3-product cordial labeling

P. Jeyanthi and A. Maheswari

(Received December 8, 2010; Revised December 29, 2012)

Abstract. A mapping $f : V(G) \rightarrow \{0, 1, 2\}$ is called a 3-product cordial labeling if $|v_f(i)-v_f(j)| \leq 1$ and $|e_f(i)-e_f(j)| \leq 1$ for any $i, j \in \{0, 1, 2\}$, where $v_f(i)$ denotes the number of vertices labeled with $i, e_f(i)$ denotes the number of edges *xy* with $f(x)f(y) \equiv i \pmod{3}$. A graph with a 3-product cordial labeling is called a 3-product cordial graph. In this paper, we investigate the 3-product cordial behaviour for some standard graphs.

AMS 2010 *Mathematics Subject Classification.* 05C78.

Key words and phrases. cordial labeling, product cordial labeling, 3-product cordial labeling, 3-product cordial graph.

*§***1. Introduction**

By a graph we mean finite, simple and undirected one. The vertex set and the edge set of a graph *G* are denoted by $V(G)$ and $E(G)$ so that the order and size of *G* are $|V(G)|$ and $|E(G)|$ respectively. The union $G_1 \cup G_2$ of two graphs *G*₁ and *G*₂ has the vertex set $V(G_1) \cup V(G_2)$ and the edge set $E(G_1) \cup E(G_2)$. A corona $G_1 \circ G_2$ is a graph obtained from two graphs G_1 and G_2 by taking one copy of G_1 (with p vertices) and p copies of G_2 and then joining by an edge the i^{th} vertex of G_1 to every vertex in the i^{th} copy of G_2 . The graph $\langle B_{n,n}: w \rangle$ is obtained by joining the center vertices of two $K_{1,n}$ stars to a new vertex *w*. The flower graph Fl_n is the graph obtained from a helm graph H_n by joining each pendant vertex to the apex vertex of the helm. The complete survey of graph labeling is in [2].

Cordial labeling is a weaker version of graceful labeling and harmonious labeling introduced by I. Cahit in $[1]$. Let f be a function from the vertices of *G* to $\{0,1\}$ and for each edge *xy* assign the label $|f(x) - f(y)|$. *f* is called a cordial labeling of *G* if $|v_f(0) - v_f(1)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$. M. Sundaram et al. introduced the concept of product cordial labeling of a

graph in [3]. A product cordial labeling of a graph *G* with the vertex set *V* is a function *f* from *V* to *{*0*,* 1*}* such that if each edge *uv* is assigned the label $f(u)f(v), |v_f(0)-v_f(1)| \leq 1$ and $|e_f(0)-e_f(1)| \leq 1$. The concept of EP-cordial labeling was introduced in [4]. A vertex labeling $f: V(G) \rightarrow \{-1,0,1\}$ is said to be an *EP*-cordial labeling if it induces the edge labeling *f ∗* defined by $f^*(uv) = f(u)f(v)$, for each $uv \in E(G)$ and if $|v_f(i) - v_f(j)| \leq 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \leq 1, i \neq j, i, j \in \{-1,0,1\},$ where $v_f(x)$ and $e_{f^*}(x)$ denote the number of vertices and edges of *G* having the label $x \in \{-1, 0, 1\}$. In [5] it is remarked that any *EP*-cordial labeling is a 3-product cordial labeling. A mapping $f: V(G) \to \{0, 1, 2\}$ is called a 3-product cordial labeling if $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for any, $i, j \in \{0, 1, 2\}$, where $v_f(i)$ denotes the number of vertices labeled with $i, e_f(i)$ denotes the number of edges *xy* with $f(x)f(y) \equiv i \pmod{3}$. A graph with a 3-product cordial labeling is called a 3-product cordial graph.

