SUT Journal of Mathematics Vol. 48, No. 2 (2012), 199–211

Decomposition of symmetric multivariate density function

Kiyotaka Iki, Kouji Tahata and Sadao Tomizawa

(Received July 27, 2012; Revised October 29, 2012)

Abstract. For a *T*-variate density function, the present article defines the quasi-symmetry of order k (< T) and the marginal symmetry of order k, and gives the theorem that the density function is *T*-variate permutation symmetric if and only if it is quasi-symmetric and marginal symmetric of order k. The theorem is illustrated for the multivariate normal density function.

AMS 2010 Mathematics Subject Classification. 62H17.

Key words and phrases. Decomposition, marginal symmetry, normal distribution, odds-ratio, permutation symmetry, quasi-symmetry.

§1. Introduction

For analysis of square contingency tables, it is known that the symmetry model holds if and only if both the quasi-symmetry and marginal homogeneity models hold (for example, see Caussinus [3], Tomizawa and Tahata [6]). For multi-way contingency tables, Bhapkar and Darroch [1] defined the complete symmetry, quasi-symmetry and marginal symmetry models, and showed that the complete symmetry model holds if and only if both the quasi-symmetry and marginal symmetry models hold.

By the way, a similar decomposition for bivariate density function (instead of cell probabilities) is given by Tomizawa, Seo and Minaguchi [5]. Let X and Y be two continuous random variables with a density function f(x, y). The density function f(x, y) is said to be symmetric if we have

$$f(x,y) = f(y,x)$$
 for every $(x,y) \in \mathbf{R}^2$;

see Tong [7]. Tomizawa, et al. [5] defined quasi-symmetry and marginal homogeneity for the density function, and gave the theorem that the density function f(x, y) is symmetric if and only if it is both quasi-symmetric and marginal homogeneous.

Let the support of f(x, y) denote K^2 , where

$$K^{2} = \{(x, y) : f(x, y) > 0\}.$$

We assume that the support of f(x, y) is an open connected set in \mathbb{R}^2 . Also, let $\theta(s_1, s_2; t_1, t_2)$ be the odds-ratio for X-values s_1, s_2 and Y-values t_1, t_2 ; namely,

$$\theta(s_1, s_2; t_1, t_2) = \frac{f(s_1, t_1)f(s_2, t_2)}{f(s_2, t_1)f(s_1, t_2)}.$$

Then the density function f(x, y) is said to be quasi-symmetric if we have

$$\theta(s_1, s_2; t_1, t_2) = \theta(t_1, t_2; s_1, s_2)$$

for any $(s_i, t_j) \in K^2$. Thus this indicates that the density function is symmetric with respect to the odds-ratio. The density function f(x, y) is said to be marginal homogeneous if we have

$$f_X(t) = f_Y(t)$$
 for every $t \in \mathbf{R}$,

where $f_X(t)$ and $f_Y(t)$ are the marginal density functions of X and Y, respectively. Now, we are interested in extending the decomposition of the symmetric density function in multivariate case.

In this article, we define the quasi-symmetry and marginal symmetry for multivariate density function, and decompose the symmetry into quasi-symmetry and marginal symmetry. Section 2 provides the decomposition for trivariate density function. Section 3 extends the decomposition to multivariate density function. Section 4 illustrates our decompositions for normal distributions. Section 5 describes some comments.

§2. Decomposition of trivariate density function

Let X_1, X_2 and X_3 be three continuous random variables with a density function $f(x_1, x_2, x_3)$. The density function $f(x_1, x_2, x_3)$ is said to be permutation symmetric (S^3) if for each permutation (π_1, π_2, π_3) of (1, 2, 3) and every $(x_1, x_2, x_3) \in \mathbf{R}^3$, we have

$$f(x_{\pi_1}, x_{\pi_2}, x_{\pi_3}) = f(x_1, x_2, x_3);$$

see Tong [7], and Fang, Kotz and Ng [4].

Let $f_{X_1}(x_1), f_{X_2}(x_2)$ and $f_{X_3}(x_3)$ be the marginal density functions of X_1, X_2 and X_3 , respectively. For the density function $f(x_1, x_2, x_3)$, we shall define marginal symmetry of order 1 (denoted by M_1^3) by

$$M_1^3: f_{X_1}(t) = f_{X_2}(t) = f_{X_3}(t)$$
 for every $t \in \mathbf{R}$.

