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Abstract. SIRS type epidemiological model has a fundamental form to study
the role of temporal immunity of recovered individuals in disease transmission
dynamics and several variant models have been considered in the last century,
but up to now dynamical aspects of the model are not fully elucidated. We here
look over previous studies concerning qualitative analysis for a family of SIRS
type epidemiological models. To this aim we construct a general model in a form
of delay equation, a coupled system of a renewal equation and delay differential
equations, structuring infected population by infection-age (time elapsed since
infection). We re-examine the structure of equilibria and stability of the disease
free equilibrium. We then introduce slightly improved stability conditions for
an endemic equilibrium. Specifying modelling ingredients we derive two special
cases where the model can be represented as a system of ordinary and delay
differential equations that have appeared in the literature. For those models
we have a powerful tool, namely Lyapunov function, to study global stability
of the endemic equilibrium. Relating epidemic models are also discussed.
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§1. Introduction

In the last century with the help of mathematical models extensive studies
have been performed for understanding dynamical aspects of transmission of
diseases. The mathematical models are typically represented by a system of
differential equations forming a dynamical system [18]. The pioneering work
in the field of mathematical epidemiology is the paper [43] written by Ker-
mack and McKendrick in 1927. The authors proposed a mathematical model
to study a short course of an epidemic in a closed population. Subsequently,
in [44] the same authors assume that recovered individuals obtain susceptibil-
ity after infection and may re-infect with the disease as the immunity level
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decreases. There an endemic equilibrium (a constant positive solution) exists
in the population, since recovered population is continuously recruited to sus-
ceptible population due to the temporal immunity, differently from the model
considered in [43]. The authors consider individual heterogeneity of suscep-
tible, infective and recovered populations in the model and the heterogeneity
leads a complex structure in the model. See also [7, 41] where Kermack and
McKendrick models are re-formulated in a modern way by a system of partial
differential equations [41] and by a scalar delay equation [7].

There are now many variant models called SIRS type epidemic model, but
the typical one can be found in [2]. We refer models as SIRS type if individu-
als in the model change the status as Susceptible→Infective→Recovered→Sus-
ceptible. In [2] Anderson and May formulate a mathematical model to fit date
of mice population dynamics observed in experimental laboratories. It would
be informative for readers to introduce a model in [2]. Let S(t), I(t) and R(t)
respectively denote the number of susceptible, infected and recovered popula-
tion at time t. The population dynamics of each compartment is described by
the nonlinear ordinary differential equations:

dS(t)

dt
= B − µS(t)− βS(t)I(t) + δR(t),(1.1a)

dI(t)

dt
= βS(t)I(t)− (µ+ η + γ) I(t),(1.1b)

dR(t)

dt
= γI(t)− (µ+ δ)R(t).(1.1c)

Here δ denotes the rate of immunity loss. We refer main text for interpretations
of other parameters, see also Figure 2.1 for the model diagram. Qualitative
properties of (1.1) and its variant models are investigated in many papers.
In [60] (local) stability analysis is performed for several SIRS type epidemic
models including (1.1). A positive (an endemic) equilibrium of (1.1) is known to
be locally asymptotically stable in [2, 60], however, as far as we know, the global
stability of the equilibrium was not analytically shown until that Chen founds
a nice Lyapunov function in [2]. In [82] an SIRS type model was formulated
by delay differential equations to consider an extension of an SIR model in
[72], where recovered individuals do not obtain susceptibility again due to
permanent immunity after an infectious period. Recently, McCluskey proves
that an endemic equilibrium of the SIR model in [72] is globally asymptotically
asymptotically stable [57]. We noticed that it is not straightforward to extend
the proof in [57] designed for the SIR model to the SIRS model considered
in [82] and some of us puzzled over this problem. We here recapitulate the
situation regarding the global stability analysis of the endemic equilibrium of
SIRS epidemic models, which will be described in Section 4.

Loss of immunity is considered to be one of the sources causing recurrence
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of infectious disease dynamics observed in many epidemics. The authors in [35]
explore which mechanisms in a form of SIRS model lead destabilisation of the
endemic equilibrium, analysing location of roots of characteristic equations.
The authors found that if the immunity period is assumed to be constant then
the destabilisation is possible through Hopf bifurcation. A similar model is
considered in [50], where the authors obtain a sufficient condition for stabil-
ity of the endemic equilibrium and then numerically show instability of the
endemic equilibrium, see also [6] as a continuation of the work by the same
authors. Diekmann and Montijn [23] considered a cyclic type epidemic model
by formulating Volterra integral equation, assuming that infected individuals
immediately obtain susceptibility to the disease upon recovery (without having
the immunity). Assuming that the infectious period of all infected individuals
is constant, the authors show that destabilisation of the endemic equilibrium
is possible through Hopf bifurcation, whereas the fixed infectious period is not
responsible for destabilisation in a framework of SIRS model [35]. How can we
obtain a general view for those destabilisation mechanisms?

Structured population model is an ideal framework to consider thousands
of epidemiological models. Since in general population consists of heteroge-
neous individuals, to describe population dynamics behavior at the individual
level such as reproduction process is an essential modelling ingredient [61].
Putting assumptions on the individual behavior, e.g. infectious process and
recovery process, one usually obtains a rather simple model studied previously
in the literature. Analyzing mathematical properties of structured population
models, it is also expected to detect mechanisms at the individual level that
affect population dynamics. Traditionally, structured population models are
formulated by a hyperbolic type partial differential equations [76]. See also
[12, 59, 56, 81, 74, 41] and references therein for the use of structured popula-
tion models in mathematical epidemiology.

