} P_n$ be the graph obtained from T and m copies of P_n by identifying one pendant vertex of i^{th} copy of P_n with i^{th} vertex of *T*, where P_n is a path of length $n-1$. Let $T\odot 2P_n$ be the graph obtained from *T* by identifying the pendant vertices of two vertex disjoint paths of equal lengths $n-1$ at each vertex of the T_p -tree *T.* Terms and notations not defined here are used in the sense of Harary [1].

A graph $G = (p, q)$ with p vertices and q edges is called a mean graph if there is an injective function *f* that maps $V(G)$ to $\{0, 1, 2, 3, \ldots, q\}$ such that for each edge uv is labeled with $\frac{f(u)+f(v)}{2}$ if $f(u)+f(v)$ is even and $\frac{f(u)+f(v)+1}{2}$
if $f(u)+f(v)$ is odd. Then the resulting edge labels are distinct.

The mean labeling of $P_6 \odot K_1$ is given in Figure 1.

The concept of mean labeling is introduced by S. Somasundaram and R. Ponraj [7] in 2003. They have proved in [4, 5, 8, 9] and [10] the meanness of many standard graphs like $P_n, C_n, K_n (n \leq 3)$, the ladder, the triangular snake $K_{2,n}, K_2 + mK_1, K_n + 2K_2, C_m \cup P_n, P_m \times P_n, P_m \times C_n, C_m \odot K_1, P_m \odot K_1,$ the friendship graph, triangular snakes, quadrilateral snakes, K_n if and only if $n \leq 3, K_{1,n}$ if and only if $n \leq 3$, bistars $B_{m,n}(m \geq n)$ if and only if $m < n+2$, the subdivision graph of the star $K_{1,n}$ if and only if $n < 4$, the friendship graph $C_3^{(t)}$ $i_3^{(t)}$ if and only if $t < 2$. Also they ahve investigated the mean graphs or order less than or equal to 5. In addition, they have proved that the graphs $K_n(n > 3)$, $K_{1,n}(n > 3)$, $B_{m,n}(m > n + 2)$, $S(K_{1,n})(n > 4)$, $C_3^{(t)}(t > 2)$, the wheel W_n are not mean graphs. M.A. Seoud and M.A. Salim [6] investigated the mean labeling of graphs of order 6. In [2, 3], some constructions of mean graphs and mean labeling of some standard families of graphs are given.

*§***2. Mean Graphs**

Theorem 2.1. Let T be a T_p -tree on m vertices. Then the graph $T\hat{o}C_n$ is a *mean graph.*

Proof. Let *T* be a T_p -tree with *m* vertices. By the definition of a T_p -tree, there exists a parallel transformation P of T such that for the path $P(T)$ we have

(i) $V(P(T)) = V(T)$ and (ii) $E(P(T)) = (E(T) \setminus E_d) \cup E_P$, where E_d is the set of edges deleted from *T* and *E^P* is the set of edges newly added through the sequence $P = (P_1, P_2, \ldots, P_k)$ of the EPTs P used to arrive at the path $P(T)$. Clearly E_d and E_p have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_1, v_2, v_3, \ldots, v_m$ starting from one pendant vertex of $P(T)$ right up to other. Let $u_1^i, u_2^i, \ldots, u_n^i$ be the vertices of the *i*th copy of C_n with $u_1^i = v_i$ for $1 \leq i \leq m$. Then $V(T\hat{o}C_n) =$ $\{u_i^j\}$ $i_i^j : 1 \le i \le n, 1 \le j \le m$. Let

$$
n = \begin{cases} 2k+1 & \text{if } n \text{ is odd} \\ 2k & \text{if } n \text{ is even.} \end{cases}
$$

Define *f* : $V(T\hat{o}C_n)$ → {0, 1, 2, 3, . . . , $q = (n+1)m - 1$ } as follows: **Case (i).** *n* is odd.

$$
f(u_i^{2j-1}) = 2(n+1)(j-1) + 2(i-1) \quad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil, 1 \le i \le k+1,
$$

