Totally vertex-magic cordial labeling

P. Jeyanthi and N. Angel Benseera

(Received September 21, 2010; Revised May 26, 2013)

Abstract

In this paper, we introduce a new labeling called Totally VertexMagic Cordial(TVMC) labeling. A graph $G(p, q)$ is said to be TVMC with a constant C if there is a mapping $f: V(G) \cup E(G) \rightarrow\{0,1\}$ such that $$
\left[f(a)+\sum_{b \in N(a)} f(a b)\right] \equiv C \quad(\bmod 2)
$$ for all vertices $a \in V(G)$ and $\left|n_{f}(0)-n_{f}(1)\right| \leq 1$, where $N(a)$ is the set of vertices adjacent to the vertex a and $n_{f}(i)(i=0,1)$ is the sum of the number of vertices and edges with label i.

AMS 2010 Mathematics Subject Classification. 05C78. Key words and phrases. Totally vertex-magic cordial, sun graph, friendship graph.

§1. Introduction

All graphs considered here are finite, simple and undirected. The set of vertices and edges of a graph G will be denoted by $V(G)$ and $E(G)$ respectively, and let $p=|V(G)|$ and $q=|E(G)|$. A labeling of a graph G is a mapping that carries a set of graph elements usually the vertices and/or edges, into a set of numbers, usually integers, called labels. Many kinds of labelings have been studied and an excellent survey of graph labeling can be found in Gallian [3]. For all other terminology and notation we follow Harary [4]. The concept of cordial labeling was introduced by Cahit [1]. A binary vertex labeling $f: V(G) \rightarrow\{0,1\}$ induces an edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ defined by $f^{*}(u v)=|f(u)-f(v)|$. Such a labeling is called cordial if the conditions $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f^{*}}(0)-e_{f^{*}}(1)\right| \leq 1$ are satisfied, where $v_{f}(i)$ and $e_{f^{*}}(i)(i=0,1)$ are the number of vertices and edges with label i respectively. A graph is called cordial if it admits cordial labeling.

Totally Magic Cordial(TMC) labeling was introduced by Cahit in [2] as a modification of total edge-magic labeling. A (p, q) graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \rightarrow\{0,1\}$ such that $f(a)+f(b)+f(a b) \equiv C(\bmod 2)$ for all edges $a b \in E(G)$ provided the condition $|f(0)-f(1)| \leq 1$, where $f(0)=$ $v_{f}(0)+e_{f}(0), f(1)=v_{f}(1)+e_{f}(1)$ and $v_{f}(i), e_{f}(i)(i=0,1)$ are the number of vertices and edges with label i, respectively. It is proved that the graphs $K_{m, n}(m, n>1)$, trees and K_{n} for $n=2,3,5$ or 6 have TMC labeling.
J. A. MacDougall et al. introduced the concept of vertex-magic total labeling in [6]. A one-to-one map λ from $V \cup E$ onto the integers $\{1,2, \ldots, p+q\}$ is a vertex-magic total labeling if there is a constant k so that for every vertex $x, \lambda(x)+\sum \lambda(x y)=k$, where the sum is over all vertices y adjacent to x. The sum $\lambda(x)+\sum \lambda(x y)$ is called the weight of the vertex x and is denoted by $\mathrm{wt}(x)$. The constant k is called the magic constant for λ. In this paper, we modify the vertex-magic total labeling into a new labeling called totally vertex magic cordial labeling and we examine the totally vertex magic cordiality of some graphs.

§2. Totally vertex-magic cordial labeling

In this section, we define totally vertex-magic cordial labeling and we prove vertex-magic total graph is totally vertex-magic cordial.

Definition 2.1. $A(p, q)$ graph G is said to have a totally vertex-magic cordial (TVMC) labeling with constant C if there is a mapping $f: V(G) \cup E(G) \rightarrow$ $\{0,1\}$ such that

$$
\left[f(a)+\sum_{b \in N(a)} f(a b)\right] \equiv C \quad(\bmod 2)
$$

for all vertices $a \in V(G)$ provided the condition, $\left|n_{f}(0)-n_{f}(1)\right| \leq 1$ is held, where $N(a)$ is the set of vertices adjacent to a vertex a and $n_{f}(i)(i=0,1)$ is the sum of the number of vertices and edges with label i.

A graph is called totally vertex-magic cordial if it admits totally vertexmagic cordial labeling .

Theorem 2.2. If G is a vertex-magic total graph then G is totally vertexmagic cordial.