Also, we define marginal symmetry of order 2 (denoted by M_2^3) by

$$M_2^3: f_{X_1X_2}(s,t) = f_{X_1X_2}(t,s) = f_{X_1X_3}(s,t) = f_{X_2X_3}(s,t) \text{ for every } (s,t) \in \mathbf{R}^2.$$

Thus, M_2^3 indicates that each of marginal distributions of (X_1, X_2) , (X_1, X_3) and (X_2, X_3) has a same bivariate density function being symmetric. Note that M_2^3 implies M_1^3 .

Let the support of $f(x_1, x_2, x_3)$ denote K^3 , where

$$K^{3} = \{(x_{1}, x_{2}, x_{3}) : f(x_{1}, x_{2}, x_{3}) > 0, a < x_{i} < b, i = 1, 2, 3, -\infty \le a < b \le \infty\}.$$

We assume that the support of $f(x_1, x_2, x_3)$ is an open connected set in \mathbb{R}^3 . Generally, we can express the density function as

(2.1)
$$f(x_1, x_2, x_3) = \mu \alpha_1(x_1) \alpha_2(x_2) \alpha_3(x_3) \times \beta_{12}(x_1, x_2) \beta_{13}(x_1, x_3) \beta_{23}(x_2, x_3) \gamma(x_1, x_2, x_3),$$

where $(x_1, x_2, x_3) \in K^3$, and for an arbitrary fixed value $c \in (a, b)$,

$$\alpha_1(c) = 1, \quad \beta_{12}(c, x_2) = \beta_{12}(x_1, c) = 1,$$

$$\gamma(c, x_2, x_3) = \gamma(x_1, c, x_3) = \gamma(x_1, x_2, c) = 1,$$

with similar properties of $\alpha_2, \alpha_3, \beta_{13}$ and β_{23} . The terms α_i correspond to main effects of the variable X_i, β_{ij} to interaction effects of X_i and X_j , and γ to interaction effect of X_1, X_2 and X_3 . Namely

$$\begin{split} \mu &= f(c,c,c),\\ \alpha_1(x_1) &= \frac{f(x_1,c,c)}{f(c,c,c)}, \quad \alpha_2(x_2) = \frac{f(c,x_2,c)}{f(c,c,c)}, \quad \alpha_3(x_3) = \frac{f(c,c,x_3)}{f(c,c,c)}\\ \beta_{12}(x_1,x_2) &= \frac{f(x_1,x_2,c)f(c,c,c)}{f(x_1,c,c)f(c,x_2,c)},\\ \beta_{13}(x_1,x_3) &= \frac{f(x_1,c,x_3)f(c,c,c)}{f(x_1,c,c)f(c,c,x_3)},\\ \beta_{23}(x_2,x_3) &= \frac{f(c,x_2,x_3)f(c,c,c)}{f(c,x_2,c)f(c,c,x_3)},\\ \gamma(x_1,x_2,x_3) &= \frac{f(x_1,x_2,x_3)f(x_1,c,c)f(c,x_2,c)f(c,c,x_3)}{f(c,c,c)f(x_1,x_2,c)f(x_1,c,x_3)f(c,x_2,x_3)}. \end{split}$$

The term $\alpha_1(x_1)$ indicates the odds of density function with respect to X_1 -values with $(X_2, X_3) = (c, c)$. Note that

$$\beta_{12}(x_1, x_2) = \left(\frac{f(x_1, x_2, c)}{f(c, x_2, c)}\right) / \left(\frac{f(x_1, c, c)}{f(c, c, c)}\right) \\ = \left(\frac{f(x_1, x_2, c)}{f(x_1, c, c)}\right) / \left(\frac{f(c, x_2, c)}{f(c, c, c)}\right),$$

and

$$\begin{split} \gamma(x_1, x_2, x_3) &= \left(\frac{f(x_1, x_2, x_3)f(c, c, x_3)}{f(x_1, c, x_3)f(c, x_2, x_3)}\right) / \left(\frac{f(x_1, x_2, c)f(c, c, c)}{f(x_1, c, c)f(c, x_2, c)}\right) \\ &= \left(\frac{f(x_1, x_2, x_3)f(c, x_2, c)}{f(x_1, x_2, c)f(c, x_2, x_3)}\right) / \left(\frac{f(x_1, c, x_3)f(c, c, c)}{f(x_1, c, c)f(c, c, x_3)}\right) \\ &= \left(\frac{f(x_1, x_2, x_3)f(x_1, c, c)}{f(x_1, x_2, c)f(x_1, c, x_3)}\right) / \left(\frac{f(c, x_2, x_3)f(c, c, c)}{f(c, x_2, c)f(c, c, x_3)}\right) \end{split}$$