\n
$$
f(u_{k+2}^{2j-1}) = 2(n+1)(j-1) + n \quad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil,
$$

\n
$$
f(u_{k+2+i}^{2j-1}) = 2(n+1)(j-1) + n - 2i \quad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil, 1 \le i \le k-1,
$$

\n
$$
f(u_1^{2j}) = 2(n+1)j - 1 \quad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor,
$$

\n
$$
f(u_i^{2j}) = 2(n+1)j - 2(i-1) \quad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor, 2 \le i \le k+2,
$$

\n
$$
f(u_{k+2+i}^{2j}) = (n+1)(2j-1) + 2i + 1 \quad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor, 1 \le i \le k-1.
$$

Let $v_i v_j$ be a transformed edge in *T* for some indices *i* and $j, 1 \le i \le j \le m$ and let P_1 be the EPT that deletes the edge $v_i v_j$ and adds the edge $v_{i+t} v_{j-t}$ where *t* is the distance of v_i from v_{i+t} and also the distance of v_j from v_{j-t} . Let *P* be a parallel transformation of *T* that contains P_1 as one of the constituent EPTs. Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$, $i + t + 1 = j - t$ which implies $j = i + 2t + 1$. The induced label of the edge $v_i v_j$ is given by,

(2.1)
$$
f^*(v_i v_j) = f^*(v_i v_{i+2t+1}) = \left\lceil \frac{f(v_i) + f(v_{i+2t+1})}{2} \right\rceil = (n+1)(i+t)
$$

and

$$
(2.2) \ \ f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = \left\lceil \frac{f(v_{i+t} + f(v_{i+t+1})}{2} \right\rceil = (n+1)(i+t)
$$

Therefore from (2.1) and (2.2), $f^*(v_i v_j) = f^*(v_{i+t}v_{j-t})$. Let $e_i^j = u_i^j$ $i^ju^j_{i+1}$, $e^j_{n} = u^j_{n}u^j_{1}$ j_1 for $1 \le i \le n-1, 1 \le j \le m$. For each vertex label *f,* the induced edge label *f ∗* is defined as follows:

$$
f^*(v_iv_{i+1}) = (n+1)i
$$

\n
$$
f^*(e_i^{2j-1}) = 2(n+1)(j-1) + 2i - 1
$$

\n
$$
f^*(e_{k+2}^{2j-1}) = 2(n+1)(j-1) + n - 1
$$

\n
$$
f^*(e_{k+2+i}^{2j-1}) = 2(n+1)(j-1) + n - 1 + 2i
$$

\n
$$
f^*(e_{k+2+i}^{2j-1}) = 2(n+1)(j-1) + n - 1 + 2i
$$

\n
$$
f^*(e_i^{2j}) = 2(n+1)j - 2i + 1
$$

\n
$$
f^*(e_{k+2}^{2j}) = 2(n+1)j - n + 1
$$

\n
$$
f^*(e_{k+2+i}^{2j}) = 2(n+1)j - n + 1 + 2i
$$

\n
$$
f^*(e_{k+2+i}^{2j}) = 2(n+1)j - n + 1 + 2i
$$

\n
$$
f^*(e_{k+2+i}^{2j}) = 2(n+1)j - n + 1 + 2i
$$

\n
$$
f^*(e_{k+2+i}^{2j}) = 2(n+1)j - n + 1 + 2i
$$

\n
$$
f^*(e_{k+2+i}^{2j}) = 2(n+1)j - n + 1 + 2i
$$

\n
$$
f^*(e_{k+2+i}^{2j}) = 2(n+1)j - n + 1 + 2i
$$

\n
$$
f^*(e_{k+2+i}^{2j}) = 2(n+1)j - n + 1 + 2i
$$

\n
$$
f^*(e_{k+2+i}^{2j-1}) = 2(n+1)j - n + 1 + 2i
$$

\n
$$
f^*(e_{k+2+i}^{2j-1}) = 2(n+1)j - n + 1 + 2i
$$

\n
$$
f^*(e_{k+2+i}^{2j-1}) = 2(n+1)j - n + 1 + 2i
$$

\n
$$
f^*(e_{k+2+i}^{2j-1}) = 2(n+1)j - n + 1 + 2i
$$

\n

It can be verified that *f* is an mean labeling of $T\hat{o}C_n$. **Case (ii).** *n* is even.