Proof. Let f be a vertex-magic total labeling of a graph G with p vertices and q edges and with weight k. Define $g: V(G) \cup E(G) \rightarrow\{0,1\}$ by $g(v) \equiv f(v)$
$(\bmod 2)$ if $v \in V(G)$ and $g(e) \equiv f(e)(\bmod 2)$ if $e \in E(G)$. Then, $C=0$ if k is even and $C=1$ if k is odd. Since there are exactly $\left\lceil\frac{p+q}{2}\right\rceil$ odd integers and $\left\lfloor\frac{p+q}{2}\right\rfloor$ even integers in the set $\{1,2,3, \ldots, p+q\}$ we have, $\left|n_{f}(0)-n_{f}(1)\right| \leq 1$. Hence, g is a totally vertex-magic cordial labeling of G.

§3. Totally vertex-magic cordial labeling of a complete graph K_{n}

H. K. Krishnappa et al. [5] proved that $K_{n}(n \geq 1)$ admits vertex-magic total labeling. In this section, we use another technique to prove $K_{n}(n \geq 1)$ is totally vertex-magic cordial. Let $V=\left\{v_{i} \mid 1 \leq i \leq n\right\}$ be the vertex set and $E=\left\{v_{i} v_{j} \mid i \neq j, 1 \leq i, j \leq n\right\}$ be the edge set of K_{n}. We use the following symmetric matrix to label the vertices and the edges of K_{n}, which is called the label matrix for K_{n}.

$$
\left[\begin{array}{rrrrrrrrr}
e_{11} & e_{21} & e_{31} & e_{41} & e_{51} & \cdot & \cdot & \cdot & e_{n 1} \\
e_{21} & e_{22} & e_{32} & e_{42} & e_{52} & \cdot & \cdot & \cdot & e_{n 2} \\
e_{31} & e_{32} & e_{33} & e_{43} & e_{53} & \cdot & \cdot & \cdot & e_{n 3} \\
e_{41} & e_{42} & e_{43} & e_{44} & e_{54} & \cdot & \cdot & \cdot & e_{n 4} \\
e_{51} & e_{52} & e_{53} & e_{54} & e_{55} & \cdot & \cdot & \cdot & e_{n 5} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
e_{n 1} & e_{n 2} & e_{n 3} & e_{n 4} & e_{n 5} & \cdot & \cdot & \cdot & e_{n n}
\end{array}\right]
$$

The entries in the main diagonal represent the vertex labels, $f\left(v_{i}\right)=e_{i i}$ and the other entries $e_{i j}, i \neq j$ represent the edge labels, $f\left(v_{i} v_{j}\right)=e_{i j}$. Thus the weight of a vertex v_{i} is the sum of the elements either in the $i^{\text {th }}$ row or in the $i^{\text {th }}$ column.

Theorem 3.1. The complete graph K_{n} is TVMC for all $n \geq 1$.
Proof. Let K_{n} be the complete graph with n vertices. We consider the following three cases:
Case i. $\quad n \equiv 0(\bmod 4)$.
We construct the label matrix for K_{n} as follows:

$$
e_{i j}=\left\{\begin{array}{lll}
0 & \text { when } \quad i+j \equiv 0,1 \quad(\bmod 4) \\
1 & \text { when } \quad i+j \equiv 2,3 \quad(\bmod 4)
\end{array}\right.
$$

Then for each vertex $v_{r}, 1 \leq r \leq n$, the weight $\operatorname{wt}\left(v_{r}\right)$ is the sum of the elements in the $r^{t h}$ row or in the $r^{t h}$ column. Hence,

$$
\mathrm{wt}\left(v_{r}\right)=\sum_{j=1}^{r} e_{r j}+\sum_{i=r+1}^{n} e_{i r}=\frac{n}{2} \equiv 0 \quad(\bmod 2)
$$

Also $n_{f}(0)=n_{f}(1)=\frac{n^{2}+n}{4}$. Therefore, $\left|n_{f}(0)-n_{f}(1)\right|=0$.
Case ii. $\quad n \equiv 2(\bmod 4)$.
We construct the label matrix as follows: when $j \equiv 0,1(\bmod 4)$,

$$
e_{i j}=\left\{\begin{array}{llll}
1 & \text { if } & i & \text { is odd } \\
0 & \text { if } & i & \text { is even }
\end{array}\right.
$$

and when $j \equiv 2,3(\bmod 4)$,

$$
e_{i j}=\left\{\begin{array}{llll}
0 & \text { if } & i & \text { is odd } \\
1 & \text { if } & i & \text { is even }
\end{array}\right.
$$