In the spirit of Lotka’s renewal equation, Diekmann and his collaborators
formulated structured population models in terms of Volterra type integral
equations, see [21, 22, 32] for detail and references therein. Principle of lin-
earised stability has been recently proven by the perturbation theory of the
adjoint semigroups [16, 14]. See applications in [15] for a consumer-resource
model and [1] for a cell population dynamical model with quiescent cells.

With a certain distance to the theory of structured population models, de-
lay differential equation is also one of the fields that have rapidly grew in the
last century [34, 20]. Delay differential equation is a powerful modelling tool
for biological processes and population dynamics [69, 49]. Some mathemati-
cal tools designed in the analysis of delay differential equations are recently
recognised to be efficient in the analysis of structured population models with
a slight modification. For the proof of the linearised stability, the tool used in
delay equations [20], so called the suns-stars calculus, are equally efficient to
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treat Volterra functional equations describing structured population dynamics
[16, 14]. In the paper [56] the authors find a Lyapunov functional, which was
formally considered in [57] to analyse an epidemic model by delay differential
equations, perfectly works for infection-age-structured epidemic model. In [12],
to consider an SIRS model by a system of partial differential equations, the
authors reuse Lyapunov functional considered in [66] for an SIRS model by
delay differential equations (which is not mentioned in the paper). Of course,
both structured population models and delay differential equations form in-
finite dimensional dynamical systems where many mathematical theories are
now available [33, 70].

At this point we would like to once wrap up the state-of-the-arts of the
qualitative analysis of SIRS epidemiological model, though the progress is rel-
atively slow compared to SIR epidemic models. In this note one can find
that the taste of SIR and SIRS models are rather different in the view of a
structured population model. We wish to shed the light on difficulty in the
analysis of a class of SIRS type epidemic models. One of the reasons is that if
we assume temporal immunity in the model then the characteristic equation
suddenly becomes too complicated to draw a concrete conclusion regarding
stability of the endemic equilibrium, see Section 3. Furthermore, on the global
stability analysis, the approach by Lyapunov functional seems not to be the
almighty tool for this kind of cyclic epidemic models. Alternative interpreta-
tion of the incidence rate proposed in [72, 9] for a vector-borne disease model,
namely βS(t)I(t− τ), is a fruit made when writing this paper. We wish that
this note guides readers to explore a possible future direction of the research
in this field: stability analysis of epidemic models with waning immunity.

The remainder of the paper is as follows. In Section 2, to set a stage, we for-
mulate a mathematical model with waning immunity as a system of a renewal
equation and delay differential equations. This model can be considered as a
reformulation of the SIRS model considered in [12] by a system of partial dif-
ferential equations. We re-examine the structure of equilibria and stability of
the disease free equilibrium. In Section 3 we derive the characteristic equation
to study local asymptotic stability of equilibria. We provide a new sufficient
condition for local stability of an endemic equilibrium, which improves a result
obtained in [12]. We further elaborate a special case such that the endemic
equilibrium is always locally asymptotically stable. In Section 3.2, as an inter-
lude, we draw a connection between our model and one considered in [23]. The
characteristic equation studied in [23] can be derived from our characteristic
equation as a special case. In Section 4 we specify modelling ingredients so
that the model equation can be expressed as a system of ordinary differential
equations and delay differential equations. For those models we present global
asymptotic stability results. We then show that a discrete delay model has
an equivalent expression as an SEIRS type epidemic model in Section 5. In
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Section 6 we discuss other related epidemiological models to close this note.

§2. Epidemic model with waning immunity

To begin the main part of the paper we formulate an epidemic model by delay
equations, writing down firstly “history” of infected individuals to determine
the current population state. The formulation leads to a coupled system of a
renewal equation (Volterra integral equation) and delay differential equations.
The biological assumption, which we make here, is same as in [12], where
the authors slightly extends the model in [56] by assuming that recovered
individuals do not have the permanent immunity, thus one may re-infect with
the disease.

Consider a closed population with neither immigration nor emigration. In-
fected individuals are structured by age since infection, which is the time
elapsed since the last infection took place. For each infection the clock starts
from zero and we do not consider multiple strains in the population. We always
refer to age since infection as infection-age and denote it by a. Let us denote
by b(t) the incidence rate at time t, which is the number of newly infected
individuals per unit of time at time t. We write F(a) for a probability, for an
infected individual, to be in the infectious state until his or her infection-age
becomes a. The natural interpretation requires that F is a decreasing func-
tion with F(0) = 1. Since infected individuals of infection-age a at time t
experienced the incidence at time t− a,

a 7→ b(t− a)F(a)

gives the density function of infected individuals with respect to infection-age
at time t. To obtain the population size consisting of infected individuals we
integrate the density function (with respect to infection-age) as

(2.1) I(t) :=

∫ ∞

0
b(t− a)F(a)da = infective population at time t.

Infectivity of an infected individual is assumed to depend on the infection-
age as in [43], see also [7, 74, 41]. Denote by β(a) the age-specific transmission
coefficient of infected individuals whose infection-age is a. The force of infection
at time t is all contribution from each infected individual towards susceptible
population, thus it is given as∫ ∞

0
β(a)b(t− a)F(a)da.

We arrive at the renewal equation

b(t) = S(t)

∫ ∞

0
β(a)b(t− a)F(a)da,
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where S(t) denotes the number of susceptible individuals at time t.
We shall add more information for the probability F . Assume that infected

individuals leave the infectious class due to either the mortality or recovery
from the infection. The mortality rate could be decomposed into the natural
mortality rate µ and the disease-related mortality rate η(a), which is assumed
to depend on individual’s infection-age. Let γ(a) be the recovery rate of in-
fected individuals whose infection-age is a. With those rates one can express
the probability

(2.2) F(a) = e−
∫ a
0 (γ(s)+η(s))ds−µa.

