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Abstract. A graph G(V,E) is (a, d)-edge antimagic total if there exists a
bijection f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} such that the edge-
weights Λ(uv) = f(u)+f(uv)+f(v), uv ∈ E(G) form an arithmetic progression
with first term a and common difference d. It is said to be a super (a, d)-edge
antimagic total if f(V (G)) = {1, 2, . . . , |V (G)|}. In this paper, we have obtained
a relation between a super (a, 0)-edge antimagic total labeling and a super (a, 2)-
edge antimagic total labeling of any graph. Also we study the super (a, d)-edge
antimagic total labeling of fan graphs and two special classes of star graphs
namely bi-star and extended bi-star.
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§1. Introduction

By a graph G(V,E) we mean a finite, undirected, connected graph without
loops or multiple edges. The order and size of G(V,E) are denoted by p and
q respectively. For graph theoretic terminologies we refer to Harary [7].

A labeling of a graph is an assignment of numbers (usually positive or non-
negative integers) to the vertices (a vertex labeling) or to the edges (an edge
labeling) or to the combined set of vertices and edges (a total labeling) of the
graph. There are many types of labelings and a detailed survey of many of
them can be found in the dynamic survey of graph labeling by J.A. Gallian
[6].

The edge weight of an edge uv, denoted by Λ(uv), is defined as the sum
of labels of the graph elements associated with uv. That is, if f is an edge
labeling, then Λ(uv) = f(uv); if f is a vertex labeling, then Λ(uv) = f(u) +
f(v); and if f is a total labeling, then Λ(uv) = f(u) + f(uv) + f(v). Similarly
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the vertex weight of a vertex v, denoted by Λ(v), is defined as the sum of labels
of the graph elements associated with v. That is, if f is a vertex labeling, then

Λ(v) =
∑

u∈N(v)

f(u); if f is an edge labeling, then Λ(v) =
∑
uv∈E

f(uv); and if f

is a total labeling, then Λ(v) = f(v) +
∑
uv∈E

f(uv).

In 1970 Kotzig and Rosa [9] defined an edge-magic total labeling of a graph
G(V,E) as a bijection f from V ∪ E to the set {1, 2, . . . , |V |+ |E|} such that
for each edge uv ∈ E, the edge weight f(u) + f(uv) + f(v) is a constant.

Enomoto et al. [4] defined a super edge magic labeling as an edge-magic
total labeling such that the vertex labels are {1, 2, . . . , |V |} and the edge labels
are {|V | + 1, |V | + 2, . . . , |V | + |E|}. They have proved that if a graph with
p vertices and q edges is super edge-magic, then q ≤ 2p − 3. They also
conjectured that every tree is super edge-magic.

As a natural extension of the notion of edge-magic total labeling, Simanjun-
tak et al. [10] defined an (a, d)-edge antimagic total labeling of a graph G(V,E)
as an injective mapping f from V ∪ E onto the set {1, 2, . . . , |V | + |E|} such
that the set {f(u)+f(uv)+f(v)|uv ∈ E} is {a, a+d, a+2d, . . . , a+(|E|−1)d}
for any two integers a > 0 and d ≥ 0.

An (a, d)-edge antimagic total labeling of a graph G(V,E) is called a super
(a, d)-edge antimagic total if the vertex labels are {1, 2, . . . , |V |} and the edge
labels are {|V | + 1, |V | + 2, . . . , |V | + |E|}. The super (a, 0)-edge antimagic
total labelings are usually called as super edge magic in the literature (see [4,
5]).

Many researchers investigated different forms of antimagic labelings [8].
Bac̆a et al. [1, 2] proved several results on antimagic labelings. Also in [3] Bac̆a
and Barrientos presented some relationships between (a, d)-edge antimagic
vertex labelings and super (a, d)-edge antimagic total labelings.