Thus, $\beta_{12}(x_1, x_2)$ indicates the odds-ratio of density function with respect to (X_1, X_2) -values with $X_3 = c$. Also $\gamma(x_1, x_2, x_3)$ indicates the ratio of odds-ratios of density function, i.e., the ratio of odds-ratio with respect to (X_1, X_2) -values with $X_3 = x_3$ to that with $X_3 = c$ (or the ratio of odds-ratio with respect to (X_i, X_j) -values with $X_k = x_k$ to that with $X_k = c$, where (i, j, k) = (1, 3, 2) and (2, 3, 1)).

The density function is S^3 if and only if it is expressed as the form (2.1) with

$$S^{3}: \begin{cases} \alpha_{1}(x_{1}) = \alpha_{2}(x_{1}) = \alpha_{3}(x_{1}), \\ \beta_{12}(x_{1}, x_{2}) = \beta_{12}(x_{2}, x_{1}) = \beta_{13}(x_{1}, x_{2}) = \beta_{23}(x_{1}, x_{2}), \\ \gamma(x_{\pi_{1}}, x_{\pi_{2}}, x_{\pi_{3}}) = \gamma(x_{1}, x_{2}, x_{3}). \end{cases}$$

We shall define quasi-symmetry of order 1 (denoted by Q_1^3), and order 2 (denoted by Q_2^3). We define Q_1^3 by (2.1) with

$$Q_1^3: \begin{cases} \beta_{12}(x_1, x_2) = \beta_{12}(x_2, x_1) = \beta_{13}(x_1, x_2) = \beta_{23}(x_1, x_2), \\ \gamma(x_{\pi_1}, x_{\pi_2}, x_{\pi_3}) = \gamma(x_1, x_2, x_3). \end{cases}$$

Thus Q_1^3 indicates

$$\begin{aligned} \theta(s_1, s_2; t_1, t_2; u) &= \theta(t_1, t_2; s_1, s_2; u) \\ &= \theta(s_1, s_2; u; t_1, t_2) = \theta(t_1, t_2; u; s_1, s_2) \\ &= \theta(u; s_1, s_2; t_1, t_2) = \theta(u; t_1, t_2; s_1, s_2), \end{aligned}$$

where $(s_i, t_j, u) \in K^3$ and so on, and

$$\theta(s_1, s_2; t_1, t_2; u) = \frac{f(s_1, t_1, u)f(s_2, t_2, u)}{f(s_2, t_1, u)f(s_1, t_2, u)},$$

$$\theta(s_1, s_2; u; t_1, t_2) = \frac{f(s_1, u, t_1)f(s_2, u, t_2)}{f(s_2, u, t_1)f(s_1, u, t_2)},$$

$$\theta(u; s_1, s_2; t_1, t_2) = \frac{f(u, s_1, t_1)f(u, s_2, t_2)}{f(u, s_2, t_1)f(u, s_1, t_2)};$$

because we can see

$$\theta(s_1, s_2; t_1, t_2; u) = \frac{\theta(c, s_1; c, t_1; u)\theta(c, s_2; c, t_2; u)}{\theta(c, s_2; c, t_1; u)\theta(c, s_1; c, t_2; u)},$$

and so on. Therefore Q_1^3 indicates that the density function is symmetric with respect to the odds-ratio.

Also, we define Q_2^3 by (2.1) with

$$Q_2^3: \gamma(x_{\pi_1}, x_{\pi_2}, x_{\pi_3}) = \gamma(x_1, x_2, x_3).$$

Thus Q_2^3 indicates

$$\begin{aligned} &\frac{\theta(s_1, s_2; t_1, t_2; u_1)}{\theta(s_1, s_2; t_1, t_2; u_2)} = \frac{\theta(t_1, t_2; s_1, s_2; u_1)}{\theta(t_1, t_2; s_1, s_2; u_2)} \\ &= \frac{\theta(s_1, s_2; u_1; t_1, t_2)}{\theta(s_1, s_2; u_2; t_1, t_2)} = \frac{\theta(t_1, t_2; u_1; s_1, s_2)}{\theta(t_1, t_2; u_2; s_1, s_2)} \\ &= \frac{\theta(u_1; s_1, s_2; t_1, t_2)}{\theta(u_2; s_1, s_2; t_1, t_2)} = \frac{\theta(u_1; t_1, t_2; s_1, s_2)}{\theta(u_2; t_1, t_2; s_1, s_2)} \end{aligned}$$

where $(s_i, t_j, u_k) \in K^3$ and so on; because

$$\frac{\theta(s_1, s_2; t_1, t_2; u_k)}{\theta(s_1, s_2; t_1, t_2; c)} = \frac{\gamma(s_1, t_1, u_k)\gamma(s_2, t_2, u_k)}{\gamma(s_2, t_1, u_k)\gamma(s_1, t_2, u_k)}.$$