Then

$$
\mathrm{wt}\left(v_{r}\right)=\sum_{j=1}^{r} e_{r j}+\sum_{i=r+1}^{n} e_{i r}=\frac{n}{2} \equiv 1 \quad(\bmod 2)
$$

Also $n_{f}(0)=\frac{n^{2}+n-2}{4}$ and $n_{f}(1)=\frac{n^{2}+n+2}{4}$. Hence, $\left|n_{f}(0)-n_{f}(1)\right|=1$.
Case iii. n is odd.
We construct the label matrix as follows: when $i+j \leq n$,

$$
e_{i j}=\left\{\begin{array}{llll}
1 & \text { if } & i & \text { is odd } \\
0 & \text { if } & i & \text { is even }
\end{array}\right.
$$

and when $i+j>n$,

$$
e_{i j}=\left\{\begin{array}{llll}
1 & \text { if } & j & \text { is odd } \\
0 & \text { if } & j & \text { is even }
\end{array}\right.
$$

We have

$$
\begin{aligned}
\mathrm{wt}\left(v_{r}\right) & =\sum_{j=1}^{r} e_{r j}+\sum_{i=r+1}^{n-r} e_{i r}+\sum_{i=n-r+1}^{n} e_{i r} \text { if } 1 \leq r<\frac{n+1}{2} \\
\mathrm{wt}\left(v_{r}\right) & =\sum_{j=1}^{r-1} e_{r j}+\sum_{i=r}^{n} e_{i r} \text { if } r=\frac{n+1}{2} ; \\
\mathrm{wt}\left(v_{r}\right) & =\sum_{j=1}^{n-r} e_{r j}+\sum_{j=n-r+1}^{r-1} e_{r j}+\sum_{i=r}^{n} e_{i r} \text { if } \frac{n+1}{2}<r<n \\
\text { and } \mathrm{wt}\left(v_{r}\right) & =\sum_{j=1}^{n} e_{r j} \text { if } r=n
\end{aligned}
$$

The weights of the vertices for $n=4 k+1$ and $n=4 k+3$ are summarized in the following tables:

When $n=4 k+1$,

	$1 \leq r<\frac{n+1}{2}$	$r=\frac{n+1}{2}$	$\frac{n+1}{2}<r<n$	$r=n$
r is odd	$2 k+r$			
$\equiv 1(\bmod 2)$	$n \times(r \bmod 2)$ $\equiv 1(\bmod 2)$	$6 k-r+2$ $\equiv 1(\bmod 2)$	$\frac{n+1}{2}$ $\equiv 1(\bmod 2)$	
r is even	$2 k-r+1$ $\equiv 1(\bmod 2)$	-	$r-2 k-1$ $\equiv 1(\bmod 2)$	-

When $n=4 k+3$,

	$1 \leq r<\frac{n+1}{2}$	$r=\frac{n+1}{2}$	$\frac{n+1}{2}<r<n$	$r=n$
r is odd	$2 k+r+1$		$6 k-r+5$	$\frac{n+1}{2}$
	$\equiv 0(\bmod 2)$	-	$\equiv 0(\bmod 2)$	$\equiv 0(\bmod 2)$
r is even	$2 k-r+2$			
	$\equiv 0(\bmod 2)$	$\equiv 0(\bmod 2)$	$r-2 k-2$	

Also if $n=4 k+1$, then $n_{f}(0)=\frac{n^{2}+n-2}{4}, n_{f}(1)=\frac{n^{2}+n+2}{4}$; if $n=4 k+3$, then $n_{f}(0)=n_{f}(1)=\frac{n^{2}+n}{4}$ and hence, $\left|n_{f}(0)-n_{f}(1)\right| \leq 1$. Therefore, K_{n} is TVMC for all $n \geq 1$.

§4. Totally vertex-magic cordial labeling of a complete bipartite graph $K_{m, n}$

J. A. MacDougall et al. [6] proved that there is a vertex-magic total labeling for a complete bipartite graph $K_{m, m}$ for all $m>1$. Also they conjectured that there is a vertex-magic total labeling for a complete bipartite graph $K_{m, m+1}$.