In this paper, we prove that a graph is super (a1, 0)-edge antimagic total,
then it is super (a2, 2)-edge antimagic total. Also we study the super (a, d)-
edge antimagic total labeling of fan graphs and two special classes of star
graphs namely bi-star and extended bi-star.

§2. Super (a, d)-edge antimagic total labeling

The following theorem gives a relation between a super (a1, 0)-edge antimagic
total labeling and a super (a2, 2)-edge antimagic total labeling of any graph.

Theorem 1. If a graph G(V,E) is super (a1, 0)-edge antimagic total, then it
is super (a2, 2)-edge antimagic total.



SUPER (a, d)-EDGE ANTIMAGIC TOTAL LABELING 3

Proof. Suppose the graph G(V,E) is super (a1, 0)-edge antimagic total, then
by definition, there exists a bijection f : V ∪ E → {1, 2, . . . , p+ q} such that

(i) {f(v)|v ∈ V } = {1, 2, . . . , p}

(ii) {f(uv)|uv ∈ E} = {p+ 1, p+ 2, . . . , p+ q} and

(iii) for all uv ∈ E, f(u) + f(uv) + f(v) = a1.

In order to prove G(V,E) has a super (a2, 2)-edge antimagic total labeling, we
define an induced map gf as follows:
Let gf : V ∪ E → {1, 2, . . . , p+ q} such that

(i) for all u ∈ V , gf (u) = f(u) and

(ii) for all uv ∈ E, gf (uv) = 2p+ q + 1− f(uv).

Then we see that {gf (v)|v ∈ V } = {1, 2, . . . , p} and {gf (uv)|uv ∈ E} =
{p+ 1, p+ 2, . . . , p+ q}.

Also for all uv ∈ E we have

gf (u) + gf (uv) + gf (v) = f(u) + 2p+ q + 1− f(uv) + f(v)

= 2p+ q + 1 + a1 − 2f(uv)

= a1 − q + 1 + 2(p+ q)− 2f(uv).

Thus the set of edge-weights is in arithmetic progression with first term (a1 −
q + 1) and common difference 2.

Hence G(V,E) is super (a2, 2)-edge antimagic total with a2 = (a1 − q + 1). ¤

§3. Fan graph

A fan graph Fm,2 is defined as the graph join K̄m+P2, where K̄m is an empty
graph with m vertices and P2 is a path with 2 vertices. Let the vertices be
u1, u2, . . . , um, v1, v2 and the edges be v1v2 and uivj , 1 ≤ i ≤ m, 1 ≤ j ≤ 2.

Theorem 2. If the fan graph Fm,2, m ≥ 2, is super (a, d)-edge antimagic
total, then d ≤ 2.

Proof. Assume that Fm,2, m ≥ 2 has a super (a, d)-edge antimagic total
labeling f : V (Fm,2) ∪ E(Fm,2) → {1, 2, . . . , 3m + 3} such that the set of
edge-weights is given by {a, a+ d, . . . , a+ 2md}.

It is easy to see that the minimum possible edge-weight in a super (a, d)-
edge antimagic total labeling is at least |V | + 4. On the other hand, the
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maximum edge weight is no more than 3|V |+ |E| − 1.

Thus we have,

(3.1) a ≥ m+ 6

and

(3.2) a+ 2md ≤ 5m+ 6.

From the inequalities (3.1) and (3.2), we get d ≤ 2. ¤

Theorem 3. Every fan graph Fm,2, m ≥ 2 has a super (a, 0)-edge antimagic
total labeling.

Proof. Let us define the vertex labeling f1 : V (Fm,2) → {1, 2, . . . ,m + 2} and
the edge labeling f2 : E(Fm,2) → {m+ 3,m+ 4, . . . , 3m+ 3} as follows:

f1(v1) = 1; f1(v2) = m+ 2 and f2(v1v2) = 2m+ 3.

For 1 ≤ i ≤ m,

f1(ui) = i+ 1; f2(uiv1) = 3m+ 4− i and f2(uiv2) = 2m+ 3− i.