Therefore Q_2^3 indicates that the density function is symmetric with respect to the ratio of odds-ratios. We point out that each of S^3 , Q_1^3 and Q_2^3 does not depend on the value of c fixed. It is obviously that Q_1^3 implies Q_2^3 . Note that the alternative way of expressing Q_1^3 is

$$Q_1^3: f(x_1, x_2, x_3) = \theta_1(x_1)\theta_2(x_2)\theta_3(x_3)v(x_1, x_2, x_3),$$

where v is positive and permutation symmetric function, i.e., $v(x_{\pi_1}, x_{\pi_2}, x_{\pi_3}) = v(x_1, x_2, x_3)$. We obtain the following theorem.

Theorem 1. For k fixed (k = 1, 2), the trivariate density function $f(x_1, x_2, x_3)$ is S^3 if and only if it is both Q_k^3 and M_k^3 .

Referring to Bhapkar and Darroch [1] for discrete probabilities in multi-way contingency tables, we can prove theorem for multivariate density function as follows.

Proof. Consider the case of k = 1. If a density function is S^3 , then it satisfies Q_1^3 and M_1^3 . Assume that it is both Q_1^3 and M_1^3 , and then we shall show that it satisfies S^3 .

Let $f^*(x_1, x_2, x_3)$ be the density function which satisfies both Q_1^3 and M_1^3 . Since $f^*(x_1, x_2, x_3)$ satisfies Q_1^3 , we see

$$\log f^*(x_1, x_2, x_3) = \log \theta_1(x_1) + \log \theta_2(x_2) + \log \theta_3(x_3) + \log v(x_1, x_2, x_3),$$

where v is positive and permutation symmetric function. Let the density $g(x_1, x_2, x_3)$ be $c^{-1}v(x_1, x_2, x_3)$ with $c = \iiint v(x_1, x_2, x_3) dx_1 dx_2 dx_3$. Also, since $f^*(x_1, x_2, x_3)$ satisfies M_1^3 , we see

(2.2)
$$f_{X_1}^*(t) = f_{X_2}^*(t) = f_{X_3}^*(t) = \mu(t) \text{ for } t \in \mathbf{R},$$

where $f_{X_1}^*(t)$, $f_{X_2}^*(t)$ and $f_{X_3}^*(t)$ are the marginal density functions of X_1, X_2 and X_3 , respectively. Consider the arbitrary density function $f(x_1, x_2, x_3)$ satisfying M_1^3 with

(2.3)
$$f_{X_1}(t) = f_{X_2}(t) = f_{X_3}(t) = \mu(t) \text{ for } t \in \mathbf{R},$$

where $f_{X_1}(t), f_{X_2}(t)$ and $f_{X_3}(t)$ are the marginal density functions of X_1, X_2 and X_3 , respectively. From (2.2) and (2.3), we see

(2.4)
$$\iiint \{f(x_1, x_2, x_3) - f^*(x_1, x_2, x_3)\} \times \log\left(\frac{f^*(x_1, x_2, x_3)}{g(x_1, x_2, x_3)}\right) dx_1 dx_2 dx_3 = 0.$$

Using the equation (2.4), we obtain

$$I(f,g)=I(f^*,g)+I(f,f^*),$$

where

$$I(h_1, h_2) = \iiint h_1(x_1, x_2, x_3) \log \left(\frac{h_1(x_1, x_2, x_3)}{h_2(x_1, x_2, x_3)}\right) dx_1 dx_2 dx_3.$$

For g fixed, we see

$$\min_{f} I(f,g) = I(f^*,g),$$

and then f^* uniquely minimizes I(f,g).

