On units of a family of cubic number fields

Kan Kaneko

(Received November 22, 2013; Revised September 1, 2014)

Abstract

We find the fundamental units of a family of cubic fields introduced by Ishida. Using the family, we also construct a family of biquadratic fields whose 3 -class field tower has length greater than 1 .

AMS 2010 Mathematics Subject Classification. 11R16, 11R27.
Key words and phrases. Cubic fields, fundamental units, biquadratic fields.

§1. Introduction

Let \mathbb{Z} be the ring of rational integers, and let θ be the real root of the irreducible cubic polynomial $f(X)=X^{3}-3 X-b^{3}, b(\neq 0) \in \mathbb{Z}$. The discriminant of $f(X)$ is $D_{f}=-3^{3}\left(b^{3}-2\right)\left(b^{3}+2\right)$ and $D_{f}<0$ provided $b \neq \pm 1$. Let $K=\mathbb{Q}(\theta)$ be the cubic field formed by adjoining θ to the rationals \mathbb{Q}. The family of cubic fields was introduced by Ishida [3]. Ishida constructed an unramified cyclic extension of degree 3^{2} over K provided $b \equiv-1\left(\bmod 3^{2}\right)$.

In this paper, we shall consider the case $b \equiv 0(\bmod 3)$ which we did not consider in the former paper [7]. Using the family, we shall construct a family of biquadratic fields, and show that the length of 3 -class field tower of the biquadratic fields is greater than 1 by means of the result of Yoshida [12].

§2. Fundamental units

In this section, we shall prove a theorem about the fundamental unit of $\mathbb{Q}(\theta)$. To prove the theorem, we need two lemmas about diophantine systems. Lee and Spearman [8] proved the following Lemma 2.1 (see Lemma 3.1 in [7]).

Lemma 2.1 ([8, Theorem 1.1]). The integer solutions (A, B, b) of the following diophantine system are $(0,-3, \pm 1),(-1,-1,0),(3,3,0)$ and $(8,17, \pm 3)$:

$$
\left\{\begin{array}{l}
A^{2}-2 B=3\left(b^{2}+1\right), \\
B^{2}-2 A=3\left(b^{4}+b^{2}+1\right) .
\end{array}\right.
$$

Lemma 2.2. The integer solutions (A, B, b) of the following diophantine system are $(0,0,0),(3,3,0)$ and $(-3,6, \pm 3)$:

$$
\left\{\begin{array}{l}
A^{3}-3 A B+3=3\left(b^{2}+1\right) \\
B^{3}-3 A B+3=3\left(b^{4}+b^{2}+1\right)
\end{array}\right.
$$

Proof. We have

$$
\begin{align*}
& A^{3}-3 A B=3 b^{2} \tag{2.1}\\
& B^{3}-3 A B=3\left(b^{4}+b^{2}\right) \tag{2.2}
\end{align*}
$$

(i) The case $b=0$: If $A=0$, then we have $B=0$. If $A \neq 0$, then we have $B \neq 0$. And easily we have $A=B=3$. Therefore, in this case, we have $(A, B, b)=(0,0,0),(3,3,0)$.
(ii) The case $b \neq 0$: Obviously, we see $A \neq 0, B \neq 0$ and $3 \mid A, B, b$. We put $A=3 A_{0}, B=3 B_{0}, b=3 b_{0}$. From (2.1), (2.2) we have

$$
\begin{align*}
& A_{0}^{3}-A_{0} B_{0}=b_{0}^{2} \tag{2.3}\\
& B_{0}^{3}-A_{0} B_{0}=9 b_{0}^{4}+b_{0}^{2} . \tag{2.4}
\end{align*}
$$

From (2.3),(2.4), we have

$$
\begin{equation*}
B_{0}^{3}-A_{0}^{3}=9 b_{0}^{4} . \tag{2.5}
\end{equation*}
$$

From (2.3), (2.5), we have $B_{0}^{3}-A_{0}^{3}=9\left(A_{0}^{3}-A_{0} B_{0}\right)^{2}$. From this we have

$$
\begin{equation*}
B_{0}^{3}=A_{0}^{2}\left(9\left(A_{0}^{2}-B_{0}\right)^{2}+A_{0}\right) . \tag{2.6}
\end{equation*}
$$