It is easy to verify that {Λ(uv)|uv ∈ E(Fm,2)} = 3(m+ 2).
Thus the labelings f1 and f2 are super (a, 0)-edge antimagic total labeling of
Fm,2, m ≥ 2 with a = 3(m+ 2). ¤

In view of Theorem 1, it is clear that the fan graph Fm,2, m ≥ 2 has a
super (a, 2)-edge antimagic total labeling with a = m+ 6.

Theorem 4. Every fan graph Fm,2, m ≥ 2 has a super (a, 1)-edge antimagic
total labeling.

Proof. Let the vertex labeling f1 be defined as in Theorem 3.

We define the edge labeling f3 : E(Fm,2) → {m+ 3,m+ 4, . . . , 3m+ 3} as
follows:

Case (i) m is odd:

f3(v1v2) = 2(m+ 1)−
(
m− 1

2

)
For 1 ≤ i ≤ m

f3(uiv1) =

{
3(m+ 1)− i−1

2 , if i is odd

2m+ 3− i
2 , if i is even
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and

f3(uiv2) =

{
3(m+ 1)− m+i

2 , if i is odd

2(m+ 1)− m−1+i
2 , if i is even.

Case (ii) m is even:

f3(v1v2) = 3(m+ 1)− m

2

For 1 ≤ i ≤ m

f3(uiv1) =

{
3(m+ 1)− i−1

2 , if i is odd

2m+ 3− i
2 , if i is even

and

f3(uiv2) =

{
2m+ 3− m+i+1

2 , if i is odd

3(m+ 1)− m+i
2 , if i is even.

In both the cases, it is easy to see that {Λ(uv)|uv ∈ E(Fm,2)} =
{(2m+ 6), (2m+ 7), . . . , (4m+ 6)}.

Thus the labelings f1 and f3 are super (a, 1)-edge antimagic total labeling of
Fm,2, m ≥ 2 with a = 2m+ 6. ¤

§4. Bistar

A bistar Bm,n is defined as the graph obtained by attaching an edge with the
center vertices of two stars K1,m andK1,n. Let the vertices be c1, c2, u1, u2, . . . ,
um, v1, v2, . . . , vn and the edges be c1c2, c1ui, 1 ≤ i ≤ m and c2vj , 1 ≤ j ≤ n.

Theorem 5. If the bistar Bm,n, m ≥ 2, n ≥ 2 is super (a, d)-edge antimagic
total, then d ≤ 3.

Proof. Assume that Bm,n, m ≥ 2, n ≥ 2 has a super (a, d)-edge antimagic
total labeling f : V (Bm,n)∪E(Bm,n) → {1, 2, . . . , 2m+ 2n+ 3} such that the
set of edge-weights is given by {a, a+ d, . . . , a+ (m+ n)d}.

Clearly the maximum edge-weight is no more than

(m+ n+ 1) + (m+ n+ 2) + (2m+ 2n+ 3).

Thus,

(4.1) a+ (m+ n)d ≤ 4m+ 4n+ 6.
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On the other hand, the minimum possible edge-weight is at least 1+2+(m+
n+ 3).

Thus,

(4.2) a ≥ m+ n+ 6.

From the inequalities (4.1) and (4.2), we get d ≤ 3. ¤

Theorem 6. Every bistar Bm,n, m ≥ 2, n ≥ 2 has a super (a, 0)-edge an-
timagic total labeling.

Proof. Let us define the vertex labeling f4 : V (Bm,n) → {1, 2, . . . ,m+ n+ 2}
and the edge labeling f5 : E(Bm,n) → {m+n+3,m+n+4, . . . , 2m+2n+3}
as follows:

f4(c1) = 1; f4(c2) = m+ n+ 2 and f5(c1c2) = m+ 2n+ 3.