Often the dynamics of infected individuals is formulated by the first order
partial differential equation with a nonlocal boundary condition, see also [12,
59, 56, 81, 74]. Denote by i(t, a) the density of infected individuals at time t
with respect to infection-age a. Then the removing process from the infective
class is described as(

∂

∂t
+

∂

∂a

)
i(t, a) = − (µ+ γ(a) + η(a)) i(t, a), a > 0,

supplemented by the boundary condition:

i(t, 0) = S(t)

∫ ∞

0
β(a)i(t, a)da.

We denote by R(t) the recovered population at time t. It is assumed that
recovered individuals get susceptibility to the disease again at a rate δ. Then

dR(t)

dt
=

∫ ∞

0
γ(a)b(t− a)F(a)da− (µ+ δ)R(t).

Note that the first term in the right hand side is the number of newly recovered
individuals per unit of time at time t. Considering a demographic process we
arrive at the following model:

dS(t)

dt
= B − µS(t)− S(t)

∫ ∞

0
β(a)b(t− a)F(a)da+ δR(t),(2.3a)

b(t) = S(t)

∫ ∞

0
β(a)b(t− a)F(a)da,(2.3b)

dR(t)

dt
=

∫ ∞

0
γ(a)b(t− a)F(a)da− (µ+ δ)R(t).(2.3c)

See also Figure 2.1 for a schematic representation of the model equation and
Table 1 for the parameter description. One may skip to Section 4 to see how
this system (2.3) is related to the system of ordinary differential equations
introduced as in (1.1).
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Figure 2.1: Transition of individual’s state without a demographic process

In [7] the authors proposed the formulation of epidemic models in terms of
force of infection as a primary unknown dynamical variable. This can be done
by introducing a notation Λ by

Λ(t) :=

∫ ∞

0
β(a)b(t− a)F(a)da.

Then one has b(t) = S(t)Λ(t). Substituting this into the definition we get a
nonlinear renewal equation for the force of infection Λ(t) as

Λ(t) =

∫ ∞

0
β(a)S(t− a)Λ(t− a)F(a)da.

Thus one can easily switch to the formulation in terms of force of infection.
We here stick to (2.3).

2.1. Analytical setting

For ρ > 0 we denote by L1
ρ (R−;R) the space consists of all equivalence classes

of measurable functions ϕ : R− → R such that the weighted integral with
respect to the function a 7→ e−ρa, a ∈ R+ is finite i.e.,

∥ϕ∥L1
ρ
=

∫ ∞

0
e−ρa |ϕ(−a)| da <∞.

We define

X+ := R+ × L1
ρ (R−;R+)× R+.

System (2.3) is supplemented by the initial conditions:

(2.4) (S(0), b(θ), R(0)) = (s, ϕ(θ), r) , θ ∈ R−

with (s, ϕ, r) ∈ X+, where X+ is the biologically relevant space. We now make
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Table 1: Description of symbols and model ingredients
Symbols Description
S(t) susceptible population at time t
b(t) newly infected individuals per unit of time at time t
R(t) recovered population at time t
N(t) total population at time t
a infection-age (the time elapsed since the last infection)

β(a) age-specific transmission coefficient
F(a) probability that infected individuals do not recover until

infection-age a
γ(a) age-specific recovery rate
η(a) age-specific disease-related mortality rate
µ natural mortality rate
B population birth rate
δ waning immunity rate

Assumption 2.1. For (2.3) it holds

• β, γ, η ∈ L∞ (R+;R+).

• B,µ > 0 and δ ≥ 0.

Let us denote by N(t) the total population at time t consisting of suscep-
tible, infected and recovered populations at time t, i.e.,

N(t) = S(t) + I(t) +R(t).

At the initial time t = 0 one can compute the total population as

N(0) = s+

∫ ∞

0
ϕ(−a)F(a)da+ r.

For (2.3) we specify ρ as ρ = 1
2µ. From the expression of F in (2.2) one can

see that ∫ ∞

0
ϕ(−a)F(a)da =

∫ ∞

0
ϕ(−a)e−ρaeρaF(a)da ≤ ∥ϕ∥L1

ρ
,

thus N(0) is bounded above. Similarly, it can be shown that the right hand
side of (2.3) is well defined in X+.

We introduce a standard notation from the theory of functional differential
equations [34]

bt : R− → R,
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defined via the relation bt(θ) = b(t+ θ), θ ∈ R−. Let F : X+ → R3 with

(2.5) F (s, ϕ, r) :=

 B − µs− s
∫∞
0 β(a)ϕ(−a)F(a)da+ δr

s
∫∞
0 β(a)ϕ(−a)F(a)da∫∞

0 γ(a)ϕ(−a)F(a)da− (µ+ δ)r

 .

Then (2.3) can be written as an abstract form: d
dtS(t)
b(t)

d
dtR(t)

 = F (S(t), bt, R(t)),

For the existence and uniqueness of the solution, similar proofs used in [81, 24]
are applicable. First, one can show that F satisfies the Lipschitz condition
on each bounded subset of X+, from which the local existence of solutions of
(2.3) follows by the standard contraction argument. One can also show that
S(t), b(t), R(t) ≥ 0 as long as the solution exists. Subsequently, a priori bound
for the solution can be given, see also Proposition 2.1 below. The boundedness
ensures the standard continuation argument to show that (2.3) has a unique
positive solution defined on (0,∞).

To show that the total population is indeed bounded we let

W :=

{
(S, φ,R) ∈ X+ : S +

∫ ∞

0
φ(−a)F(a)da+R ≤ max

{
B

µ
,N(0)

}}
.

Proposition 2.1. It holds that

(S(t), bt, R(t)) ∈ W, t > 0.