$$
f(u_i^{2j-1}) = 2(n+1)(j-1) + 2(i-1) \qquad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil, 1 \le i \le k+1,
$$

\n
$$
f(u_{k+2}^{2j-1}) = 2(n+1)(j-1) + n - 1 \qquad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil,
$$

\n
$$
f(u_{k+2+i}^{2j-1}) = 2(n+1)(j-1) + n - 1 - 2i \qquad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil, 1 \le i \le k-2,
$$

\n
$$
f(u_i^{2j}) = 2(n+1)j - 2i + 1 \qquad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor, 1 \le i \le k+1
$$

\n
$$
f(u_{k+2}^{2j}) = 2(n+1)j - n + 2 \qquad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor,
$$

\n
$$
f(u_{k+2+i}^{2j}) = 2(n+1)j - n + 2 + 2i \qquad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor, 1 \le i \le k-2.
$$

Let $v_i v_j$ be a transformed edge in *T* for some indices *i* and $j, 1 \le i \le j \le m$ and let P_1 be the EPT that deletes the edge $v_i v_j$ and adds the edge $v_{i+t} v_{j-t}$ where *t* is the distance of v_i from v_{i+t} and also the distance of v_j from v_{j-t} . Let *P* be a parallel transformation of *T* that contains *P*¹ as one of the constituent EPTs. Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$, $i + t + 1 = j - t$ which implies $j = i + 2t + 1$. The induced label of the edge $v_i v_j$ is given by,

(2.3)
$$
f^*(v_i v_j) = f^*(v_i v_{i+2t+1}) = \left\lceil \frac{f(v_i) + f(v_{i+2t+1})}{2} \right\rceil = (n+1)(i+t)
$$

and

$$
(2.4) \ \ f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = \left\lceil \frac{f(v_{i+t} + f(v_{i+t+1})}{2} \right\rceil = (n+1)(i+t)
$$

Therefore from (2.3) and (2.4), $f^*(v_i v_j) = f^*(v_{i+t}v_{j-t})$.

Let $e_i^j = u_i^j$ i ^{*u*}_{*i*}^{*u*}₁*, e*^{*j*}_{*n*}</sub> = *u*^{*j*}_{*u*}^{*i*}₁^{*j*}₁*i*^{*n*}₁ j_1 for $1 \le i \le n-1, 1 \le j \le m$. For each vertex label *f,* the induced edge label *f ∗* is defined as follows:

$$
f^*(v_iv_{i+1}) = (n+1)i
$$

\n
$$
f^*(e_i^{2j-1}) = 2(n+1)(j-1) + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j-1}) = 2(n+1)(j-1) + n - 2(i-1)
$$

\n
$$
f^*(e_{k+i}^{2j-1}) = 2(n+1)(j-1) + n - 2(i-1)
$$

\n
$$
f^*(e_i^{2j}) = 2(n+1) - 2i
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - 2i
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+1) - n + 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) =
$$

It can be verified that *f* is an mean labeling of $T\hat{o}C_n$. Hence $T\hat{o}C_n$ is a mean \Box graph.

The example for the mean labeling of $T\hat{o}C_6$, where *T* is a T_p -tree with 11 vertices, is given in Figure 2.

Corollary 2.2. *Let* T *be a* T_p *-tree on* m *vertices. Then the graph* $T \odot K_2$ *is a mean graph.*

Proof. It follows from Theorem 2.1, by taking $n = 3$.