For 1 ≤ i ≤ m

f4(ui) = n+ i+ 1; f5(c1ui) = 2m+ 2n+ 4− i

and for 1 ≤ j ≤ n

f4(vj) = j + 1; f5(c2vj) = m+ 2n+ 3− j.

By direct computation we obtain that {Λ(uv)|uv ∈ E(Bm,n)} = 2m+ 3n+ 6.

Thus the labelings f4 and f5 are super (a, 0)-edge antimagic total labeling of
Bm,n, m ≥ 2, n ≥ 2 with a = 2m+ 3n+ 6. ¤

In view of Theorem 1, it is clear that the bistar Bm,n, m ≥ 2, n ≥ 2 has a
super (a, 2)-edge antimagic total labeling with a = m+ 2n+ 6.

Theorem 7. For n ∈ {m − 1,m,m + 1} or (m + n) ≡ 0(mod 2), the bistar
Bm,n, m ≥ 2, n ≥ 2 has a super (a, 1)-edge antimagic total labeling.

In order to prove the theorem, we prove the following lemmas.

Lemma 1. For n ∈ {m − 1,m,m + 1}, m ≥ 2, the bistar Bm,n, has a super
(a, 1)-edge antimagic total labeling.

Proof. Let us define the vertex labeling g1 : V (Bm,n) → {1, 2, . . . ,m+ n+ 2}
and the edge labeling g2 : E(Bm,n) → {m+n+3,m+n+4, . . . , 2m+2n+3}
as follows:
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Case (i) n = m− 1:

g1(c1) = 2,

g1(c2) = m+ n+ 2,

g1(ui) = 2i− 1, 1 ≤ i ≤ m,

g1(vj) = 2(j + 1), 1 ≤ j ≤ n,

g2(c1c2) = m+ 2n+ 3,

g2(c1ui) = 2(m+ n+ 2)− i, 1 ≤ i ≤ m,

g2(c2vj) = m+ 2n+ 3− j, 1 ≤ j ≤ n.

Case (ii) n = m:

g1(c1) = 2,

g1(c2) = m+ n+ 1,

g1(ui) = 2i− 1, 1 ≤ i ≤ m,

g1(vj) = 2(j + 1), 1 ≤ j ≤ n and g2 same as in Case (i).

Case (iii) n = m+ 1:

g1(c1) = m+ n+ 2,

g1(c2) = 2,

g1(ui) = 2(i+ 1), 1 ≤ i ≤ m,

g1(vj) = 2j − 1, 1 ≤ j ≤ n,

g2(c1c2) = 2m+ n+ 3,

g2(c1ui) = 2m+ n+ 3− i, 1 ≤ i ≤ m,

g2(c2vj) = 2m+ 2n+ 4− j, 1 ≤ j ≤ n.

In all the above three cases, it is easy to verify that {Λ(uv)|uv ∈ E(Bm,n)} =
{2m+ 2n+ 6, 2m+ 2n+ 7, . . . , 3m+ 3n+ 6}.

Thus the labelings g1 and g2 are super (a, 1)-edge antimagic total labeling of
Bm,n, n ∈ {m− 1,m,m+ 1}, m ≥ 2 with a = 2m+ 2n+ 6. ¤

Lemma 2. For (m+ n) ≡ 0(mod 2), the bistar Bm,n has a super (a, 1)-edge
antimagic total labeling.

Proof. Let the vertex labeling f4 be defined as in Theorem 6.

We define the edge labeling g3 : E(Bm,n) → {m+n+3,m+n+4, . . . , 2m+
2n+ 3} as follows:

Case (i) m and n are even:

g3(c1c2) = 2m+ 2n+ 3− m

2
,
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For 1 ≤ i ≤ m,

g3(c1ui) =

{
2m+ 2n+ 3− i−1

2 , if i is odd

2m+ 2n+ 3− m+n+i
2 , if i is even

and for 1 ≤ j ≤ n,

g3(c2vj) =

{
2m+ 2n+ 3− 2m+n+j+1

2 , if j is odd

2m+ 2n+ 3− m+j
2 , if j is even.