*§***2. Main Results**

Theorem 2.1. *If G*¹ *is a 3-product cordial graph with* 3*m vertices and* 3*n edges and* G_2 *is any 3-product cordial graph, then* $G_1 \cup G_2$ *is also 3-product cordial graph.*

Proof. Let f, g be a 3-product cordial labeling of G_1 and G_2 respectively. Since G_1 has 3*n* edges and 3*m* vertices we have $e_f(0) = e_f(1) = e_f(2) = n$ and $v_f(0) = v_f(1) = v_f(2) = m$. Define a labeling $h: V(G_1 \cup G_2) \to \{0, 1, 2\}$ by

$$
h(u) = \begin{cases} f(u) & \text{if } u \in V(G_1) \\ g(u) & \text{if } u \in V(G_2) \end{cases}
$$

Hence, $v_h(i) = v_f(i) + v_q(i)$ and $e_h(i) = e_f(i) + e_q(i)$ for $i = 0, 1, 2$. Therefore $|v_h(i) - v_h(j)| \leq 1$ and $|e_h(i) - e_h(j)| \leq 1$ for $i, j \in \{0, 1, 2\}$. Hence h is a 3-product cordial labeling of $G_1 \cup G_2$. \Box

In [4], it is proved that if *G* is 3-product cordial graph of order *p* and size *q* then $q \leq 1 + \frac{p}{3} + \frac{p^2}{3}$ $\frac{5^2}{3}$ and also proved that K_n is 3-product cordial if and only if $n \leq 3$. In this paper we give an improved upper bound for *q* in Theorems 2.2, 2.4 and 2.6 and prove that K_n is 3-product cordial if and only if $n \leq 2$.

Theorem 2.2. *If* $G(p,q)$ *is a 3-product cordial graph with* $p \equiv 0 \pmod{3}$ *, then* $q \leq \frac{p^2 - 3p + 6}{3}$.

Proof. Let f be a 3-product cordial labeling of the graph *G*. Take $p = 3n$. Then we have $v_f(0) = v_f(1) = v_f(2) = n$. Hence, $e_f(1) \leq n(n-1)$. Since f is a 3-product cordial labeling, $e_f(2) \leq n(n-1) + 1$ and $e_f(0) \leq n(n-1) + 1$. Hence, $q = e_f(0) + e_f(1) + e_f(2) \leq 3n(n-1) + 2 = \frac{p^2 - 3p + 6}{3}$. \Box

Remark 2.3. *The graph given in Figure 1 is an example for a 3-product cordial graph with* $p = 6$ *and* $q = \frac{p^2 - 3p + 6}{3} = 8$ *.*

Theorem 2.4. *If* $G(p,q)$ *is a 3-product cordial graph with* $p \equiv 1 \pmod{3}$ *, then* $q \leq \frac{p^2 - 2p + 7}{3}$.

Proof. Let f be a 3-product cordial labeling of the graph *G*. Take $p = 3n+1$. If $v_f(0) = v_f(2) = n$ and $v_f(1) = n + 1$, or $v_f(0) = v_f(1) = n$ and $v_f(2) = n + 1$. Then $e_f(1) \leq n^2$. If $v_f(0) = n + 1$ and $v_f(1) = v_f(2) = n$. Then $e_f(1) \leq$ $n(n-1)$. Thus in any case, we have $e_f(1) \leq n^2$. Since *f* is a 3-product cordial labeling, $e_f(2) \le n^2 + 1$ and $e_f(0) \le n^2 + 1$. Hence, $q = e_f(0) + e_f(1) + e_f(2) \le$ $3n^2 + 2 = \frac{p^2 - 2p + 7}{3}$.

Remark 2.5. *The graph given in Figure 2 is an example for 3-product cordial graph with* $p = 4$ *and* $q = \frac{p^2 - 2p + 7}{3} = 5$.

Theorem 2.6. *If* $G(p,q)$ *is a 3-product cordial graph with* $p \equiv 2 \pmod{3}$ *, then* $q \leq \frac{p^2 - p + 4}{3}$.

Proof. Let *f* be a 3-product cordial labeling of the graph *G*. Take $p = 3n + 2$. If $v_f(0) = v_f(1) = n + 1$ and $v_f(2) = n + 1$. Hence $e_f(1) \leq n(n+1)$. If $v_f(0) =$ $n+1, v_f(1) = n$ and $v_f(2) = n+1$ or $v_f(0) = n+1, v_f(1) = n+1, v_f(2) = n$. Then $e_f(1) \leq n^2$. Thus in any case, we have $e_f(1) \leq n(n+1)$. Since f is a 3-product cordial labeling, $e_f(2) \leq n(n+1) + 1$ and $e_f(0) \leq n(n+1) + 1$. Hence, $q = e_f(0) + e_f(1) + e_f(2) \leq 3n(n+1) + 2 = \frac{p^2 - p + 4}{3}$. \Box **Remark 2.7.** *The graph given in Figure 3 is an example for a 3-product cordial graph with* $p = 5$ *and* $q = \frac{p^2 - p + 4}{3} = 8$ *.*