Theorem 2.3. Let T be a T_p -tree on m vertices. Then the graph $T\tilde{o}C_n$ is a *mean graph.*

Proof. Let *T* be a T_p -tree with *m* vertices. By the definition of a T_p -tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T)) = V(T)$ and (ii) $E(P(T)) = (E(T) E_d) \cup E_P$, where E_d is the set of edges deleted from *T* and *E^P* is the set of edges newly added through the sequence $P = (P_1, P_2, \ldots, P_k)$ of the EPTs *P* used to arrive at the path $P(T)$. Clearly E_d and E_p have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_1, v_2, v_3, \ldots, v_m$ starting from one pendant vertex of $P(T)$ right up to other. Let $u_1^i, u_2^i, \ldots, u_n^i$ be the vertices of the *i*th copy of C_n for $1 \leq i \leq m$. Then $V(T\tilde{o}C_n) = \{v_j, u_i^j\}$ *i* : 1 *≤* $i \leq n, 1 \leq j \leq m$ } and $E(T\tilde{o}C_n) = E(T) \cup E(C_n) \cup \{v_ju_j^j\}$ $j_1 : 1 \leq j \leq m$. Let

$$
n = \begin{cases} 2k+1 & \text{if } n \text{ is odd} \\ 2k & \text{if } n \text{ is even.} \end{cases}
$$

Define *f* : $V(T\tilde{o}C_n)$ → {0, 1, 2, 3, . . . , $q = (n+2)m-1$ } as follows:

$$
f(v_{2i-1}) = 2(n+2)(i-1)
$$

\n
$$
f(v_{2i}) = 2(n+2)i - 1
$$

\n
$$
for 1 \le i \le \left\lfloor \frac{m}{2} \right\rfloor,
$$

\n
$$
for 1 \le i \le \left\lfloor \frac{m}{2} \right\rfloor.
$$

Case (i). *n* is odd.

$$
f(u_i^{2j-1}) = 2(n+2)(j-1) + (2i-1) \qquad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil, 1 \le i \le k+1,
$$

\n
$$
f(u_{k+2}^{2j-1}) = 2(n+2)(j-1) + n + 1 \qquad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil,
$$

\n
$$
f(u_{k+2+i}^{2j-1}) = 2(n+2)(j-1) + n + 1 - 2i \qquad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil, 1 \le i \le k-1,
$$

\n
$$
f(u_i^{2j}) = 2(n+2)j - 2(i-1) - 2 \qquad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor, 1 \le i \le k,
$$

\n
$$
f(u_{k+1}^{2j}) = 2(n+2)j - n - 2 \qquad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor,
$$

\n
$$
f(u_{k+1+i}^{2j}) = 2(n+2)j - n + 2(i-1) \qquad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor, 1 \le i \le k.
$$

Let $v_i v_j$ be a transformed edge in *T* for some indices *i* and $j, 1 \le i \le j \le m$ and let P_1 be the EPT that deletes the edge $v_i v_j$ and adds the edge $v_{i+t} v_{j-t}$ where *t* is the distance of v_i from v_{i+t} and also the distance of v_j from v_{j-t} . Let *P* be a parallel transformation of *T* that contains *P*¹ as one of the constituent

EPTs. Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$, $i + t + 1 = j - t$ which implies $j = i + 2t + 1$. The induced label of the edge $v_i v_j$ is given by,

(2.5)
$$
f^*(v_iv_j) = f^*(v_iv_{i+2t+1}) = \left\lceil \frac{f(v_i) + f(v_{i+2t+1})}{2} \right\rceil = (n+2)(i+t)
$$

and

$$
(2.6) \ \ f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = \left\lceil \frac{f(v_{i+t} + f(v_{i+t+1})}{2} \right\rceil = (n+2)(i+t)
$$

Therefore from (2.5) and (2.6), $f^*(v_i v_j) = f^*(v_{i+t}v_{j-t})$.