In this section, we prove the bipartite graph $K_{m, n}$ admits TVMC labeling whenever $|m-n| \leq 1$. We consider the complete bipartite graph $K_{m, n}$ with the vertex set $\left\{u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the edge set $\left\{e_{i j}=u_{i} v_{j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$. We use the following $(m+1) \times(n+1)$ matrix to label the vertices and the edges of $K_{m, n}$:

$$
\left[\begin{array}{rr|rrrr}
- & c_{01} & c_{02} & \ldots & c_{0 n} \\
-- & -- & -- & -- & -- & -- \\
c_{10} & c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{20} & c_{21} & c_{22} & \ldots & c_{2 n} \\
: & : & : & & : \\
c_{m 0} & & c_{m 1} & c_{m 2} & \ldots & c_{m n}
\end{array}\right]
$$

The entries in the first row $c_{i 0}(1 \leq i \leq m)$ represent the labels of the vertices $u_{i}(1 \leq i \leq m)$, the entries in the first column $c_{0 j}(1 \leq j \leq n)$ represent the labels of the vertices $v_{j}(1 \leq j \leq n)$ and the other entries $c_{i j}$ represent the labels of the edges $u_{i} v_{j}(1 \leq i \leq m, 1 \leq j \leq n)$. That is, $f\left(u_{i}\right)=c_{i 0}$, $f\left(v_{j}\right)=c_{0 j}$ and $f\left(u_{i} v_{j}\right)=c_{i j}$ for $1 \leq i \leq m, 1 \leq j \leq n$.

Lemma 4.1. $K_{m, m+1}$ is $T V M C$ for all $m \geq 1$.
Proof. Define

$$
c_{i j}=\left\{\begin{array}{lll}
1 & \text { if } i=0 \text { or } j=0 & \text { and } i+j \text { is odd, } \\
0 & \text { if } i=0 \text { or } j=0 & \text { and } i+j \text { is even, } \\
1 & \text { if } i \neq 0, j \neq 0 & \text { and } i+j \leq m+1, \\
0 & \text { if } i \neq 0, j \neq 0 & \text { and } i+j>m+1 .
\end{array}\right.
$$

Then $n_{f}(0)=\frac{m^{2}+3 m}{2}, n_{f}(1)=\frac{m^{2}+3 m+2}{2}$ and hence, $\left|n_{f}(0)-n_{f}(1)\right|=1$. The weights of vertices u_{i} and v_{j} are summarized in the following table:

	i		j			
	Even	Odd	Even	Odd		
m is even	$\begin{array}{l}m+1-i \\ \equiv 1(\bmod 2)\end{array}$	$\begin{array}{l}m+2-i \\ \equiv 1(\bmod 2)\end{array}$	$\begin{array}{l}m+1-j \\ \equiv 1(\bmod 2)\end{array}$	$m+2-j$		
$\equiv 1(\bmod 2)$					$]$	$m+2-i$
:---						
m is odd		$m+1-i$				
---	---	---	---			
$\equiv 0(\bmod 2)$		$m(\bmod 2)$	$\equiv 0(\bmod 2)$			
:---	:---		$m+2-j$			
:---						
$\equiv 0(\bmod 2)$						

Therefore, $K_{m, m+1}$ is TVMC for all $m \geq 1$.
Lemma 4.2. $K_{m, m}$ is TVMC if m is odd.
Proof. Define

$$
c_{i j}=\left\{\begin{array}{lll}
1 & \text { if } i+j & \text { is odd, } \\
0 & \text { if } i+j & \text { is even. }
\end{array}\right.
$$

Then $n_{f}(0)=\frac{m^{2}+2 m-1}{2}, n_{f}(1)=\frac{m^{2}+2 m+1}{2}$ and hence, $\left|n_{f}(0)-n_{f}(1)\right|=1$. The weight of each vertex is

$$
\frac{m+1}{2} \equiv\left\{\begin{array}{lllll}
1 & (\bmod 2) & \text { if } & m \equiv 1 & (\bmod 4) \\
0 & (\bmod 2) & \text { if } & m \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Therefore, $K_{m, m}$ is TVMC for odd values of m.
Lemma 4.3. $K_{m, m}$ is $T V M C$ if $m \equiv 0(\bmod 4)$.
Proof. Let $m=4 k$. Define $c_{i 0}=0, c_{0 j}=0$ and for $i \neq 0$ and $j \neq 0$,

$$
c_{i j}= \begin{cases}1 & \text { if }|i-j|=0,1,2, \ldots, \frac{m}{4} \text { and } \frac{3 m}{4}, \ldots, m-1, \\ 0 & \text { otherwise. }\end{cases}
$$

Then, $\operatorname{wt}\left(v_{j}\right)=\operatorname{wt}\left(u_{i}\right)=\frac{m}{2}+1=2 k+1 \equiv 1(\bmod 2)$ for all i and j. Also $n_{f}(0)=n_{f}(1)=\frac{m^{2}+2 m}{2}$. Thus, $\left|n_{f}(0)-n_{f}(1)\right|=0$. Hence, $K_{m, m}$ is TVMC for $m \equiv 0(\bmod 4)$.