Let $f^{**}(x_1, x_2, x_3) = f^*(x_1, x_3, x_2)$. In a similar way, we also see

$$\iiint \{f(x_1, x_2, x_3) - f^{**}(x_1, x_2, x_3)\} \log\left(\frac{f^{**}(x_1, x_2, x_3)}{g(x_1, x_2, x_3)}\right) dx_1 dx_2 dx_3 = 0,$$

where $f(x_1, x_2, x_3)$ is M_1^3 with (2.3). Thus, we obtain

$$I(f,g) = I(f^{**},g) + I(f,f^{**})$$

For g fixed, we see

$$\min_{f} I(f,g) = I(f^{**},g),$$

and then f^{**} uniquely minimizes I(f,g). Therefore, we see $f^{*}(x_1, x_2, x_3) = f^{**}(x_1, x_2, x_3)$. Thus, $f^{*}(x_1, x_2, x_3) = f^{*}(x_1, x_3, x_2)$.

Also, in a similar way, we obtain

$$f^*(x_1, x_2, x_3) = f^*(x_2, x_1, x_3) = f^*(x_2, x_3, x_1) = f^*(x_3, x_1, x_2) = f^*(x_3, x_2, x_1).$$

Therefore, we have $f^*(x_1, x_2, x_3) = f^*(x_{\pi_1}, x_{\pi_2}, x_{\pi_3})$. Namely $f^*(x_1, x_2, x_3)$ satisfies S^3 . The case of k = 2 can be proved in a similar way as the case of k = 1. So the proof is completed.

§3. Decomposition of multivariate density function

Let X_1, \ldots, X_T be T continuous random variables with a density function $f(x_1, \ldots, x_T)$. The density function $f(x_1, \ldots, x_T)$ is said to be permutation symmetric (S^T) if for each permutation (π_1, \ldots, π_T) of $(1, \ldots, T)$ and every $(x_1, \ldots, x_T) \in \mathbf{R}^T$, we have

$$f(x_{\pi_1},\ldots,x_{\pi_T})=f(x_1,\ldots,x_T);$$

see Tong [7] and Fang et al. [4].

Let the support of $f(x_1, \ldots, x_T)$ denote K^T , where

$$K^{T} = \{ (x_{1}, \dots, x_{T}) : f(x_{1}, \dots, x_{T}) > 0, \\ a < x_{i} < b, i = 1, \dots, T, -\infty \le a < b \le \infty \}.$$

We assume that the support of $f(x_1, \ldots, x_T)$ is an open connected set in \mathbf{R}^T . Generally, we can express the density function as

(3.1)
$$f(x_1, \dots, x_T) = \alpha \Big[\prod_{i_1=1}^T \alpha_{i_1}(x_{i_1}) \Big] \Big[\prod_{1 \le i_1 < i_2 \le T} \alpha_{i_1 i_2}(x_{i_1}, x_{i_2}) \Big] \times \cdots \\ \times \Big[\prod_{1 \le i_1 < \dots < i_{T-1} \le T} \alpha_{i_1 \dots i_{T-1}}(x_{i_1}, \dots, x_{i_{T-1}}) \Big] \cdot \alpha_{1 \dots T}(x_1, \dots, x_T),$$

where $(x_1, \ldots, x_T) \in K^T$, and for an arbitrary fixed value $c \in (a, b)$,

$$\{\alpha_i(c) = \alpha_{i_1 i_2}(c, x_{i_2}) = \dots = \alpha_{1\dots T}(x_1, \dots, x_{T-1}, c) = 1\}.$$

Then, the density function $f(x_1, \ldots, x_T)$ being S^T is also expressed as (3.1) with

$$S^{T}: \alpha_{i_{1}\dots i_{m}}(x_{i_{1}},\dots,x_{i_{m}}) = \alpha_{i_{1}\dots i_{m}}(x_{\pi_{i_{1}}},\dots,x_{\pi_{i_{m}}}) = \alpha_{j_{1}\dots j_{m}}(x_{i_{1}},\dots,x_{i_{m}})$$
$$(m = 1,\dots,T; 1 \le i_{1} < \dots < i_{m} \le T; 1 \le j_{1} < \dots < j_{m} \le T),$$

where $(\pi_{i_1}, \ldots, \pi_{i_m})$ is permutation of (i_1, \ldots, i_m) .