Let $e_i^j = u_i^j$ $i^ju^j_{i+1}$, $e^j_{n} = u^j_{n}u^j_{1}$ j_1 for $1 \le i \le n-1, 1 \le j \le m$. For each vertex label *f,* the induced edge label *f ∗* is defined as follows:

f ∗ $for 1 \leq i \leq m-1,$ $f^*(v_{2j-1}u_1^{2j-1}) = 2(n+2)(j-1)+1$ *for* $1 \le j \le$ l*m* 2 m *,* $f^*(v_{2j}u_1^{2j})$ $f(x) = 2(n+2)j - 1$ *for* $1 \le j \le$ l*m* 2 m *,* $f^*(e_i^{2j-1}) = 2(n+2)(j-1) + 2i$ *for* $1 \le j \le j$ l*m* 2 m *,* $1 \leq i \leq k+1$ $f^*(e_{k+1+i}^{2j-1}) = 2(n+2)(j-1) + n - 2(i-1)$ *for* $1 \leq j \leq \left\lceil \frac{m}{2} \right\rceil$ 2 m *,* $1 \leq i \leq k$, $f^*(e_i^{2j})$ $f \circ f(x) = 2(n+2)j - 2i - 1$ *for* $1 \leq j \leq \left\lfloor \frac{m}{2} \right\rfloor$ 2 k *,* $1 \leq i \leq k$, $f^*(e_k^{2j})$ $f(x) = 2(n+2)j - n - 1 + 2i$ *for* $1 \leq j \leq$ j*m* 2 k *,* $1 \leq i \leq k+1$.

It can be verified that *f* is an mean labeling of $T\tilde{o}C_n$. **Case (ii).** *n* is even.

$$
f(u_i^{2j-1}) = 2(n+2)(j-1) + (2i-1) \quad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil, 1 \le i \le k+1,
$$

\n
$$
f(u_{k+2}^{2j-1}) = 2(n+2)(j-1) + n \quad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil,
$$

\n
$$
f(u_{k+2+i}^{2j-1}) = 2(n+2)(j-1) + n - 2i \quad \text{for } 1 \le j \le \left\lceil \frac{m}{2} \right\rceil, 1 \le i \le k-2,
$$

\n
$$
f(u_i^{2j}) = 2(n+2)j - 2(i-1) - 2 \quad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor, 1 \le i \le k+1,
$$

\n
$$
f(u_{k+2}^{2j}) = 2(n+2)j - n + 1 \quad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor,
$$

\n
$$
f(u_{k+2+i}^{2j}) = 2(n+2)j - n + 1 + 2i \quad \text{for } 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor, 1 \le i \le k-2.
$$

136 D. RAMYA AND P. JEYANTHI

Let $v_i v_j$ be a transformed edge in *T* for some indices *i* and $j, 1 \le i \le j \le m$ and let P_1 be the EPT that deletes the edge $v_i v_j$ and adds the edge $v_{i+t} v_{j-t}$ where *t* is the distance of v_i from v_{i+t} and also the distance of v_j from v_{j-t} . Let *P* be a parallel transformation of *T* that contains *P*¹ as one of the constituent EPTs. Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$, $i + t + 1 = j - t$ which implies $j = i + 2t + 1$. The induced label of the edge $v_i v_j$ is given by,

(2.7)
$$
f^*(v_iv_j) = f^*(v_iv_{i+2t+1}) = \left\lceil \frac{f(v_i) + f(v_{i+2t+1})}{2} \right\rceil = (n+2)(i+t)
$$

and

$$
(2.8) \ \ f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = \left\lceil \frac{f(v_{i+t} + f(v_{i+t+1})}{2} \right\rceil = (n+2)(i+t)
$$

Therefore from (2.7) and (2.8), $f^*(v_i v_j) = f^*(v_{i+t}v_{j-t})$.

Let $e_i^j = u_i^j$ $i^ju^j_{i+1}$, $e^j_{n} = u^j_{n}u^j_{1}$ j_1 for $1 \le i \le n-1, 1 \le j \le m$.