Proof. First we show that

(2.6) N(t) = S(t) +

∫ ∞

0
bt(−a)F(a)da+R(t) ≤ max

{
B

µ
,N(0)

}
.

Since one has
∫∞
0 b(t− a)F(a)da =

∫ t
−∞ b(s)F(t− s)ds, it follows

d

dt

∫ ∞

0
b(t− a)F(a)da

=b(t)−
∫ ∞

0
(µ+ γ(a) + η(a)) b(t− a)F(a)da

=S(t)

∫ ∞

0
β(a)b(t− a)F(a)da−

∫ ∞

0
(µ+ γ(a) + η(a)) b(t− a)F(a)da.

(2.7)
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Then

d

dt
N(t) = B − µN(t)−

∫ ∞

0
η(a)b(t− a)F(a)da ≤ B − µN(t).

From the standard comparison theorem we obtain (2.6). To show that, for
each t, bt is an element of L1(R−;R+) we verify that

∫∞
0 bt(−a)e−ρada < ∞.

Fixing t we compute∫ ∞

0
bt(−a)e−ρada =

∫ t

0
b(t− a)e−ρada+

∫ ∞

0
ϕ(−a)e−ρ(t+a)da

=

∫ t

0
b(t− a)e−ρada+ ∥ϕ∥L1

ρ
e−ρt.

Since we have (2.6) one can see that

S(t) ≤ L,

∫ ∞

0
b(t− a)F(a)da ≤ L,

where L := max
{

B
µ , N(0)

}
. Then from (2.3b) one can obtain an estimation:

b(t) ≤ ∥β∥L∞ L2. Therefore we get
∫∞
0 bt(−a)e−ρada <∞.

2.2. The basic reproduction number and existence of an endemic
equilibrium

To proceed the analysis we reduce the number of parameters. Define

S̃(t) := S

(
t

µ

)
, b̃(t) := b

(
t

µ

)
, R̃(t) := R

(
t

µ

)
.

Let

B̃ :=
B

µ
, δ̃ :=

δ

µ
, β̃(a) :=

β( aµ)

µ
, γ̃(a) :=

γ( aµ)

µ
, η̃(a) :=

η( aµ)

µ
.

Dropping the tilde we obtain

dS(t)

dt
= B − S(t)− S(t)

∫ ∞

0
β(a)b(t− a)F(a)da+ δR(t),(2.8a)

b(t) = S(t)

∫ ∞

0
β(a)b(t− a)F(a)da,(2.8b)

dR(t)

dt
=

∫ ∞

0
γ(a)b(t− a)F(a)da− (1 + δ)R(t),(2.8c)
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where F(a) = e−a−
∫ a
0 (η(s)+γ(s))ds. In the rest of the paper we consider (2.8).

The basic reproduction number is the most important quantity in math-
ematical epidemiology, which denotes the expected numbers of secondary in-
fective individuals produced by a typical infective individual during an entire
infectious period, in a completely susceptible population. In general the basic
reproduction number is given as the dominant eigenvalue of a positive linear
operator [19]. See also [42] for more general definition that is applicable for
population growth in time-heterogeneous environment. For (2.8) it is com-
puted as

(2.9) R0 := B

∫ ∞

0
β(a)F(a)da.

We write b̂ for the element of L1
ρ (R−;R+) satisfying b(θ) = b for all θ ∈ R−

(except for a set of measure zero). For (2.8) one can see that there exists the
disease free equilibrium expressed as

(B, 0̂, 0) ∈ X+.

Let us denote by (S, b̂, R) ∈ X+ the endemic equilibrium with (S, b,R) ∈
intR3

+. In order to find the endemic equilibrium we consider the following
equations:

0 = B − S − Sb

∫ ∞

0
β(a)F(a)da+ δR,(2.10a)

b = Sb

∫ ∞

0
β(a)F(a)da,(2.10b)

0 = b

∫ ∞

0
γ(a)F(a)da− (1 + δ)R(2.10c)

with (S, b,R) ∈ intR3
+.

Proposition 2.2. For (2.8) a unique endemic equilibrium exists if and only if
R0 > 1 holds. Components of the endemic equilibrium are identified as

S =
1∫∞

0 β(a)F(a)da
,(2.11a)

b =
1 + δ

1 + δ
∫∞
0 (1 + η(a))F(a)da

(
B − 1∫∞

0 β(a)F(a)da

)
,(2.11b)

R =

∫∞
0 γ(a)F(a)da

1 + δ
∫∞
0 (1 + η(a))F(a)da

(
B − 1∫∞

0 β(a)F(a)da

)
.(2.11c)
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Proof. Assume existence of the solution of (2.10). First, from (2.10b), the first
component is given as in (2.11a). From (2.10c) one obtains

(2.12) R =
1

1 + δ
b

∫ ∞

0
γ(a)F(a)da.

From (2.10b) and (2.12) the first equation (2.10a) is

0 = B − S − b+
δ

1 + δ
b

∫ ∞

0
γ(a)F(a)da.

Using the integration by parts, we get

1− δ

1 + δ

∫ ∞

0
γ(a)F(a)da = 1− δ

1 + δ

(
1−

∫ ∞

0
(1 + η(a))F(a)da

)
=

1 + δ
∫∞
0 (1 + η(a))F(a)da

1 + δ
.

Therefore (2.11b) follows. Finally (2.11c) follows from (2.12) with (2.11b).
Then one can easily see that R0 > 1 if and only if (S, b,R) ∈ intR3

+.

§3. The characteristic equation and linearised stability analysis

We compute the characteristic equation to analyse stability of equilibria of
(2.8) by investigating the location of roots of the characteristic equation. We
here apply the principle of linearised stability recently established in [16, 14], by
the theory of perturbed adjoint semigroups, for systems consisting of Volterra
functional equations and delay differential equations.