For k = 1, ..., T - 1, we shall define quasi-symmetry of order k (denoted by Q_k^T) by (3.1) with

$$Q_k^T : \alpha_{i_1...i_m}(x_{i_1}, \dots, x_{i_m}) = \alpha_{i_1...i_m}(x_{\pi_{i_1}}, \dots, x_{\pi_{i_m}}) = \alpha_{j_1...j_m}(x_{i_1}, \dots, x_{i_m})$$
$$(m = k + 1, \dots, T; 1 \le i_1 < \dots < i_m \le T; 1 \le j_1 < \dots < j_m \le T).$$

Also, for k = 1, ..., T - 1, we shall define marginal symmetry of order k (denoted by M_k^T) by

$$M_k^T : f_{X_{i_1} \dots X_{i_k}}(x_{i_1}, \dots, x_{i_k}) = f_{X_{i_1} \dots X_{i_k}}(x_{\pi_{i_1}}, \dots, x_{\pi_{i_k}}) = f_{X_{j_1} \dots X_{j_k}}(x_{i_1}, \dots, x_{i_k})$$

(1 \le i_1 < \dots < i_k \le T; 1 \le j_1 < \dots < j_k \le T),

where $f_{X_{i_1}...X_{i_k}}$ is the marginal density function of $(X_{i_1},...,X_{i_k})$. Then we obtain the following theorem.

Theorem 2. For k fixed (k = 1, ..., T - 1), the multivariate density function $f(x_1, ..., x_T)$ is S^T if and only if it is both Q_k^T and M_k^T .

The proof of Theorem 2 is omitted because it is obtained in a similar way to the proof of Theorem 1.

§4. Symmetry of multivariate normal density function

Example 1. Consider a *T*-dimensional random vector $\mathbf{X} = (X_1, \ldots, X_T)'$ having a normal distribution with mean vector $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_T)'$ and covariance matrix $\boldsymbol{\Sigma}$. The density function is

(4.1)
$$f(x_1,...,x_T) = \frac{1}{(2\pi)^{\frac{T}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\Big\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\Big\}.$$

Denote Σ^{-1} by $A = (a_{ij})$ with $a_{ij} = a_{ji}$. Then the density function can be expressed as

$$f(x_1,\ldots,x_T) = C \exp\left\{-\frac{1}{2}H\right\},\,$$

206

where C is positive constant and

$$H = \sum_{s=1}^{T} a_{ss} x_s^2 + \sum_{s \neq t} a_{st} x_s x_t - 2 \sum_{s=1}^{T} \sum_{t=1}^{T} a_{st} \mu_s x_t.$$

By setting c = 0 without loss of generality, we see

(4.2)
$$\alpha_i(x_i) = \exp\left\{-\frac{1}{2}(a_{ii}x_i^2 - 2\sum_{s=1}^T a_{si}\mu_s x_i)\right\} \quad (i = 1, \dots, T),$$
$$\alpha_{ij}(x_i, x_j) = \exp\left(-a_{ij}x_i x_j\right) \quad (i < j),$$

and for $m = 3, \ldots, T$,

$$\alpha_{i_1...i_m}(x_{i_1},...,x_{i_m}) = 1 \quad (1 \le i_1 < \cdots < i_m \le T).$$

Therefore the density function (4.1) is Q_k^T for $k = 2, \ldots, T - 1$. Also from (4.2), the density function (4.1) is Q_1^T if and only if $\{a_{ij} \ (= a_{ji})\}$ are constant (e.g., equals w) for all i < j; namely, Σ^{-1} has the form

(4.3)
$$\boldsymbol{\Sigma}^{-1} = \boldsymbol{D} + w\boldsymbol{e}\boldsymbol{e}',$$

where **D** is the $T \times T$ diagonal matrix, **e** is the $T \times 1$ vector of 1 elements, and w is scalar. Although the detail is omitted, then Σ has the form

$$\Sigma = D^{-1} + dD^{-1}ee'D^{-1},$$

where d is scalar. Therefore, the density function (4.1) is Q_1^T if and only if Σ has the form

(4.4)
$$\boldsymbol{\Sigma} = \begin{pmatrix} b_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & b_T \end{pmatrix} + d \begin{pmatrix} b_1 \\ \vdots \\ b_T \end{pmatrix} \begin{pmatrix} b_1, \dots, b_T \end{pmatrix}.$$

Let $V(X_i) = \sigma_i^2$ (i = 1, ..., T) and let ρ_{ij} be the correlation coefficient of X_i and X_j $(i \neq j)$ with $|\rho_{ij}| < 1$. Assume that (i) $\sigma_1^2 = \cdots = \sigma_T^2$ $(= \sigma^2)$ and $\rho_{ij} = \rho$ (i < j).

Then

$$\boldsymbol{\Sigma} = \sigma^2 (1-\rho) \Big(\boldsymbol{E} + \frac{\rho}{1-\rho} \boldsymbol{e} \boldsymbol{e}' \Big),$$

where \boldsymbol{E} is the $T \times T$ identity matrix. This satisfies the form (4.4) of $\boldsymbol{\Sigma}$. Therefore the density function (4.1) with condition (i) is Q_1^T .