For each vertex label *f,* the induced edge label *f ∗* is defined as follows:

$$
f^*(v_i v_{i+1}) = (n+2)i
$$

\n
$$
f^*(v_{2j-1} u_1^{2j-1}) = 2(n+2)(j-1) + 1
$$

\n
$$
f^*(v_{2j} u_1^{2j}) = 2(n+2)j - 1
$$

\n
$$
f^*(v_i^{2j-1}) = 2(n+2)(j-1) + 2i
$$

\n
$$
f^*(e_i^{2j-1}) = 2(n+2)(j-1) + 2i
$$

\n
$$
f^*(e_{k+i}^{2j-1}) = 2(n+2)(j-1) + n + 3 - 2i
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+2)(j-1) + n + 3 - 2i
$$

\n
$$
f^*(e_i^{2j}) = 2(n+2)j - 2i - 1
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+2)j - n + 2(i-1)
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+2)j - n + 2(i-1)
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+2)j - n + 2(i-1)
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+2)j - n + 2(i-1)
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+2)j - n + 2(i-1)
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+2)j - n + 2(i-1)
$$

\n
$$
f^*(e_{k+i}^{2j}) = 2(n+2)j - n + 2(i-1)
$$

\n
$$
f^*(e_{k+i}^{2j-1}) = 2(n+2)j - n + 2(i-1)
$$

\n
$$
f^*(e_{k+i}^{2j-1}) = 2(n+2)j - n + 2(i-1)
$$

\n
$$
f^*(e_{k+i}^{2j-1}) = 2(n+2)j - n + 2(i-1)
$$

\n
$$
f^*(e_{k+i}^{2j-1}) = 2(n+2)j - n + 2(i-1)
$$

\n $$

It can be verified that *f* is a mean labeling of $T\tilde{o}C_n$. Hence $T\tilde{o}C_n$ is a mean graph. \Box

The example for the mean labeling of $T\tilde{o}C_5$, where *T* is a T_p -tree with 9 vertices, is given in Figure 3.

Theorem 2.4. Let T be a T_p -tree on m vertices. Then the graph $T@P_n$ is a *mean graph.*

Proof. Let *T* be a T_p -tree with *m* vertices. By the definition of a T_p -tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T)) = V(T)$ and (ii) $E(P(T)) = (E(T) E_d) \cup E_P$, where E_d is the set of edges deleted from *T* and *E^P* is the set of edges newly added through the sequence $P = (P_1, P_2, \ldots, P_k)$ of the EPTs *P* used to arrive at the path $P(T)$. Clearly E_d and E_p have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_1, v_2, v_3, \ldots, v_m$ starting from one pendant vertex of $P(T)$ right up to other. Let u_1^j $\frac{j}{1}, u^j_2$ $\frac{j}{2}, u^j_3$ $u_3^j, \ldots, u_n^j (1 \leq$ $j \leq m$) be the vertices of j^{th} copy of P_n . Then $V(T \t{O} P_n) = \{u_j^j\}$ $i_i^j : 1 \leq i \leq j$ $n, 1 \leq j \leq m$ with $u_n^j = v_j$.

Define *f* : $V(T@P_n)$ → {0, 1, 2, 3, . . . , *q* = *mn* − 1} as follows:

$$
f(u_i^{2j-1}) = 2(j-1)n + i - 1 \text{ for } 1 \le i \le n, 1 \le j \le \left\lceil \frac{m}{2} \right\rceil,
$$

$$
f(u_i^{2j}) = (2j-1)n + n - i \text{ for } 1 \le i \le n, 1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor.
$$

Let $v_i v_j$ be a transformed edge in *T* for some indices *i* and $j, 1 \le i \le j \le m$ and let P_1 be the EPT that deletes the edge $v_i v_j$ and adds the edge $v_{i+t} v_{j-t}$ where *t* is the distance of v_i from v_{i+t} and also the distance of v_j from v_{j-t} . Let

P be a parallel transformation of *T* that contains *P*¹ as one of the constituent EPTs. Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$, $i + t + 1 = j - t$ which implies $j = i + 2t + 1$. The induced label of the edge $v_i v_j$ is given by,

(2.9)
$$
f^*(v_i v_j) = f^*(v_i v_{i+2t+1}) = \left\lceil \frac{f(v_i) + f(v_{i+2t+1})}{2} \right\rceil = n(i+t)
$$

and

$$
(2.10) \t f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = \left\lceil \frac{f(v_{i+t} + f(v_{i+t+1})}{2} \right\rceil = n(i+t).
$$

Therefore from (2.9) and (2.10), $f^*(v_i v_j) = f^*(v_{i+t}v_{j-t})$. Let $e_i^j = u_i^j$ i ^{*u*}_{*i*}+₁ for $1 \le i \le n - 1, 1 \le j \le m$.