Proposition 3.1. For an equilibrium (S, b̂, R) ∈ X+ of (2.8) the characteristic
equation is given as

0 = (1 + δ + λ)

{
− (1 + J + λ) + (1 + λ)S

∫ ∞

0
β(a)e−λaF(a)da

}
+ δJ

∫ ∞

0
γ(a)e−λaF(a)da,(3.1)

where

(3.2) J := b

∫ ∞

0
β(a)F(a)da.

If all roots of (3.1) have negative real parts, then the equilibrium is exponentially
stable. If, on the other hand, there exists a root with positive real part, then
the equilibrium is unstable.
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Proof. To derive the characteristic equation we linearise (2.8) about an equilib-
rium, see Section 5 in [14]. Redefining F in (2.5) with µ = 1, we compute the
Frechét derivative of F : X+ → R3 evaluated at an equilibrium (S, b̂, R) ∈ X+:

DF (S, b̂, R)

 s
ϕ
r

 =

 − (1 + J) s− S
∫∞
0 β(a)ϕ(−a)F(a)da+ δr

Js+ S
∫∞
0 β(a)ϕ(−a)F(a)da∫∞

0 γ(a)ϕ(−a)F(a)da− (1 + δ) r

 ,

where J is defined as in (3.2). Note that DF (S, b̂, R) : X+ → R3. The
characteristic equation is given as

det

M(λ)−

 λ 0 0
0 1 0
0 0 λ

 = 0,

with

M(λ) :=

 − (1 + J) −S
∫∞
0 β(a)e−λaF(a)da δ

J S
∫∞
0 β(a)e−λaF(a)da 0

0
∫∞
0 γ(a)e−λaF(a)da − (1 + δ)

 .

By the straightforward calculation one obtains (3.1). The statement regarding
the stability follows combining Theorems 3.15 and 4.7 in [14], see again Section
5 in the same paper.

3.1. Stability of the disease free equilibrium

First we show that the basic reproduction number is the threshold parame-
ter for (in)stability of the disease free equilibrium. Indeed the disease free
equilibrium is globally asymptotically stable if R0 < 1 as shown in [12].

Theorem 3.2. Let us assume that R0 < 1 holds then the disease free equilib-
rium is globally asymptotically stable. If R0 > 1 holds then it is unstable.

Proof. For the disease free equilibrium (S, b̂, R) = (B, 0̂, 0) the characteristic
equation (3.1) is written as

(3.3) g(λ) = 1,

where we define
g(λ) := B

∫ ∞

0
β(a)e−λaF(a)da.

One can see that g is a monotonically decreasing function with respect to λ ∈ R
and that g(0) = R0. Thus there exists a negative real root if R0 < 1 whereas
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there exists a positive real root if R0 > 1. Let us show that there is no root
with positive real part when R0 < 1. For R0 < 1 suppose that λ = κ + iω,
where (κ, ω) ∈ R2 with κ > 0 solves the equation (3.3). We then obtain

B

∫ ∞

0
β(a)e−κa cos (ωa)F(a)da = 1.

One can easily estimate the left hand side to get∣∣∣∣B ∫ ∞

0
β(a)e−κa cos (ωa)F(a)da

∣∣∣∣ < B

∫ ∞

0
β(a)F(a)da = R0 < 1,

which leads a contradiction. Thus there exists no root with positive real part.
Consequently the disease free equilibrium is asymptotically stable if R0 < 1
and it is unstable if R0 > 1. We now prove global attractivity for R0 < 1. Since
lim supt→∞N(t) ≤ B holds, see also the proof in Proposition 2.1, without loss
of generality, we can assume that S(t) ≤ B for t > 0. Thus we have

b(t) ≤ B

∫ ∞

0
β(a)b(t− a)F(a)da, t > 0.

Let us denote lim supt→∞ b(t) = b. Using Fatou’s lemma we get b ≤ R0b. Since
b is nonnegative, we can conclude that limt→∞ b(t) = 0. Then one can easily
see that limt→∞ (S(t), R(t)) = (B, 0). Hence we obtain the conclusion.

3.2. Stability of the endemic equilibrium

In this section we consider stability of the endemic equilibrium. For δ = 0 the
characteristic equation is

(3.4) 1 + J + λ = (1 + λ)S

∫ ∞

0
β(a)e−λaF(a)da.

The characteristic equation (3.4) was studied in detail in [17], see Exercise
3.10. We can state the following result, see [56, 17, 7] for the proof.

Lemma 3.3. Let us assume that R0 > 1 holds. If δ = 0 then the endemic
equilibrium is asymptotically stable.

For δ > 0 the authors in [12] presented a sufficient condition for local
stability of the endemic equilibrium. We quote the result from Theorem 4.10
in [12] as

Theorem 3.4. If δ ≤ 1 and η(a) = 0 for a ∈ R+ then the endemic equilibrium
is asymptotically stable.
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With a slight modification of the proof of Theorem 4.10 in [12], we obtain
a better condition for stability of the endemic equilibrium. To formulate the
condition we define a set:

D := {δ ∈ R+ : δ ∈ [0, 1]}

∪
{
δ ∈ R+ : δ > 1 such that R0 > 1 +

2 (δ − 1) (1 + δ) (1 + δA)

1 + 2δ

}
for a fixed R0 > 1, where

A :=

∫ ∞

0
(1 + η(a))F(a)da.

Theorem 3.5. Let us assume that R0 > 1 holds. If δ ∈ D then the endemic
equilibrium is asymptotically stable.