We put $A_{0}=A_{1} m, B_{0}=B_{1} m$, where $m=\operatorname{gcd}\left(A_{0}, B_{0}\right)(\geq 1), \operatorname{gcd}\left(A_{1}, B_{1}\right)=1$. Hence, from (2.6), we have $B_{1}^{3} m^{3}=A_{1}^{2} m^{2}\left(9\left(A_{1}^{2} m^{2}-B_{1} m\right)^{2}+A_{1} m\right)$. From this, we have

$$
\begin{equation*}
B_{1}^{3}=A_{1}^{2}\left(9 m\left(A_{1}^{2} m-B_{1}\right)^{2}+A_{1}\right) . \tag{2.7}
\end{equation*}
$$

Since $\operatorname{gcd}\left(A_{1}, B_{1}\right)=1$, we have $A_{1}= \pm 1$. Hence, from (2.7), we have

$$
\begin{equation*}
B_{1}^{3}=9 m\left(m-B_{1}\right)^{2} \pm 1 . \tag{2.8}
\end{equation*}
$$

From (2.8), we have

$$
\begin{equation*}
B_{1}^{3}-9 B_{1}^{2} m+18 B_{1} m^{2}-9 m^{3}= \pm 1 \tag{2.9}
\end{equation*}
$$

Using the KASH 2.5 command ThueSolve, the solutions of (2.9) are

$$
\begin{equation*}
\left(B_{1}, m\right)=(\pm 2, \pm 1),(\pm 1,0),(\pm 1, \pm 1) \tag{2.10}
\end{equation*}
$$

Since $m \geq 1$, we have $\left(B_{1}, m\right)=(2,1),(1,1)$. Hence, we have $\left(A_{1}, B_{1}, m\right)=$ $(-1,2,1),(1,1,1)$. Since $A_{0}=A_{1} m, B_{0}=B_{1} m$, we have $\left(A_{0}, B_{0}\right)=(-1,2)$, $(1,1)$. By (2.3), $b_{0}^{2}=A_{0}^{3}-A_{0} B_{0}=1$ or 0 . Since $b_{0} \neq 0$, we have $\left(A_{0}, B_{0}, b_{0}\right)=$ $(-1,2, \pm 1)$. Hence, we have $(A, B, b)=\left(3 A_{0}, 3 B_{0}, 3 b_{0}\right)=(-3,6, \pm 3)$.

Now, we shall show one of our main results. In [7, Theorem 3.2], we only treated the case $b \equiv \pm 1(\bmod 3)$.

Theorem 2.3. Let $b(\neq 0, \pm 1, \pm 3) \in \mathbb{Z}$ and let $\theta^{3}-3 \theta-b^{3}=0$. Then, if $4\left(4 b^{4}\right)^{\frac{3}{5}}+24<\left|D_{K}\right|$,

$$
\varepsilon=\frac{1}{1-b(\theta-b)}(>1)
$$

is the fundamental unit of $\mathbb{Q}(\theta)$.
Proof. First, we note that

$$
F(\varepsilon)=\varepsilon^{3}-3\left(b^{4}+b^{2}+1\right) \varepsilon^{2}+3\left(b^{2}+1\right) \varepsilon-1=0
$$

If ε is not a fundamental unit of $\mathbb{Q}(\theta)$, there exists a unit $\varepsilon_{0}(>1)$ of $\mathbb{Q}(\theta)$ such that $\varepsilon=\varepsilon_{0}^{n}$, with some $n \in \mathbb{Z}, n>1$. Suppose that ε_{0} satisfies

$$
\varepsilon_{0}^{3}-B \varepsilon_{0}^{2}+A \varepsilon_{0}-1=0(A, B \in \mathbb{Z})
$$

The case $n=2$ (i.e., $\varepsilon=\varepsilon_{0}^{2}$): We have relations

$$
\left\{\begin{array}{l}
A^{2}-2 B=3\left(b^{2}+1\right) \tag{2.11}\\
B^{2}-2 A=3\left(b^{4}+b^{2}+1\right)
\end{array}\right.
$$

By Lemma 2.1, the diophantine system (2.11) has the integer solutions (A, B, b) $=(0,-3, \pm 1),(-1,-1,0),(3,3,0)$ and $(8,17, \pm 3)$. These solutions do not meet the condition of b.