Theorem 2.8. $\langle B_{n,n} : w \rangle$ *is a 3-product cordial graph.*

Proof. Let $v_1^{(1)}$ $\binom{1}{1}, \binom{1}{2}$ $v_1^{(1)}, \ldots, v_n^{(1)}$ be the pendant vertices of the star $K_{1,n}^{(1)}$ and $v_1^{(2)}$ $\binom{2}{1}, \upsilon_2^{(2)}$ $v_1^{(2)}, \ldots, v_n^{(2)}$ be the pendant vertices of the star $K_{1,n}^{(2)}$. Let c_1, c_2 be the center vertices of $K_{1,n}^{(1)}$, $K_{1,n}^{(2)}$ respectively and they are adjacent to a new common vertex *w*. Let $\hat{G} = \langle B_{n,n} : w \rangle$. **Case i.** $n \equiv 0 \pmod{3}$. Let $n = 3k$.

Define $f: V(G) \rightarrow \{0, 1, 2\}$ by

$$
f(w) = 1,
$$

\n
$$
f(c_1) = f(c_2) = 1,
$$

\n
$$
f(v_i^{(1)}) = \begin{cases} 0 & \text{for } 1 \le i \le 2k + 1 \\ 1 & \text{for } i > 2k + 1 \end{cases}
$$

and

$$
f(v_i^{(2)}) = \begin{cases} 2 & \text{for } 1 \le i \le 2k + 1 \\ 1 & \text{for } i > 2k + 1. \end{cases}
$$

Since $v_f(0) = v_f(1) = v_f(2) = 2k + 1$, $e_f(0) = e_f(2) = 2k + 1$ and $e_f(1) = 2k$, we have $|e_f(i) - e_f(j)| \le 1$ and $|v_f(i) - v_f(j)| = 0$ for all $i, j = 0, 1, 2$. Thus f is a 3-product cordial labeling.

Case ii. $n \equiv 1 \pmod{3}$. Let $n = 3k + 1$. Define $f: V(G) \rightarrow \{0, 1, 2\}$ by

$$
f(w) = 1,
$$

\n
$$
f(c_1) = f(c_2) = 1,
$$

\n
$$
f(v_i^{(1)}) = \begin{cases} 0 & \text{for } 1 \le i \le 2k + 2 \\ 1 & \text{for } i > 2k + 2 \end{cases}
$$

and

$$
f(v_i^{(2)}) = \begin{cases} 2 & \text{for } 1 \le i \le 2k + 1 \\ 1 & \text{for } i > 2k + 1. \end{cases}
$$

Hence $e_f(1) = e_f(2) = 2k + 1$, $e_f(0) = 2k + 2$, $v_f(0) = v_f(1) = 2k + 2$, and $v_f(2) = 2k + 1$. Therefore, $|e_f(i) - e_f(j)| \leq 1$ and $|v_f(i) - v_f(j)| \leq 1$ for all $i, j = 0, 1, 2.$

Case iii. $n \equiv 2 \pmod{3}$ and let $n = 3k + 2$.

Define $f: V(G) \rightarrow \{0, 1, 2\}$ by

$$
f(w) = 1,
$$

\n
$$
f(c_1) = f(c_2) = 1,
$$

\n
$$
f(v_i^{(1)}) = \begin{cases} 0 & \text{for } 1 \le i \le 2k + 2 \\ 1 & \text{for } i > 2k + 2 \end{cases}
$$

and

$$
f(v_i^{(2)}) = \begin{cases} 2 & \text{for } 1 \le i \le 2k + 2 \\ 1 & \text{for } i > 2k + 2. \end{cases}
$$

Since $e_f(0) = e_f(1) = e_f(2) = 2k + 2$, $v_f(0) = v_f(2) = 2k + 2$ and $v_f(1) =$ $2k+3$, we have $|e_f(i) - e_f(j)| = 0$ and $|v_f(i) - v_f(j)| \le 1$ for all, $i, j = 0, 1, 2$. Thus $\langle B_{n,n} : w \rangle$ is 3-product cordial. \Box

*§***3. 3-product cordial labeling of cycle related graphs**

Theorem 3.1. K_n *is a 3-product cordial if and only if* $n \leq 2$ *.*

Proof. K_n has *n* vertices and $\frac{n(n-1)}{2}$ edges. Clearly K_1 and K_2 are 3-product cordial graphs. Conversely assume that K_n is a 3-product cordial. We consider the following three cases.