Proof. From Lemma 3.3, the endemic equilibrium is locally asymptotically
stable for sufficiently small δ > 0 due to the continuation of the roots with
respect to parameters, see, e.g. Lemma 2.8 in Chapter XI in [20]. Suppose
that there exists δ ∈ R+ such that there exists a purely imaginary root λ = iω,
ω ∈ R+ of (3.1). We can rewrite (3.1) as

(3.5) 1 + J + λ = (1 + λ)S

∫ ∞

0
β(a)e−λaF(a)da+ δJ

∫∞
0 γ(a)e−λaF(a)da

1 + δ + λ
,

as one can easily see that λ ̸= −1− δ. We substitute λ = iω into (3.5). As in
[12] one can find the estimation:

(3.6)
∣∣∣∣S ∫ ∞

0
β(a)e−iωaF(a)da

∣∣∣∣ ≤ 1,

∣∣∣∣∫ ∞

0
γ(a)e−iωaF(a)da

∣∣∣∣ ≤ 1.

Then it holds
|1 + J + iω| ≤ |1 + iω|+ δJ

|1 + δ + iω|
.

Taking square of both sides, we get

(1 + J)2 + ω2 ≤
(
1 + ω2

)
+

(δJ)2

(1 + δ)2 + ω2
+ 2δJ

{
1 + ω2

(1 + δ)2 + ω2

} 1
2

,

which can be simplified as J + 2 ≤ l(δ, ω), where

l(δ, ω) :=
δ2J

(1 + δ)2 + ω2
+ 2δ

{
1 + ω2

(1 + δ)2 + ω2

} 1
2

.
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Now our aim is, to lead a contradiction, to find a set of δ such that l(δ, ω) <
J + 2. Now l(δ, ω) can be estimated as

(3.7) l(δ, ω) ≤
(

δ

1 + δ

)2

J + 2δ.

First assume that δ ≤ 1 holds. Then

l(δ, ω) ≤ 1

4
J + 2 < J + 2,

which is a contradiction. We here note that, from (3.2) with (2.10b), J is
written as

(3.8) J =
1 + δ

1 + δA
(R0 − 1) ,

thus R0 > 1 implies J > 0. Next assume that δ > 1 and δ ∈ D. To show that
l(δ, ω) < J + 2 it is sufficient to show

(3.9) 2 (δ − 1) < J

{
1−

(
δ

1 + δ

)2
}

using the estimation (3.7). From (3.8) one can see that

R0 > 1 +
2 (δ − 1) (1 + δ) (1 + δA)

1 + 2δ
⇐⇒ J > 2

(δ − 1) (1 + δ)2

1 + 2δ
.

Thus (3.9) holds. Consequently, if δ ∈ D there is no purely imaginary root
solving the characteristic equation (3.5).

It is apparent that the stability result in Theorem 3.4 is deduced as a corol-
lary of Theorem 3.5. We also note that, in Theorem 3.5, the disease-related
mortality rate is not assumed to be zero, differently from the paper [12]. In
Figure 3.1 we illustrate the set D in (R0, δ) parameter plane, where the endemic
equilibrium is asymptotically stable. On the other hand, combining Proposi-
tion 2.2 together with Theorem 3.2, it is shown that at R0 = 1 the disease
free equilibrium loses its stability and then the endemic equilibrium emerges.
It can be shown that the endemic equilibrium is asymptotically stable if R0 is
slightly above one (the exchange of stability), see e.g. [41].

3.2.1. Constant recovery rate and disease-related mortality rate

We here elaborate a special case that both the recovery rate and the disease-
related mortality rate are respectively given as constants. We put
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Figure 3.1: The stability region of the endemic equilibrium (EE) in (δ,R0)-
parameter plane. The disease free equilibrium (DFE) is globally asymptotically
stable if R0 < 1 and it is unstable if R0 > 1.

Assumption 3.1.

(3.10) γ(a) = γ, η(a) = η, a ∈ R+.

One now has F(a) = e−(1+η+γ)a. It can be shown that the endemic equi-
librium is stable for any β.

Theorem 3.6. Let R0 > 1 holds. Then the endemic equilibrium is asymptot-
ically stable.

Proof. We compute∫ ∞

0
γ(a)e−λaF(a)da =

γ

1 + η + γ + λ
.

For convenience we define

k(a) := Sβ(a)F(a).

Then the characteristic equation (3.1) is expressed as

(1 + J + λ) (1 + δ + λ) (1 + η + γ + λ)− δγJ

=(1 + λ) (1 + δ + λ) (1 + η + γ + λ)

∫ ∞

0
k(a)e−λada.(3.11)



222 Y. NAKATA ET AL.,

From Lemma 3.3 there exists no root with a positive real part for δ = 0. Let
us assume that there exists δ > 0 such that (3.11) has a purely imaginary
root, λ = iω, ω ∈ R+. Separating real part and imaginary part of (3.11) with
λ = iω, one obtains

l1 − l2ω
2

=
(
m1 −m2ω

2
) ∫ ∞

0
k(a) cos (ωa) da+

(
m3ω − ω3

) ∫ ∞

0
k(a) sin (ωa) da,

− ω3 + l3ω

=−
(
m1 −m2ω

2
) ∫ ∞

0
k(a) sin (ωa) da+

(
m3ω − ω3

) ∫ ∞

0
k(a) cos (ωa) da,

where we can specify

l1 := (1 + J) (1 + δ) (1 + η + γ)− δγJ,

l2 := (1 + J) + (1 + δ) + (1 + η + γ) ,

l3 := (1 + J) (1 + δ) + (1 + δ) (1 + η + γ) + (1 + η + γ) (1 + J) ,

m1 := (1 + η + γ) (1 + δ) ,

m2 := 1 + (1 + η + γ) + (1 + δ) ,

m3 := (1 + η + γ) (1 + δ) + (1 + η + γ) + (1 + δ) .