The case $n=3$ (i.e., $\varepsilon=\varepsilon_{0}^{3}$): We have relations

$$
\left\{\begin{array}{l}
A^{3}-3 A B+3=3\left(b^{2}+1\right) \tag{2.12}\\
B^{3}-3 A B+3=3\left(b^{4}+b^{2}+1\right)
\end{array}\right.
$$

By Lemma 2.2, the diophantine system (2.12) has the integer solutions (A, B, b) $=(0,0,0),(3,3,0)$ and $(-3,6, \pm 3)$. These solutions do not meet the condition of b. Therefore we have shown that there exists no unit $\varepsilon_{0}(>1)$ such that $\varepsilon=\varepsilon_{0}^{2}, \varepsilon_{0}^{3}$ or ε_{0}^{4}. The other parts of the proof are the same as those of $[7$, Theorem 3.2].

Remark. Lee and Spearman [8] pointed out that ε is the sixth power of the fundamental unit of $\mathbb{Q}(\theta)$ for the case $b= \pm 3$.

Corollary 2.4. Let $b(\neq 0, \pm 1, \pm 3) \in \mathbb{Z}$ and let $\theta^{3}-3 \theta-b^{3}=0$. Then, if $b^{3}-2$ or $b^{3}+2$ is squarefree,

$$
\varepsilon=\frac{1}{1-b(\theta-b)}(>1)
$$

is the fundamental unit of $\mathbb{Q}(\theta)$. In particular, there exist infinitely many cubic fields $\mathbb{Q}(\theta)$ such that ε is the fundamental unit of $\mathbb{Q}(\theta)$.

Proof. The proof of Corollary 2.4 is the same as that of [7, Corollary 3.3] and [7, Corollary 3.4].

§3. A family of biquadratic fields

In this section, we shall construct a family of biquadratic fields using the family of cubic fields. We shall show that the length of 3-class field tower of the biquadratic field is greater than 1. As for class field tower, refer to Yoshida [12]. Here, we need two lemmas.

Let K be a non-Galois cubic extension of \mathbb{Q}; let L be the normal closure of K and let k be the quadratic field containd in L. Note that no primes are totally ramified in the cubic field $K \Leftrightarrow L / k$ is an unramified extension. Assume that $3 \mid D_{k}\left(D_{k}\right.$ is the discriminant of k) and that L / k is an unramified extension. By $[2, \S 1,(1)]$ (or $[9$, Theorem 3]), there exists some $\mathfrak{f} \in \mathbb{Z}$ such that $D_{K}=D_{k} \mathfrak{f}^{2}$. From this and $3 \mid D_{k}$, the decomposition of 3 in K is $3=\mathfrak{p}_{1} \mathfrak{p}_{2}^{2}$, where $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ are distinct prime ideals lying above 3 .

From Theorem 1 in [12], we obtain the following lemma.
Lemma 3.1 ([13, Lemma 8]). Let K, k be as above. If there exists a unit ε in K such that

1. ε is not a cube of any unit of K,
2. $\varepsilon^{2} \equiv 1\left(\bmod \mathfrak{p}_{1}^{2} \mathfrak{p}_{2}^{3}\right)$,
then the length of the 3 -class field tower of $k(\sqrt{-3})$ is greater than 1 .

The following lemma is shown in [12, Section 3].
Lemma 3.2. Let K, k be as Lemma 3.1. Let $X^{3}+A X^{2}+B X-1$ be the minimal polynomial of a unit η in K. Then

$$
\eta \equiv 1 \quad\left(\bmod \mathfrak{p}_{1}^{2} \mathfrak{p}_{2}^{3}\right) \Longleftrightarrow 27\left|A+3,3^{5}\right| A+B
$$

Let $b(\neq 0, \pm 3) \in \mathbb{Z}, 3 \mid b$ and let θ be the real root of the irreducible cubic polynomial $f(X)=X^{3}-3 X-b^{3} \in \mathbb{Z}[X]$. The discriminant of $f(X)$ is $D_{f}=-3^{3}\left(b^{6}-4\right)=-3^{3}\left(b^{3}-2\right)\left(b^{3}+2\right)$ and $D_{f}<0$. Let $K:=\mathbb{Q}(\theta)$, $k:=\mathbb{Q}\left(\sqrt{D_{f}}\right)=\mathbb{Q}\left(\sqrt{-3\left(b^{6}-4\right)}\right)$. We shall consider a family of biquadratic fields

$$
F_{b}:=\mathbb{Q}\left(\sqrt{-3\left(b^{6}-4\right)}, \sqrt{-3}\right)=\mathbb{Q}\left(\sqrt{b^{6}-4}, \sqrt{-3}\right) .
$$