If $n \equiv 0 \pmod{3}$ then by Theorem 2.2, $\frac{n(n-1)}{2} \leq \frac{n^2-3n+6}{3}$, which implies that $n^2 + 3n - 12 \leq 0$. This is true only for $n \leq 2$.

If $n \equiv 1 \pmod{3}$ then by Theorem 2.4, $\frac{n(n-1)}{2} \leq \frac{n^2-2n+7}{3}$, which implies that $n^2 + n - 14 \leq 0$. This is true only for $n \leq 3$.

If $n \equiv 2(mod 3)$ then by Theorem 2.6 , $\frac{n(n-1)}{2} \le \frac{n^2 - n + 4}{3}$, which implies that $n^2 - n - 8 \leq 0$. This is true only for $n \leq 3$.

When $n = 3, K_3 = C_3$ which is not a 3-product cordial graph. Hence K_n is not a 3-product cordial graph for $n \geq 3$. \Box

Theorem 3.2. $C_n \cup P_n$ is 3-product cordial for all $n \geq 3$.

Proof. Let v_1, v_2, \ldots, v_n be the vertices of C_n and u_1, u_2, \ldots, u_n be the vertices of P_n . Let $G = C_n \cup P_n$.

Define $f: V(G) \to \{0, 1, 2\}$ for the following three cases. **Case i.** $n \equiv 0 \pmod{3}$ and let $n = 3k$.

Define *f* by

$$
f(u_i) = \begin{cases} 0 & \text{for } 1 \le i \le 2k \\ 1 & \text{otherwise} \end{cases}
$$

and

$$
f(v_i) = \begin{cases} 1 & \text{for } i = 2m - 1, 1 \le m \le k \\ 2 & \text{otherwise.} \end{cases}
$$

Hence, $v_f(0) = v_f(1) = v_f(2) = 2k$, $e_f(0) = e_f(2) = 2k$ and $e_f(1) = 2k - 1$. Therefore, $|e_f(i) - e_f(j)| \le 1$ and $|v_f(i) - v_f(j)| \le 1$ for all $i, j = 0, 1, 2$. **Case ii.** $n \equiv 1 \pmod{3}$ and let $n = 3k + 1$.

Define *f* by

$$
f(u_i) = \begin{cases} 0 & \text{for } 1 \le i \le 2k \\ 1 & \text{otherwise} \end{cases}
$$

and

$$
f(v_i) = \begin{cases} 1 & \text{for } i = 2m - 1, 1 \le m \le k \\ 2 & \text{otherwise.} \end{cases}
$$

Here $e_f(0) = e_f(2) = 2k$, $e_f(1) = 2k + 1$, $v_f(0) = 2k$ and $v_f(1) = v_f(2) = 1$ $2k+1$. Therefore, $|e_f(i) - e_f(j)| \leq 1$ and $|v_f(i) - v_f(j)| \leq 1$ for all $i, j = 0, 1, 2$. **Case iii.** $n \equiv 2 \pmod{3}$ and let $n = 3k + 2$.

Define *f* by

$$
f(u_i) = \begin{cases} 0 & \text{for } 1 \le i \le 2k + 1 \\ 1 & \text{for } 2k + 1 < i \le 3k + 1 \\ 2 & \text{for } i = 3k + 2 \end{cases}
$$

and

$$
f(v_i) = \begin{cases} 1 & \text{for } i = 3k + 2, 2m - 1, 1 \le m \le k \\ 2 & \text{otherwise.} \end{cases}
$$

Hence, $v_f(0) = v_f(1) = 2k + 1, v_f(2) = 2k + 2$ and $e_f(0) = e_f(1) = e_f(2) =$ $2k+1$. Therefore, $|e_f(i) - e_f(j)| \leq 1$ and $|v_f(i) - v_f(j)| \leq 1$ for all $i, j = 0, 1, 2$. Hence, $C_n \cup P_n$ is 3-product cordial. \Box

Theorem 3.3. $C_m \circ \overline{K_n}$ is 3-product cordial for $m \geq 3$ and $n \geq 1$.