Case (ii) m and n are odd:

g3(c1c2) = 2m+ 2n+ 3− 2m+ n+ 1

2
,

For 1 ≤ i ≤ m,

g3(c1ui) =

{
2m+ 2n+ 3− i−1

2 , if i is odd

2m+ 2n+ 3− m+n+i
2 , if i is even

and for 1 ≤ j ≤ n,

g3(c2vj) =

{
2m+ 2n+ 3− m+j

2 , if j is odd

2m+ 2n+ 3− 2m+n+j+1
2 , if j is even.

In both the cases, we see that the bistar Bm,n is super (a, 1)-edge antimagic
total with a = 2m+ 3n− m+n

2 + 6. ¤
Proof of Theorem 7, directly follows from Lemmas 1 and 2.

Theorem 8. For n ∈ {m− 1,m,m+ 1}, m ≥ 2, the bistar Bm,n has a super
(a, 3)-edge antimagic total labeling.

Proof. Let the vertex labeling g1 be defined as in Lemma 1.

We define the edge labeling f6 : E(Bm,n) → {m+n+3,m+n+4, . . . , 2m+
2n+ 3} as follows:

Case (i) n = m− 1 or n = m:
f6(c1c2) = 2m+ n+ 3,
f6(c1ui) = m+ n+ 2 + i, 1 ≤ i ≤ m,
f6(c2vj) = 2m+ n+ 3 + j, 1 ≤ j ≤ n.

Case (ii) n = m+ 1:
f6(c1c2) = m+ 2n+ 3,
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f6(c1ui) = m+ 2n+ 3 + i, 1 ≤ i ≤ m,
f6(c2vj) = m+ n+ 2 + j, 1 ≤ j ≤ n.

In both the cases, we see that {Λ(uv)|uv ∈ E(Bm,n)} = {m+ n+ 6,m+ n+
6 + 3, . . . , 4m+ 4n+ 6}.

Thus the bistar Bm,n, n ∈ {m − 1,m,m + 1}, m ≥ 2 is super (a, 3)-edge
antimagic total with a = m+ n+ 6. ¤

§5. Extended Bistar

An extended bistar < K1,m : n > is defined as the graph obtained by attaching
a path of length n with the centre vertices of two copies of the star graph K1,m.
Let the vertices be c1, c2, . . . , cn+1, u1, u2, . . . , um, v1, v2, . . . , vm and the edges
be c1ui, cn+1vi, 1 ≤ i ≤ m and cjcj+1, 1 ≤ j ≤ n.

Theorem 9. If the extended bistar < K1,m : n >, m,n ≥ 2 is super (a, d)-edge
antimagic total, then d ≤ 3.

Proof. Assume that < K1,m : n >, m,n ≥ 2 has a super (a, d)-edge antimagic
total labeling f : V (< K1,m : n >)∪E(< K1,m : n >) → {1, 2, . . . , 4m+2n+1}
such that the set of edge-weights is given by {a, a+ d, . . . , a+(2m+n− 1)d}.

Clearly the maximum edge-weight is no more than
(2m+ n) + (2m+ n+ 1) + (4m+ 2n+ 1).

Thus,

(5.1) a+ (2m+ n− 1)d ≤ 8m+ 4n+ 2.

On the other hand, the minimum possible edge-weight is at least 1+2+(2m+
n+ 2).
Thus,

(5.2) a ≥ 2m+ n+ 5.

From the inequalities (5.1) and (5.2), we get d ≤ 3. ¤

Theorem 10. Every extended bistar < K1,m : n >, m,n ≥ 2 has a super
(a, 0)-edge antimagic total labeling.