For each vertex label *f,* the induced edge label *f ∗* is defined as follows:

$$
f^*(v_i v_{i+1}) = ni
$$

\n
$$
f^*(e_i^{2j-1}) = 2n(j-1) + i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

\n
$$
f^*(e_i^{2j}) = n(2j-1) + n - i
$$

It can be verified that *f* is an mean labeling of $T \mathbb{Q} P_n$. Hence $T \mathbb{Q} P_n$ is a mean graph. \Box

The example for the mean labeling of $T@P_4$, where *T* is a T_p -tree with 12 vertices, is given in Figure 4.

Theorem 2.5. Let T be a T_p -tree on m vertices. Then the graph $T \odot 2P_n$ is *a mean graph.*

Proof. Let *T* be a T_p -tree with *m* vertices. By the definition of a T_p -tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T)) = V(T)$ and (ii) $E(P(T)) = (E(T) \setminus E_d) \cup E_P$, where E_d is the set of edges deleted from *T* and *E^P* is the set of edges newly added through the sequence $P = (P_1, P_2, \ldots, P_k)$ of the EPTs P used to arrive at the path $P(T)$. Clearly E_d and E_p have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_1, v_2, v_3, \ldots, v_m$ starting from one pendant vertex of $P(T)$ right up to other. Let u_1^j $x_{1,1}^j, u_1^j$ $i_{1,2}^j, u_1^j$ $x_{1,3}^j, \ldots, x_1^j$ 1*,n* and u_2^j $\frac{j}{2,1}, u_2^j$ $^{j}_{2,2}, u^{j}_{2}$ $\sum_{i=2,3}^{j}$,..., $u_{2,n}^{j}(1 \leq j \leq m)$ be the vertices of the two vertex disjoint paths joined with j^{th} vertex of *T* such that $v_j = u_{1,n}^j = u_{2,n}^j$. Then $V(T{\mathbb G} P_n) = \{v_j, u_{1,i}^j, u_{2,i}^j : 1 \le i \le n, 1 \le j \le m \text{ with } v_j = u_{1,n}^j = u_{2,n}^j\}.$ Define $f: V(T \textcircled{c} 2P_n) \to \{0, 1, 2, 3, \ldots, q = m(2n-1) - 1\}$ as follows:

$$
f(u_{1,i}^j) = (2n-1)(j-1) + i - 1 \qquad \text{for } 1 \le i \le n, 1 \le j \le m,
$$

$$
f(u_{2,n+1-i}^j) = (2n-1)(j-1) + n + i - 2 \qquad \text{for } 2 \le i \le n, 1 \le j \le m.
$$

Let $v_i v_j$ be a transformed edge in *T* for some indices *i* and $j, 1 \le i \le j \le m$ and let P_1 be the EPT that deletes the edge $v_i v_j$ and adds the edge $v_{i+t} v_{i-t}$ where *t* is the distance of v_i from v_{i+t} and also the distance of v_j from v_{j-t} . Let *P* be a parallel transformation of *T* that contains *P*¹ as one of the constituent EPTs. Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$, $i + t + 1 = j - t$ which implies $j = i + 2t + 1$. The induced label of the edge $v_i v_j$ is given by,

$$
(2.11) \t f^*(v_i v_j) = f^*(v_i v_{i+2t+1}) = \left\lceil \frac{f(v_i) + f(v_{i+2t+1})}{2} \right\rceil = (2n - 1)(i + t)
$$

and

$$
(2.12)
$$

$$
f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = \left\lceil \frac{f(v_{i+t} + f(v_{i+t+1})}{2} \right\rceil = (2n-1)(i+t).
$$

Therefore from (2.11) and (2.12), $f^*(v_i v_j) = f^*(v_{i+t}v_{j-t})$.