(ii) $\sigma_1^2 = \cdots = \sigma_T^2 \ (= \sigma^2).$

From (4.4), then Q_1^T holds if and only if

$$\begin{cases} \sigma^2 = b_i + db_i^2 & (i = 1, \dots, T), \\ \sigma^2 \rho_{ij} = db_i b_j & (i < j), \end{cases}$$

hold, namely, $b_1 = \cdots = b_T$ since $|\rho_{ij}| < 1$. Therefore the density function (4.1) with condition (ii) is Q_1^T if and only if $\rho_{ij} = \rho$ for all i < j hold.

Also, assume that

(iii) $\rho_{ij} = \rho \ (\neq 0)$ for all i < j. Then we see

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_T \end{pmatrix} \left((1-\rho)\boldsymbol{E} + \rho \boldsymbol{e} \boldsymbol{e}' \right) \begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_T \end{pmatrix}.$$

Although the detail is omitted, we can see

$$\boldsymbol{\Sigma}^{-1} = \frac{1}{1-\rho} \left(\begin{pmatrix} \sigma_1^{-2} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \sigma_T^{-2} \end{pmatrix} + \frac{1}{m} \begin{pmatrix} \sigma_1^{-1}\\ \vdots\\ \sigma_T^{-1} \end{pmatrix} \begin{pmatrix} \sigma_1^{-1}, \dots, \sigma_T^{-1} \end{pmatrix} \right),$$

where $m = -(1 - \rho)/\rho - T$. Therefore from (4.3), the density function (4.1) with condition (iii) is Q_1^T if and only if $\sigma_1^2 = \cdots = \sigma_T^2$ holds.

Assume that

(iv) $\rho_{ij} = 0$ for all i < j.

Then the density function (4.1) is Q_1^T because $\alpha_{ij}(x_i, x_j) = 1$ in (4.2) with $a_{ij} = 0$ for i < j.

We shall consider the relationship between the density function (4.1) and M_k^T (k = 1, ..., T-1). Obviously, the density function (4.1) is M_1^T if and only if $\mu_1 = \cdots = \mu_T$ and $\sigma_1^2 = \cdots = \sigma_T^2$ hold. Also, for each k (k = 2, ..., T-1), it is M_k^T if and only if $\mu_1 = \cdots = \mu_T$, $\sigma_1^2 = \cdots = \sigma_T^2$, and $\rho_{ij} = \rho$ for all i < j. Thus, from Theorem 2 we can see that the density function (4.1) with $\mu_1 = \cdots = \mu_T$ and $\sigma_1^2 = \cdots = \sigma_T^2$ is S^T if and only if it is Q_1^T . Also, from Theorem 2, the density function (4.1) is S^T if and only if $\mu_1 = \cdots = \mu_T$, $\sigma_1^2 = \cdots = \sigma_T^2$ and $\rho_{ij} = \rho$ for all i < j hold.

Example 2. Consider a *T*-dimensional random vector $U = (U_1, \ldots, U_T)'$ having a multinomial distribution with

$$P(U_1 = u_1, \dots, U_T = u_T | N) = \frac{N!}{u_1! \cdots u_T! (N - \sum_{i=1}^T u_i)!} \pi_1^{u_1} \cdots \pi_T^{u_T} (1 - \sum_{i=1}^T \pi_i)^{N - \sum_{i=1}^T u_i},$$

208

where u_i is nonnegative integer with $0 \le u_i \le N$. Let

$$\boldsymbol{\pi} = (\pi_1, \ldots, \pi_T)', \quad \hat{\boldsymbol{\pi}} = (\hat{\pi}_1, \ldots, \hat{\pi}_T)',$$

where $\hat{\pi}_i = u_i/N$. Also let $\mathbf{X} = \sqrt{N}(\hat{\pi} - \pi)$. Then it is well-known that \mathbf{X} has asymptotically (as $N \to \infty$) a *T*-variate normal distribution with mean $T \times 1$ zero vector $\mathbf{0} = (0, \dots, 0)'$ and covariance matrix

(4.5)
$$\Sigma = D - \pi \pi',$$

where

$$\boldsymbol{D} = \left(\begin{array}{ccc} \pi_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \pi_T \end{array}\right);$$

see, e.g., Bishop, Fienberg and Holland [2]. So we shall consider the properties of normal distribution having covariance matrix (4.5). We see that Σ in (4.5) satisfies the form (4.4) obtained in Example 1. Therefore the density function of normal distribution $N(\mathbf{0}, \mathbf{D} - \boldsymbol{\pi}\boldsymbol{\pi}')$ is always Q_1^T . Also, it is Q_k^T ($k = 2, \ldots, T-1$).