Since (∫ ∞

0
k(a) cos (ωa) da

)2

+

(∫ ∞

0
k(a) sin (ωa) da

)2

≤ 1

(see also (3.6) in the proof of Theorem 3.5), we get the following inequality(
l1 − l2ω

2
)2

+
(
−ω3 + l3ω

)2 ≤ (
m1 −m2ω

2
)2

+
(
m3ω − ω3

)2
,

which is equivalent to

(3.12) c1ω
4 + c2ω

2 + c3 ≤ 0,

where cj , j ∈ {1, 2, 3} are defined as

c1 :=l
2
2 − 2l3 −m2

2 + 2m3,

c2 :=− 2l1l2 + l23 + 2m1m2 −m2
3,

c3 :=l
2
1 −m2

1.

We now show that cj > 0, j ∈ {1, 2, 3}. To facilitate the computations we
introduce constants

q1 := 1 + δ, q2 := 1 + η + γ.
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We use the following relations:

l1 = m1 + J (m1 − δγ) ,

l2 = m2 + J,

l3 = m3 + J (q1 + q2) .

Then we obtain

c1 = J (2m2 + J)− 2J (q1 + q2)

= J2 + 2J {m2 − (q1 + q2)}
= J2 + 2J,

thus c1 > 0 follows. We next show the positivity of c2. One can see that

l23 −m2
3 = J

{
J (q1 + q2)

2 + 2 (q1 + q2) (q1q2 + q1 + q2)
}

and that

− l1l2 +m1m2

=J {(δγ −m1) J −m1m2 −m1 + δγm2}
=J {(δγ − q1q2) J − q1q2 (1 + q1 + q2)− q1q2 + δγ (1 + q1 + q2)} .

Therefore it follows

c2 =J
2
{
(q1 + q2)

2 + 2 (δγ − q1q2)
}

+ 2J {(q1 + q2) (q1q2 + q1 + q2)− q1q2 (1 + q1 + q2)− q1q2

+δγ (1 + q1 + q2)} .

Straightforward calculations show that

(q1 + q2)
2 + 2 (δγ − q1q2) = q21 + q22 + 2δγ > 0

and that

(q1 + q2) (q1q2 + q1 + q2)− q1q2 (1 + q1 + q2)− q1q2 + δγ (1 + q1 + q2)

= (q1 + q2)
2 − 2q1q2 + δγ (1 + q1 + q2)

=q21 + q22 + δγ (1 + q1 + q2)

>0.

Finally we compute c3. Since m1 > δγ, one can see that l1 > m1, thus c3 is also
positive. Therefore, we get cj > 0 for j ∈ {1, 2, 3}, which leads a contradiction
to (3.12). Thus there is no possibility of having a purely imaginary roots and
all roots locate in the left half complex plane. Hence the conclusion holds.



224 Y. NAKATA ET AL.,

3.3. SIS epidemic model

It is meaningful to discuss a special case that δ tends to infinity, i.e., infected
individuals immediately obtain the susceptibility to the disease upon the re-
covery. One can see that the second component of the endemic equilibrium is
an increasing function, with respect to δ, that approaches to

1∫∞
0 (1 + η(a))F(a)da

(
B − 1∫∞

0 β(a)F(a)da

)
,

as δ → ∞: the incidence (at the equilibrium) increases with respect to δ. This
could be reasonably explained as that the period of recovery, when individuals
are fully protected from the disease, decreases to zero and thus they likely to
infect again, obtaining the susceptibility. For this scenario the model is called
SIS type and is reformulated as
d

dt
S(t) = B − S(t)− S(t)

∫ ∞

0
β(a)b(t− a)F(a)da+

∫ ∞

0
γ(a)b(t− a)F(a)da,

b(t) = S(t)

∫ ∞

0
β(a)b(t− a)F(a)da.

For simplicity let us assume that η(a) = 0 for a ∈ R+. The characteristic
equation for the endemic equilibrium is easily computed as

1− S

∫ ∞

0
β(a)e−λaF(a)da+ b

∫ ∞

0
β(a)F(a)da

∫ ∞

0
e−λaF(a)da = 0.

In the paper [23] the equation is studied with assuming that F is a step func-
tion. The authors formally show instability of the endemic equilibrium through
Hopf bifutcation, see also [61]. From the results, we expect that destabilisa-
tion of the endemic equilibrium of (2.8) is also possible. Two integral terms in
the characteristic equation is a source of difficulty on the analysis of stability.
Considering a special function F such as a step function, one can solve the
integral. In Section 3.2.1 we consider the special form F(a) = e−(1+η+γ)a and
obtain the local stability result, which shows it is necessary to consider other
forms for F in order to catch destabilisation.

Indeed if F and β are step functions with different size of supports, as
pointed out in the paper [23], we numerically observe the occurrence of periodic
solution, see Figure 3.2. Note that, in Figure 3.2, τ is the maximum attainable
age while in [23] the corresponding parameter is the maximum duration of
immunity, thus interpretations of the parameter are slightly different.

§4. Global stability of the endemic equilibrium

In the previous section, with Assumption 3.1, we show that the endemic equi-
librium is locally asymptotically stable if it exists i.e., R0 > 1 holds. We here
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Figure 3.2: Examples of time evolution of the incidence rate b(t) with different
supports [0, 1] and [0, τ ] for step functions β and F , respectively. (Left) if τ = 2
the endemic equilibrium is stable. (Right) if τ = 3 the endemic equilibrium is
unstable and periodic solution exists.

continue to keep the same assumption and consider the global stability of the
endemic equilibrium. To facilitate the analysis, we introduce two special cases
that (2.8) can be expressed as a system of ordinary differential equations and
a system of delay differential equations.