We can show that $\#\left\{F_{b} ; b(\neq 0, \pm 3) \in \mathbb{Z}, 3 \mid b\right\}=\infty$. Indeed, let S be a finite set of primes. By Dirichlet's theorem on arithmetical progressions, we can find an odd prime p such that $p \notin S$ and $p \equiv 2(\bmod 3)$. For such p, we can find $c \in \mathbb{Z}$ such that $p \| c^{3}-2$. Then, for $b \in \mathbb{Z}$ with $b \equiv 0(\bmod 3)$ and $b \equiv c$ $\left(\bmod p^{2}\right)$, we have $p \| b^{3}-2$ and $3 \mid b$. Since $\operatorname{gcd}\left(b^{3}-2, b^{3}+2\right)=1$ or 2 , we have $p \| D_{f}$. Hence, we obtain $p \mid D_{k}$. Therefore, p is ramified in F_{b} (see [11, Hilfssatz 1]).

Using Lemma 3.1 and Lemma 3.2 we get the following theorem about F_{b}.
Theorem 3.3. Assume that $b(\neq 0, \pm 3) \in \mathbb{Z}, 3 \mid b$. Then the length of the 3 -class field tower of $F_{b}=\mathbb{Q}\left(\sqrt{b^{6}-4}, \sqrt{-3}\right)$ is greater than 1 .

Proof. We consider the minimal splitting field $K k$ of $f(X)$. By [9, Theorem 1], no primes are totally ramified in the cubic field K. Hence, $K k / k$ is an unramified cyclic cubic extension. Also, since $3 \nmid b^{6}-4$, we have $3 \mid D_{k}$. Therefore, the decomposition of 3 in K is $3=\mathfrak{p}_{1} \mathfrak{p}_{2}^{2}$, where $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ are distinct prime ideals lying above 3 . Now, let $F(X)=X^{3}+A X^{2}+B X-1$ be the minimal polynomial of $\varepsilon=\frac{1}{1-b(\theta-b)}$. Then $A=-3\left(b^{4}+b^{2}+1\right)$ and $B=3\left(b^{2}+1\right)$. Hence, we have $27\left|\left(-3\left(b^{4}+b^{2}\right)\right)=A+3,3^{5}\right|\left(-3 b^{4}\right)=A+B$. Therefore, by Lemma 3.2, we have $\varepsilon \equiv 1\left(\bmod \mathfrak{p}_{1}^{2} \mathfrak{p}_{2}^{3}\right)$. Also, by the proof of Theorem 2.3, ε is not a cube of any unit of K. Therefore, by Lemma 3.1, the length of the 3 -class field tower of $k(\sqrt{-3})=F_{b}$ is greater than 1 .

Remark. For the same reason as [12, p.334, example], the 3 -rank of the ideal class group of F_{b} is greater than 1 .

Acknowledgement

I thank the referee for his/her numerous remarks and suggestions for improvement.

References

[1] P. Erdös, Arithmetical properties of polynomials, J. London Math. Soc. 28 (1953), 416-425.
[2] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Z. 31 (1930), 565-582.
[3] M. Ishida, Existence of an unramified cyclic extension and congruence conditions, Acta Arith. 51 (1988), 75-84.
[4] M. Ishida, The genus fields of algebraic number fields, Lecture Notes Math. 555 (1976), Springer Verlag.
[5] M. Ishida, Fundamental Units of Certain Algebraic Number Field, Abh. Math. Sem. Univ. Hamburg 39 (1973), 245-250.
[6] K. Kaneko, On the cubic fields $\mathbb{Q}(\theta)$ defined by $\theta^{3}-3 \theta+b^{3}=0$, SUT J. Math. 32 (1996), 141-147.
[7] K. Kaneko, Integral bases and fundamental units of certain cubic number fields, SUT J. Math. 39 (2003), 117-124.
[8] Paul D. Lee and Blair K. Spearman, A Diophantine System and a Problem on Cubic Fields, Int. Math. Forum 6 (2011), 141-146.
[9] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.
[10] R. Morikawa, On Units of certain Cubic Number Fields, Abh. Math. Sem. Univ. Hamburg 42 (1974), 72-77.
[11] H. Reichardt, Arithmetische Theorie der kubischen Körper als Radikalkörper, Monatsh. Math. Phys. 40 (1933), 323-350.
[12] E. Yoshida, On the 3-class field tower of some biquadratic fields, Acta Arith. 107 (2003), 327-336.
[13] E. Yoshida, On the unit groups and the ideal class groups of certain cubic number fields, SUT J. Math. 39 (2003), 125-136.

Kan Kaneko
Graduate School of Mathematics, University of Tsukuba
1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8573, Japan