Proof. Let $V(C_m \circ \overline{K_n}) = \{u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_{mn}\}\$ where u_1, u_2, \ldots, u_m be the vertices of the cycle and v_1, v_2, \ldots, v_{mn} be the vertices of *m* copies of $\overline{K_n}$. Hence, we have $|V(C_m \circ \overline{K_n})| = |E(C_m \circ \overline{K_n})| = m(n+1)$. **Case i.** $n \equiv 2 \pmod{3}$. Take $n = 3k - 1, m \ge 1$.

Define *f* : $V(C_m \circ \overline{K_n})$ → {0,1,2} by $f(u_i) = 1$ for $1 \le i \le m$;

$$
f(v_j) = \begin{cases} 0 & \text{for } 1 \le j \le km \\ 2 & \text{for } km < j \le 2km \\ 1 & \text{for } j > 2km. \end{cases}
$$

Here we have, $v_f(0) = v_f(1) = v_f(2) = km, e_f(0) = e_f(1) = e_f(2) = km.$ Therefore, $|e_f(i) - e_f(j)| = 0$ and $|v_f(i) - v_f(j)| = 0$ for all $i, j = 0, 1, 2$. **Case ii.** $n \equiv 0 \pmod{3}$ and let $n = 3k$. We consider the following subcases: *Subcase i. m* = 3*c.*

Define *f* by $f(u_i) = 1$ for $1 \leq i \leq m$ and

$$
f(v_j) = \begin{cases} 0 & \text{for } 1 \le j \le c(3k+1) \\ 2 & \text{for } c(3k+1) < j \le 2c(3k+1) \\ 1 & \text{for } j > 2c(3k+1). \end{cases}
$$

Here we have, $v_f(0) = v_f(1) = v_f(2) = c(3k+1)$ and $e_f(0) = e_f(1) =$ $e_f(2) = c(3k+1)$. Therefore, $|e_f(i) - e_f(j)| = 0$ and $|v_f(i) - v_f(j)| = 0$ for all $i, j = 0, 1, 2.$

Subcase ii. $m = 3c + 1$.

Define *f* by $f(u_i) = 1$ for $1 \leq i \leq m$ and

$$
f(v_j) = \begin{cases} 0 & \text{for } 1 \le j \le c(3k+1) + k \\ 2 & \text{for } c(3k+1) + k < j \le 2c(3k+1) + 2k \\ 1 & \text{for } j > 2c(3k+1) + 2k. \end{cases}
$$

Hence we have, $v_f(0) = v_f(2) = c(3k+1) + k$, $v_f(1) = c(3k+1) + k + 1$, $e_f(0) = e_f(2) = c(3k + 1) + k$ and $e_f(1) = c(3k + 1) + k + 1$. Therefore, $|e_f(i) - e_f(j)| \le 1$ and $|v_f(i) - v_f(j)| \le 1$ for all $i, j = 0, 1, 2$. *Subcase iii.* $m = 3c + 2$.

Define *f* by $f(u_i) = 1$ for $1 \leq i \leq m$ and

$$
f(v_j) = \begin{cases} 0 & \text{for } 1 \le j \le c(3k+1) + 2k + 1 \\ 2 & \text{for } c(3k+1) + 2k + 1 < j \le 2c(3k+1) + 4k + 1 \\ 1 & \text{for } j > 2c(3k+1) + 4k + 1. \end{cases}
$$

Hence we have, $v_f(0) = v_f(1) = c(3k+1) + 2k + 1, v_f(2) = c(3k+1) + 2k$, $e_f(0) = e_f(1) = c(3k + 1) + 2k + 1$ and $e_f(2) = c(3k + 1) + 2k$. Therefore, $|e_f(i) - e_f(j)| \le 1$ and $|v_f(i) - v_f(j)| \le 1$ for all $i, j = 0, 1, 2$. **Case iii.** $n \equiv 1 \pmod{3}$ and let $n = 3k + 1$. We consider the following subcases:

Subcase i. $m = 3c$.

Define *f* by $f(u_i) = 1$ for $1 \leq i \leq m$ and

$$
f(v_j) = \begin{cases} 0 & \text{for } 1 \le j \le c(3k+2) \\ 2 & \text{for } c(3k+2) < j \le 2c(3k+2) \\ 1 & \text{for } j > 2c(3k+2). \end{cases}
$$

Hence we have, $v_f(0) = v_f(1) = v_f(2) = c(3k + 2)$ and $e_f(0) = e_f(1) =$ $e_f(2) = c(3k+2)$. Therefore, $|e_f(i) - e_f(j)| = 0$ and $|v_f(i) - v_f(j)| = 0$ for all $i, j = 0, 1, 2.$

Subcase ii.
$$
m = 3c + 1
$$
.