Lemma 4.4. $K_{m, m}$ is TVMC if $m \equiv 2(\bmod 4)$.
Proof. Let $m=4 k+2$. Define $c_{i 0}=0, c_{0 j}=1$ and for $i \neq 0$ and $j \neq 0$,

$$
c_{i j}= \begin{cases}1 & \text { if } j \text { is odd } \\ 0 & \text { if } j \text { is even }\end{cases}
$$

Then, $\operatorname{wt}\left(v_{j}\right)=m+1 \equiv 1(\bmod 2)$ if j is $\operatorname{odd}, \operatorname{wt}\left(v_{j}\right)=1$ if j is even and $\mathrm{wt}\left(u_{i}\right)=\frac{m}{2} \equiv 1(\bmod 2)$. Also $n_{f}(0)=n_{f}(1)=\frac{m^{2}+2 m}{2}$ and hence, $\left|n_{f}(0)-n_{f}(1)\right|=0$. Thus, $K_{m, m}$ is TVMC for $m \equiv 2(\bmod 4)$.

Lemma 4.5. $K_{m, n}$ is TVMC if $|m-n| \leq 1$.
Proof. The proof follows from Lemmas 4.1, 4.2, 4.3 and 4.4.
§5. Totally vertex-magic cordial(TVMC) labelings of some graphs
J. A. MacDougall et al. [6] proved that not all trees have a vertex-magic total labeling. Also J. A. MacDougall et al. [7] proved that the friendship graph T_{n} has no vertex-magic total labeling for $n>3$. In the subsequent theorems we prove all trees are TVMC, the friendship graph T_{n} for $n \geq 1$ is TVMC and also we examine the totally vertex magic cordiality of flower graph, $P_{n}+P_{2}$ and $G+\bar{K}_{2 m}$.

Theorem 5.1. If G is a (p, q) graph with $|p-q| \leq 1$, then G is TVMC with $C=1$.

Proof. Assign 0 to all the edges and 1 to all the vertices of G. Then weight of each vertex is 1 and $\left|n_{f}(0)-n_{f}(1)\right|=|p-q| \leq 1$. Hence, G is TVMC.

Corollary 5.2. All cycles $(n \geq 3)$, trees and unicycle graphs are TVMC with $C=1$.

A flower graph $F l_{n}$ is constructed from a wheel W_{n} by attaching a pendant edge at each vertex of the n-cycle and by joining each pendant vertex to the central vertex. We prove that $F l_{n}$ admits TVMC labeling.

Theorem 5.3. The flower graph $F l_{n}$ for $n \geq 3$ is TVMC with $C=0$.
Proof. Let $V=\left\{u, u_{i}, v_{i} \mid 1 \leq i \leq n\right\}$ be the vertex set
and $E=\left\{u u_{i}, u_{i} v_{i}, u v_{i} \mid 1 \leq i \leq n\right\} \cup\left\{u_{j} u_{j+1} \mid 1 \leq j \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\}$ be the edge set for $n \geq 3$. Clearly, $|V|=2 n+1$ and $|E|=4 n$. Define $f: V \cup E \rightarrow$ $\{0,1\}$ as follows: For $1 \leq i \leq n, f\left(u_{i}\right)=1, f\left(v_{i}\right)=0, f\left(u u_{i}\right)=1, f\left(u_{i} v_{i}\right)=0$, $f\left(u v_{i}\right)=0$ and for $1 \leq j \leq n-1, f\left(u_{j} u_{j+1}\right)=1, f\left(u_{n} u_{1}\right)=1$ and

$$
f(u)= \begin{cases}0 & \text { if } \mathrm{n} \text { is even } \\ 1 & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

We prove that the weight of each vertex is constant modulo 2 .

$$
\mathrm{wt}(u)=f(u)+\sum_{i=1}^{n} f\left(u v_{i}\right)+\sum_{i=1}^{n} f\left(u u_{i}\right)= \begin{cases}n & \text { if } n \text { is even } \\ n+1 & \text { if } n \text { is odd }\end{cases}
$$

Hence, $\mathrm{wt}(u) \equiv 0(\bmod 2)$. Further, for $1 \leq i \leq n, \mathrm{wt}\left(u_{i}\right)=4 \equiv 0(\bmod 2)$ and $\operatorname{wt}\left(v_{i}\right)=0$. Also $\left|n_{f}(0)-n_{f}(1)\right| \leq 1$. Therefore, $F l_{n}$ is TVMC for $n \geq 3$.