The marginal distribution of X_i in $\mathbf{X} = (X_1, \ldots, X_T)'$ is $N(0, \pi_i(1 - \pi_i))$ for $i = 1, \ldots, T$. Therefore the density function of $N(\mathbf{0}, \mathbf{D} - \mathbf{\pi}\mathbf{\pi}')$ is M_1^T if and only if $\pi_1 = \cdots = \pi_T$ holds.

Also two dimensional marginal distribution of (X_i, X_j) for i < j has the mean zero vector and the covariance matrix

$$\left(egin{array}{cc} \pi_i(1-\pi_i) & -\pi_i\pi_j \ -\pi_i\pi_j & \pi_j(1-\pi_j) \end{array}
ight).$$

Thus, the density function of $N(\mathbf{0}, \mathbf{D} - \mathbf{\pi}\mathbf{\pi}')$ is M_2^T if and only if $\pi_1 = \cdots = \pi_T$ holds. In a similar way, it is M_k^T if and only if $\pi_1 = \cdots = \pi_T$ holds $(k = 3, \ldots, T - 1)$.

Therefore we can see from Theorem 2 that the density function of $N(\mathbf{0}, \mathbf{D} - \boldsymbol{\pi}\boldsymbol{\pi}')$ is S^T if and only if it is M_k^T (k = 1, ..., T-1), because it always satisfies Q_k^T .

§5. Comments

When an arbitrary density function $f(x_1, \ldots, x_T)$ is not permutation symmetric, Theorem 2 may be useful for knowing the reason, i.e., for k fixed, which structure of quasi-symmetry of order k and marginal symmetry of order k is lacking.

We point out that for a T-variate normal distribution, if the variances of X_1, \ldots, X_T are the same and the correlation coefficients of X_i and X_j for all

i < j are the same, then the density functions is quasi-symmetric of order 1, i.e., Q_1^T (as seen in Example 1); however, the converse always does not hold. Indeed, the normal density function with covariance matrix $\boldsymbol{\Sigma} = \boldsymbol{D} - \boldsymbol{\pi}\boldsymbol{\pi}'$ (in Example 2) is always Q_1^T even when the variances of X_1, \ldots, X_T are not the same and the correlation coefficients of X_i and X_j are not the same for $1 \le i < j \le T$.

Finally we note that it is difficult to illustrate the decomposition of symmetry for the elliptical distribution instead of the normal distribution in Example of Section 4 because the $\{\alpha_i(x_i)\}$ and $\{\alpha_{ij}(x_i, x_j)\}$ are expressed as the ratio of density functions.

Acknowledgements

The authors would like to express our sincere thanks to a referee for the meaningful comments.

References

- V. P. Bhapkar and J. N. Darroch, Marginal symmetry and quasi symmetry of general order, Journal of Multivariate Analysis. 34 (1990), 173–184.
- [2] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice, The MIT Press, Cambridge, 1975.
- [3] H. Caussinus, Contribution à l'analyse statistique des tableaux de corrélation, Annales de la Faculté des Sciences de l'Université de Toulouse. 29 (1965), 77–182.
- [4] K.-T. Fang, S. Kotz and K. W. Ng, Symmetric Multivariate and Related Distributions, Chapman and Hall, London, 1990.
- [5] S. Tomizawa, T. Seo and J. Minaguchi, Decomposition of bivariate symmetric density function, Calcutta Statistical Association Bulletin. 46 (1996), 129– 133.
- [6] S. Tomizawa, and K. Tahata, The analysis of symmetry and asymmetry: orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables, Journal de la Société Française de Statistique. 148 (2007), 3–36.
- [7] Y. L. Tong, *The Multivariate Normal Distribution*, Springer-Verlag, New York, 1990.

Kiyotaka Iki Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Noda City, Chiba, 278-8510, Japan *E-mail*: kiyotaka_iki@ybb.ne.jp Kouji Tahata

Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Noda City, Chiba, 278-8510, Japan *E-mail*: kouji_tahata@is.noda.tus.ac.jp

Sadao Tomizawa

Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Noda City, Chiba, 278-8510, Japan *E-mail*: tomizawa@is.noda.tus.ac.jp