Define *f* by $f(u_i) = 1$ for $1 \leq i \leq m$ and

$$
f(v_j) = \begin{cases} 0 & \text{for } 1 \le j \le c(3k+2) + k + 1 \\ 2 & \text{for } c(3k+2) + k + 1 < j \le 2c(3k+2) + 2k + 1 \\ 1 & \text{for } j > 2c(3k+2) + 2k + 1. \end{cases}
$$

Hence we have, $v_f(0) = v_f(1) = c(3k + 2) + k + 1, v_f(2) = c(3k + 2) + k$, $e_f(0) = e_f(1) = c(3k + 2) + k + 1$ and $e_f(2) = c(3k + 2) + k$. Therefore, $|e_f(i) - e_f(j)| \le 1$ and $|v_f(i) - v_f(j)| \le 1$ for all $i, j = 0, 1, 2$. *Subcase iii.* $m = 3c + 2$.

Define *f* by $f(u_i) = 1$ for $1 \leq i \leq m$ and

$$
f(v_j) = \begin{cases} 0 & \text{for } 1 \le j \le c(3k+2) + 2k + 1 \\ 2 & \text{for } c(3k+2) + 2k + 1 < j \le 2c(3k+2) + 4k + 2 \\ 1 & \text{for } j > 2c(3k+2) + 4k + 2. \end{cases}
$$

Hence, $v_f(0) = v_f(2) = c(3k + 2) + 2k + 1, v_f(1) = c(3k + 2) + 2k + 2,$ $e_f(0) = e_f(2) = c(3k+2) + 2k+1$ and $e_f(1) = c(3k+2) + 2k+2$. Therefore, $|e_f(i) - e_f(j)| \le 1$ and $|v_f(i) - v_f(j)| \le 1$ for all $i, j = 0, 1, 2$. Thus f is a 3-product cordial labeling. \Box

If we delete an edge from a cycle C_m of $C_m \circ \overline{K_n}$, we get a graph $P_m \circ \overline{K_n}$. Hence, we have the following corollary.

Corollary 3.4. $P_m \circ \overline{K_n}$ is a 3-product cordial graph for $m, n \geq 1$.

Theorem 3.5. *Flⁿ is a 3-product cordial.*

Proof. Let H_n be a helm with *v* as the apex vertex, v_1, v_2, \ldots, v_n be the vertices of cycle and u_1, u_2, \ldots, u_n be the pendant vertices for $n \geq 3$. Let Fl_n be the flower graph obtained from helm H_n . Then $|V(Fl_n)| = 2n + 1$ and $|E(Fl_n)| = 4n$. We define $f: V(Fl_n) \to \{0, 1, 2\}$ as follows:

Case (i) $n \equiv 0 \pmod{3}$.

$$
f(u_i) = \begin{cases} 0 & \text{for } 1 \le i \le \frac{2n}{3} \\ 2 & \text{for } i = \frac{2n}{3} + j \text{ where } j \equiv 1, 3 \pmod{4}, 1 \le j < \frac{n}{3} \\ 1 & \text{for } i = \frac{2n}{3} + j \text{ where } j \equiv 0, 2 \pmod{4}, 1 \le j < \frac{n}{3} \end{cases}
$$

$$
f(u_n) = \begin{cases} 1 & \text{for } n \equiv 0 \pmod{4} \\ 2 & \text{Otherwise} \end{cases}
$$
For $1 \le i \le n$, $f(v_i) = \begin{cases} 1 & \text{if } i \equiv 1, 2 \pmod{4} \\ 2 & \text{if } i \equiv 0, 3 \pmod{4} \end{cases}$
$$
f(c) = 1.
$$

We have $v_f(0) = v_f(1) - 1 = v_f(2) = \left| \frac{2n+1}{3} \right|$ $\left[\frac{a+1}{3}\right]$ and $e_f(0) = e_f(1) = e_f(2) = \frac{4n}{3}$. **Case (ii)** $n \equiv 1 \pmod{3}$.