The friendship graph $T_{n}(n \geq 1)$ consists of n triangles with a common vertex.

Theorem 5.4. The friendship graph T_{n} for $n \geq 1$ is TVMC with $C=0$.

Proof. Let $V=\left\{u, u_{i}, v_{i} \mid 1 \leq i \leq n\right\}$ and $E=\left\{u u_{i}, u_{i} v_{i}, u v_{i} \mid 1 \leq i \leq n\right\}$ be the vertex set and the edge set, respectively. Define $f: V \cup E \rightarrow\{0,1\}$ as follows: $f\left(u_{i}\right)=0, f\left(v_{i}\right)=1$ and $f(u)=\left\{\begin{array}{ll}0 & \text { if } n \text { is even, } \\ 1 & \text { if } n \text { is odd. }\end{array}\right.$ For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$, $f\left(u u_{i}\right)=0, f\left(u_{i} v_{i}\right)=0, f\left(v_{i} u\right)=1$, and for $\left\lceil\frac{n}{2}\right\rceil<i \leq n, f\left(u u_{i}\right)=1$, $f\left(u_{i} v_{i}\right)=1$ and $f\left(v_{i} u\right)=0$. It can easily be verified that $\mathrm{wt}\left(u_{i}\right) \equiv \mathrm{wt}\left(v_{i}\right) \equiv$ $\mathrm{wt}(u) \equiv 0(\bmod 2)$. Also $n_{f}(0)=\left\lceil\frac{5 n+1}{2}\right\rceil$ and $n_{f}(1)=\left\lfloor\frac{5 n+1}{2}\right\rfloor$. Hence, $\left|n_{f}(0)-n_{f}(1)\right| \leq 1$. Therefore, T_{n} for $n \geq 1$ is TVMC with $C=0$.

Let G and H be any two graphs. Let u be any vertex of G and v be any vertex of H. Then $G @ H$ is a graph obtained by identifying the vertices u and v.

Theorem 5.5. If G is TVMC with $C=1$, then $G @ T$ is also TVMC with $C=1$ for any tree T.

Proof. Let f be the TVMC labeling of G with $C=1$. Assign 0 to all the edges and 1 to all the vertices of T. Identify a vertex $u \in V(G)$ with a vertex $v \in V(T)$ and take this new vertex as w. Define a labeling g for $G @ T$ as follows:

$$
g(a)= \begin{cases}f(a) & \text { if } \quad a \in V(G) \\ 1 & \text { if } \quad a \in V(T) \text { and } a \neq w\end{cases}
$$

and

$$
g(e)= \begin{cases}f(e) & \text { if } \quad e \in E(G) \\ 0 & \text { if } \quad e \in E(T)\end{cases}
$$

Then the weight of the identified vertex w is,

$$
\begin{aligned}
\mathrm{wt}_{G @ T}(w) & =g(w)+\sum_{x \in N(w)} g(x w) \\
& =f(u)+\sum_{\substack{x \in N(u) \\
i n G}} f(x u)+\sum_{\substack{y \in N(u) \\
i n T}} f(y u) \\
& =f(u)+\sum_{\substack{x \in N(u) \\
i n G}} f(x u) \\
& =\operatorname{wt}_{G}(u) \equiv 1(\bmod 2)
\end{aligned}
$$

For each $a \in V(G @ T)$ with $a \neq w, \operatorname{wt}_{G @ T}(a)=\operatorname{wt}_{G}(a) \equiv 1(\bmod 2)$ if $a \in$ $V(G)$ and $\mathrm{wt}_{G @ T}(a)=1$ if $a \in V(T)$. Also $\left|n_{g}(0)-n_{g}(1)\right|=\left|n_{f}(0)-n_{f}(1)\right| \leq$ 1. Hence, $G @ T$ is also TVMC with $C=1$.

The join of two graphs G_{1} and G_{2} is denoted by $G_{1}+G_{2}$ and it consists of $G_{1} \cup G_{2}$ and all the lines joining $V\left(G_{1}\right)$ with $V\left(G_{2}\right)$.