Proof. Let us define the vertex labeling f7 : V (< K1,m : n >) → {1, 2, . . . , 2m+
n+ 1} and the edge labeling f8 : E(< K1,m : n >) → {2m+ n+ 2, 2m+ n+
3, . . . , 4m+ 2n+ 1} as follows:
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Case (i) n is odd:
For 1 ≤ i ≤ m,

f7(ui) =

(
n+ 1

2

)
+m+ i; f7(vi) =

(
n+ 1

2

)
+ i

and for 1 ≤ j ≤ n+ 1,

f7(cj) =


(
j+1
2

)
, if j is odd

2m+
(
n+j+1

2

)
, if j is even.

Case (ii) n is even:
For 1 ≤ i ≤ m,

f7(ui) =
n

2
+ i+ 1; f7(vi) = m+ n+ i+ 1

and for 1 ≤ j ≤ n+ 1,

f7(cj) =


(
j+1
2

)
, if j is odd

m+ 1 +
(
n+j
2

)
, if j is even.

For any n, we define
f8(c1ui) = 4m+ 2(n+ 1)− i, 1 ≤ i ≤ m,
f8(cjcj+1) = 3m+ 2(n+ 1)− j, 1 ≤ j ≤ n,
f8(cn+1vi) = 3m+ (n+ 2)− i, 1 ≤ i ≤ m.

By direct computation, we get

{Λ(uv)|uv ∈ E} =

{
5
(
m+ n+1

2

)
+ 1, if n is odd

4(m+ 1) + 5n
2 , if n is even.

Thus the labelings f7 and f8 are super (a, 0)-edge antimagic total labeling of
< K1,m : n >, m,n ≥ 2 with

a =

{
5
(
m+ n+1

2

)
+ 1, if n is odd

4(m+ 1) + 5n
2 , if n is even.

¤
In view of Theorem 1, it is clear that the extended bistar < K1,m : n >,

m,n ≥ 2 has a super (a, 2)-edge antimagic total labeling with

a =

{
3
(
m+ n+3

2

)
, if n is odd

2(m+ 2) + 3n
2 + 1, if n is even.
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Theorem 11. For odd n, the extended bistar < K1,m : n >, m,n ≥ 2 has a
super (a, 1)-edge antimagic total labeling.

Proof. Let us define the vertex labeling f9 : V (< K1,m : n >) → {1, 2, . . . , 2m+
n+ 1} as follows:

f9(ui) = 2i, 1 ≤ i ≤ m,

f9(vi) = n+ 2i, 1 ≤ i ≤ m, (since n is odd, f9 is bijective)

and for 1 ≤ j ≤ n+ 1,

f9(cj) =

{
j, if j is odd

2m+ j, if j is even.

Let the edge labeling f8 be as defined in Theorem 10.

Then we see that {Λ(uv)|uv ∈ E} = {4m+2n+4, 4m+2n+5, . . . , 6m+3n+3}.

Hence, when n is odd, the extended bistar < K1,m : n >, m,n ≥ 2 is super
(a, 1)-edge antimagic total with a = 4m+ 2n+ 4. ¤

Theorem 12. For odd n, the extended bistar < K1,m : n >, m,n ≥ 2 has a
super (a, 3)-edge antimagic total labeling.

Proof. Let the vertex labeling f9 be as defined in Theorem 11.

We define the edge labeling f10 : E(< K1,m : n >) → {2m + n + 2, 2m +
n+ 3, . . . , 4m+ 2n+ 1} as follows:

f10(c1ui) = 2m+ n+ 1 + i, 1 ≤ i ≤ m,

f10(cjcj+1) = 3m+ n+ 1 + j, 1 ≤ j ≤ n,

f10(cn+1vi) = 3m+ 2n+ 1 + i, 1 ≤ i ≤ m.

Then we see that {Λ(uv)|uv ∈ E} = {2m + n + 5, 2m + n + 5 + 3, . . . , 2m +
n+ 5 + (2m+ n− 1)3}.

Hence, when n is odd, the extended bistar < K1,m : n >, m,n ≥ 2 is super
(a, 3)-edge antimagic total with a = 2m+ n+ 5. ¤
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