For
$$
1 \le i \le n
$$
, $f(v_i) = \begin{cases} 1 & \text{if } i \equiv 1, 2 (mod \ 4) \\ 2 & \text{if } i \equiv 0, 3 (mod \ 4) \end{cases}$, $f(c) = \begin{cases} 1 & \text{if } n \text{ is even} \\ 2 & \text{if } n \text{ is odd.} \end{cases}$
\nIf n is even, $f(u_i) = \begin{cases} 0 & \text{for } 1 \le i \le \frac{2n+1}{3} \\ 2 & \text{for } i = \frac{2n+1}{3} + j \text{ where } j \equiv 1, 2 (mod \ 4), 1 \le j < \frac{n-1}{3} \\ 1 & \text{for } i = \frac{2n+1}{3} + j \text{ where } j \equiv 0, 3 (mod \ 4), 1 \le j < \frac{n-1}{3} \end{cases}$.
\nIf n is odd, $f(u_i) = \begin{cases} 0 & \text{for } 1 \le i \le \frac{2n+1}{3} \\ 1 & \text{for } i = \frac{2n+1}{3} + j \text{ where } j \equiv 1, 3 (mod \ 4), 1 \le j \le \frac{n-1}{3} \\ 2 & \text{for } i = \frac{2n+1}{3} + j \text{ where } j \equiv 0, 2 (mod \ 4), 1 \le j \le \frac{n-1}{3} \end{cases}$.

We have $v_f(0) = v_f(1) = v_f(2) = \frac{2n+1}{3}$ and $e_f(0) - 1 = e_f(1) = e_f(2) = \left\lfloor \frac{4n}{3} \right\rfloor$ $\frac{\ln n}{3}$. **Case (iii)** $n \equiv 2 \pmod{3}$.

$$
f(c) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even.} \end{cases}
$$

$$
f(u_i) = \begin{cases} 0 & \text{for } 1 \le i \le \lfloor \frac{2n}{3} \rfloor \\ 1 & \text{for } i = \lfloor \frac{2n}{3} \rfloor + j \text{ where } j \equiv 1, 2 \pmod{4}, 1 \le j \le \frac{n}{3} \\ 2 & \text{for } i = \lfloor \frac{2n}{3} \rfloor + j \text{ where } j \equiv 0, 3 \pmod{4}, 1 \le j \le \frac{n}{3}. \end{cases}
$$

$$
f(u_n) = 2.
$$

For $1 \le i \le n$, if *n* is even, $f(v_i) = \begin{cases} 1 & \text{if } i \equiv 1, 2 \pmod{4} \\ 2 & \text{if } i = 0, 2 \pmod{4} \end{cases}$ 2 if $i \equiv 0, 3 \pmod{4}$. For $1 \leq i \leq n-2$, if *n* is odd, $f(v_i) = \begin{cases} 1 & \text{if } i \equiv 1, 2 \pmod{4} \\ 2 & \text{if } i = 0, 2 \pmod{4} \end{cases}$ 2 if $i \equiv 0, 3 \pmod{4}$. $f(v_{n-1}) = f(v_n) = 2.$

We have $v_f(0) + 1 = v_f(1) = v_f(2) = \left[\frac{2n+1}{3}\right]$ $\frac{e^{i+1}}{3}$ and $e_f(0) + 1 = e_f(1) = e_f(2) =$ $\lceil \frac{4n}{2} \rceil$ $\frac{\ln n}{3}$.

Thus is each case we have $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$ for all $i, j = 0, 1, 2.$

 \Box

Hence the graph Fl_n is a 3-product cordial graph.

References

- [1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, *Ars Combin.*, **23** (1987), 201-207.
- [2] J.A. Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, **16** # DS6 (2010).
- [3] M. Sundaram, R. Ponraj and S. Somasundaram, Product cordial labeling of graphs, *Bulletin of Pure and Applied Sciences*, **23E**(1)(2004), 155-163.
- [4] M. Sundaram, R. Ponraj and S. Somasundaram, *EP*-cordial labelings of graphs, *Varahmihir Journal of Mathematical Sciences*, **7**(1) (2007), 183-194.
- [5] R. Ponraj, M. Sivakumar and M. Sundaram, *k*-product cordial labeling of graphs, *Int. J. Contemp. Math. Sciences*, **7**(15) (2012), 733-742.

P. Jeyanthi Department of Mathematics Govindammal Aditanar College for Women Tiruchendur-628 215, Tamil Nadu, India.

E-mail: jeyajeyanthi@rediffmail.com

A. Maheswari Department of Mathematics Kamaraj College of Engineering and Technology Virudhunagar- 626 001, Tamil Nadu, India.

E-mail: bala nithin@yahoo.co.in