Theorem 5.6. $P_{n}+P_{2}$ is $T V M C$ for $n \geq 1$.
Proof. Let $G=P_{n}+P_{2}$. We denote the vertices of P_{n} in G by $u_{1}, u_{2}, \ldots, u_{n}$ and the vertices of P_{2} in G by u, v. Then $V(G)=V\left(P_{n}\right) \cup V\left(P_{2}\right)$ and $E(G)=$ $\left\{u v, u_{i} u_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{u u_{i}, v u_{i} \mid 1 \leq i \leq n\right\}$. Clearly $|V(G)|=n+2$ and $|E(G)|=3 n$. Define $f: V(G) \cup E(G) \rightarrow\{0,1\}$ as follows:
Case i. $\quad n$ is odd.
Let $f(u)=f(v)=0, f\left(u_{i}\right)=0, f(u v)=1, f\left(u u_{i}\right)=f\left(v u_{i}\right)=1$ for $1 \leq i \leq n$ and $f\left(u_{i} u_{i+1}\right)=0$ for $1 \leq i \leq n-1$. Then

$$
\begin{aligned}
& \mathrm{wt}(u)=f(u)+f(u v)+\sum_{i=1}^{n} f\left(u u_{i}\right)=1+n \equiv 0 \quad(\bmod 2) \\
& \mathrm{wt}(v)=f(v)+f(u v)+\sum_{i=1}^{n} f\left(v u_{i}\right)=1+n \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

and for $1 \leq i \leq n, \operatorname{wt}\left(u_{i}\right)=2 \equiv 0(\bmod 2)$. Also $n_{f}(0)=n_{f}(1)=2 n+1$. Thus, $\left|n_{f}(0)-n_{f}(1)\right|=0$.
Case ii. $\quad n=2 k$ and k is odd.
Let $f(u)=f(v)=0, f\left(u_{i}\right)=1, f(u v)=1$ for $1 \leq i \leq n ; f\left(u u_{i}\right)=$ $f\left(v u_{k+i}\right)=1, f\left(u u_{k+i}\right)=f\left(v u_{i}\right)=0$ for $1 \leq i \leq k$ and $f\left(u_{i} u_{i+1}\right)=0$ for $1 \leq i<n$. Hence $\mathrm{wt}(u)=\mathrm{wt}(v)=k+1 \equiv 0(\bmod 2)$ and $\mathrm{wt}\left(u_{i}\right)=2 \equiv 0$ $(\bmod 2)$ for $1 \leq i \leq n$. Also $n_{f}(0)=n_{f}(1)=2 n+1$. Thus, $\left|n_{f}(0)-n_{f}(1)\right|=$ 0.

Case iii. $n=2 k$ and k is even.

Let $f(u)=f(v)=0, f\left(u_{i}\right)=1, f(u v)=1$, for $1 \leq i \leq n ; f\left(u u_{i}\right)=$ $f\left(v u_{i}\right)=1, f\left(u u_{k+i}\right)=f\left(v u_{k+i}\right)=0$ for $1 \leq i \leq k$ and $f\left(u_{i} u_{i+1}\right)=0$ for $1 \leq$ $i<n$. Hence, $\operatorname{wt}(u)=\mathrm{wt}(v)=k+1 \equiv 1(\bmod 2), \mathrm{wt}\left(u_{i}\right)=3 \equiv 1(\bmod 2)$ for $1 \leq i \leq k$ and $\mathrm{wt}\left(u_{i}\right)=1$ for $k+1 \leq i \leq n$. Also $n_{f}(0)=n_{f}(1)=2 n+1$. Thus, $\left|n_{f}(0)-n_{f}(1)\right|=0$.

Theorem 5.7. Let $G(p, q)$ be a TVMC graph with constant $C=0$ where p is odd. Then $G+\bar{K}_{2 m}$ is TVMC with $C=1$ if m is odd and with $C=0$ if m is even.