Let $e_{1,i}^j = u_{1,i}^j u_{1,i+1}^j$ for $1 \leq i \leq n-1, 1 \leq j \leq m$, $e_{2i}^j = u_{2,i}^j u_{2,i+1}^j$ for 1 ≤ *i* ≤ *n* − 1, 1 ≤ *j* ≤ *m* and $e_i = v_i v_{i+1}$ for $1 \le j \le m-1$.

For each vertex label *f,* the induced edge label *f ∗* is defined as follows:

$$
f^*(v_iv_{i+1}) = (2n - 1)i
$$

\n
$$
f^*(e_{1,i}^j) = (2n - 1)(j - 1) + i
$$

\n
$$
f^*(e_{2,n+1-i}^j) = (2n - 1)(j - 1) + n + i - 2
$$

\n
$$
f^*(e_{2,n+1-i}^j) = (2n - 1)(j - 1) + n + i - 2
$$

\n
$$
f^*(e_{2,n+1-i}^j) = (2n - 1)(j - 1) + n + i - 2
$$

\n
$$
f^*(e_{2,n+1-i}^j) = (2n - 1)(j - 1) + n + i - 2
$$

\n
$$
f^*(e_{2,n+1-i}^j) = (2n - 1)(j - 1) + n + i - 2
$$

\n
$$
f^*(e_{2,n+1-i}^j) = (2n - 1)(j - 1) + n + i - 2
$$

\n
$$
f^*(e_{2,n+1-i}^j) = (2n - 1)(j - 1) + n + i - 2
$$

\n
$$
f^*(e_{2,n+1-i}^j) = (2n - 1)(j - 1) + n + i - 2
$$

\n
$$
f^*(e_{2,n+1-i}^j) = (2n - 1)(j - 1) + n + i - 2
$$

It can be verified that *f* is a mean labeling of $T \odot 2P_n$. Hence $T \odot 2P_n$ is a mean graph. \Box

The example for the mean labeling of $T \odot 2P_3$, where *T* is a T_p -tree with 11 vertices, is given in Figure 5.

References

- [1] F. Harary, *Graph Theory*, Addison Wesley, Massachusetts, (1972).
- [2] P. Jeyanthi, D. Ramya and A. Maheswari, Mean Labeling of Some Trees, *Utilitas Math.*, (To Appear).
- [3] P. Jeyanthi and D. Ramya, *On Construction of Mean graphs*, (Preprint).
- [4] R. Ponraj and S. Somasundaram, Further results on mean graphs, *Proc. SACOEFERENCE,Dr. Sivanthi Aditanar College of Engineering*, (2005) 443- 448.
- [5] R. Ponraj and S. Somasundaram, *Mean graphs obtained from mean graphs*, (Preprint).
- [6] M. A. Seoud and M. A. Salim, On Mean Graphs, *Ars Combin.*, (To appear).
- [7] S. Somasundaram and R. Ponraj, Mean labelings of graphs, *National Academy Science letter*, **26** (2003), 210-213.
- [8] S. Somasundaram and R. Ponraj, Non existence of mean labeling for a wheel, *Bulletin of pure and Applied Sciences, (Section E Maths & Statistics)* **22E** (2003), 103-111.
- [9] S. Somasundaram and R. Ponraj, Some results on means graphs, *Pure and Applied Mathematika Sciences*, **58** (2003), 29-35.
- [10] S. Somasundaram and R. Ponraj, On Mean graphs of order *≤* 5*, Journal of Decision and Mathematical Sciences*, **9**(1-3) (2004), 48-58.

D. Ramya Department of Mathematics Dr. Sivanthi Aditanar College of Engineering Tiruchendur-628 215, India

E-mail: aymar padma@yahoo.co.in

P. Jeyanthi Department of Mathematics Govindammal Aditanar College for Women Tiruchendur-628 215, India

E-mail: jeyajeyanthi@rediffmail.com