Proof. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}, V\left(\bar{K}_{2 m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}, \ldots, v_{2 m}\right\}$ and $E\left(G+\bar{K}_{2 m}\right)=E(G) \cup\left\{u_{i} v_{j} \mid 1 \leq i \leq p, 1 \leq j \leq 2 m\right\}$. Let f be the TVMC labeling of G with $C=0$. Define TVMC labeling g of $G+\bar{K}_{2 m}$ as follows: $g(x)=f(x)$ if $x \in V(G) \cup E(G)$, for $1 \leq j \leq p$,

$$
g\left(u_{j} v_{i}\right)=\left\{\begin{array}{lll}
0 & \text { if } \quad 1 \leq i \leq m \\
1 & \text { if } & m<i \leq 2 m .
\end{array}\right.
$$

When m is odd,

$$
g\left(v_{i}\right)=\left\{\begin{array}{lll}
1 & \text { if } \quad 1 \leq i \leq m, \\
0 & \text { if } \quad m<i \leq 2 m
\end{array}\right.
$$

and when m is even,

$$
g\left(v_{i}\right)= \begin{cases}0 & \text { if } \quad 1 \leq i \leq m, \\ 1 & \text { if } \quad m<i \leq 2 m .\end{cases}
$$

Now we find the weight of the vertices by considering the following two cases:
Case i. m is odd.
For $v_{i} \in V\left(\bar{K}_{2 m}\right)$,

$$
\begin{aligned}
& \mathrm{wt}_{G+\bar{K}_{2 m}}\left(v_{i}\right)=g\left(v_{i}\right)+\sum_{j=1}^{p} g\left(u_{j} v_{i}\right)=1 \text { if } 1 \leq i \leq m, \\
& \mathrm{wt}_{G+\bar{K}_{2 m}}\left(v_{i}\right)=p \equiv 1 \quad(\bmod 2) \text { if } m<i \leq 2 m
\end{aligned}
$$

and for $u_{j} \in V(G)$,

$$
\begin{aligned}
\mathrm{wt}_{G+\bar{K}_{2 m}}\left(u_{j}\right) & =\mathrm{wt}_{G}\left(u_{j}\right)+\sum_{i=1}^{m} g\left(u_{j} v_{i}\right)+\sum_{i=m+1}^{2 m} g\left(u_{j} v_{i}\right) \\
& =\mathrm{wt}_{G}\left(u_{j}\right)+m \equiv 1 \quad(\bmod 2) .
\end{aligned}
$$

Case ii. m is even.

For $v_{i} \in V\left(\bar{K}_{2 m}\right)$,

$$
\begin{aligned}
& \mathrm{wt}_{G+\bar{K}_{2 m}}\left(v_{i}\right)=0 \text { if } 1 \leq i \leq m, \\
& \mathrm{wt}_{G+\bar{K}_{2 m}}\left(v_{i}\right)=1+p \equiv 0 \quad(\bmod 2) \quad \text { if } m<i \leq 2 m
\end{aligned}
$$

and for $u_{j} \in V(G)$,

$$
\begin{aligned}
\mathrm{wt}_{G+\bar{K}_{2 m}}\left(u_{j}\right) & =\mathrm{wt}_{G}\left(u_{j}\right)+\sum_{i=1}^{m} g\left(u_{j} v_{i}\right)+\sum_{i=m+1}^{2 m} g\left(u_{j} v_{i}\right) \\
& =\mathrm{wt}_{G}\left(u_{j}\right)+m \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

Also $n_{g}(0)=n_{f}(0)+m(p+1), n_{g}(1)=n_{f}(1)+m(p+1)$ and hence
$\left|n_{g}(0)-n_{g}(1)\right|=\left|n_{f}(0)-n_{f}(1)\right| \leq 1$. Therefore, $G+\bar{K}_{2 m}$ is TVMC.
Acknowledgement: The authors sincerely thank the referee for the valuable comments and suggestions for a better presentation of the paper.

References

[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987), 201-207.
[2] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory, 22 (2002), 247-258.
[3] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 17 (2010) \# DS6.
[4] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
[5] H. K. Krishnappa, Kishore Kothapalli and V. Ch. Venkaiah, Vertex-magic total labelings of complete graphs, AKCE J. Graphs. Combin., 6 (2009), 143-154.
[6] J. A. MacDougall, M. Miller, Slamin and W. D. Wallis, Vertex-magic total labelings of graphs, Util. Math., 61 (2002), 3-21.
[7] J. A. MacDougall, M. Miller, and W. D. Wallis, Vertex-magic total labelings of wheels and related graphs, Util. Math., 62 (2002), 175-183.
P. Jeyanthi

Research Centre
Department of Mathematics
Govindammal Aditanar College for Women
Tiruchendur - 628215
India.
E-mail: jeyajeyanthi@rediffmail.com
N. Angel Benseera

Department of Mathematics
Sri Meenakshi Government College for Women
Madurai - 625002
India.
E-mail: angelbenseera@yahoo.com