4.1. Ordinary differential equations

First, let us consider the case β(a) ≡ β > 0 for a ∈ R+. By the definition
(2.1), one can see

b(t) = βS(t)

∫ ∞

0
b(t− a)F(a)da = βS(t)I(t).

Similar to the equality (2.7), it holds that

dI(t)

dt
=b(t)− (1 + η + γ)I(t)

=βS(t)I(t)− (1 + η + γ)I(t).(4.1)

We get the following system of the ordinary differential equations:

dS(t)

dt
=B − S(t)− βS(t)I(t) + δR(t),(4.2a)

dI(t)

dt
=βS(t)I(t)− (1 + η + γ)I(t),(4.2b)

dR(t)

dt
=γI(t)− (1 + δ)R(t).(4.2c)



226 Y. NAKATA ET AL.,

One can choose the same initial conditions for S and R as in (2.4). To ensure
positivity of the solution we assume that I(0) = I0 > 0.

SIRS epidemic model (4.2) is introduced in [2] to describe the experiments of
disease dynamics on mice population. The authors fit the data of mice infected
with diseases caused by a bacterium and virus. In the paper the threshold
theorem is mentioned: the disease-free equilibrium is asymptotically stable if
the basic reproduction number is less than 1 and an endemic equilibrium exists
and it is asymptotically stable if the basic reproduction number is greater than
1. Local stability of the endemic equilibrium is considered in Section 3 in
[60]. Later, Chen [11] proves the global asymptotic stability of the endemic
equilibrium of the model (4.2).

Theorem 4.1. Let us assume that R0 > 1. Then the endemic equilibrium of
system (4.2) is globally asymptotically stable.

For the case η = 0, Korobeinikov and Wake [47] applied the direct Lyapunov
method. Their proof is based on an idea that the SIRS model (4.2) can be
rewritten in an SIR model by changing variables S (into S + δB

βµ ) on a limit
system. Later, Vargas [75] offered non-uniqueness construction methods of
Lyapunov functions for SIRS and SIS epidemic models for the case η ≥ 0. (see
also [25])

4.2. Delay differential equations

Now we make

Assumption 4.1. For h ∈ R+ \ {0}, β ∈ L∞(R+;R+) satisfies

1. β is nondecreasing,

2. β(0) = 0 and β is continuous from the right on the open interval (0, h),
i.e., β(a) = β(a+) at every point a ∈ (0, h),

3. β(a) ≡ β > 0 for a ∈ [h,∞).

Then one can see ∫ a

0
dβ(τ) = β(a), a ∈ R+,(4.3)

thus ∫ ∞

0
dβ(τ) =

∫ h

0
dβ(τ) = β(h),

where the integral has to be understood as a Riemann-Stieltjes integral (see e.g.
Chapter 1 of [20] and Chapter 6 of [67]). Hence β is a function of normalised
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bounded variations on R+. Notice that β is not necessary to be continuous on
R+. In [12] β is assumed to be a uniformly continuous function. Therefore we
are in a different situation from that paper.

We first express b using S and I.

Lemma 4.2. It holds that

b(t) = S(t)

∫ h

0
F(τ)I(t− τ) dβ(τ).(4.4)

Proof. By the equality (4.3), we have∫ ∞

0
b(t− a)F(a)β(a)da

=

∫ h

0
b(t− a)F(a)

∫ a

0
dβ(τ)da+

∫ ∞

h
b(t− a)F(a)

∫ h

0
dβ(τ)da.

By changing the order of the integrals, it holds that∫ h

0

∫ a

0
b(t− a)F(a)dβ(τ)da =

∫ h

0

∫ h

τ
b(t− a)F(a)dadβ(τ).

This yields∫ h

0

∫ h

τ
b(t− a)F(a)dadβ(τ) +

∫ h

0

∫ ∞

h
b(t− a)F(a)dadβ(τ)

=

∫ h

0

∫ ∞

τ
b(t− a)F(a)dadβ(τ).

Letting a = s+ τ , we have∫ ∞

τ
b(t− a)F(a)da =

∫ ∞

0
b(t− s− τ)F(s+ τ)ds.

Thus ∫ ∞

0
b(t− a)F(a)β(a)da =

∫ h

0

∫ ∞

0
b(t− s− τ)F(s+ τ)dsdβ(τ).

Since Assumption 3.1 yields F(s + τ) = e−(1+η+γ)(s+τ), we have F(s + τ) =
F(τ)F(s). It follows from the definition (2.1) that

b(t) =S(t)

∫ h

0
F(τ)

∫ ∞

0
b(t− s− τ)F(s)dsdβ(τ)

=S(t)

∫ h

0
F(τ)I(t− τ)dβ(τ).

This completes the proof.
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Substituting (4.4) into system (2.3), we get the following system of delay
differential equations:

dS(t)

dt
=B − S(t)− S(t)

∫ h

0
F(τ)I(t− τ) dβ(τ) + δR(t),(4.5a)

dI(t)

dt
=S(t)

∫ h

0
F(τ)I(t− τ)dβ(τ)− (1 + η + γ)I(t),(4.5b)

dR(t)

dt
=γI(t)− (1 + δ)R(t).(4.5c)

This SIRS model (4.5) is considered in [82]. One can also see that (4.5) becomes
the SIR epidemic model in [72] if δ = 0. In those papers epidemic models are
constructed to describe dynamics of a vector-borne disease, see also [9]. In
those papers the incidence rate

S(t)

∫ h

0
F(τ)I(t− τ)dβ(τ)(4.6)

appears via a quasi-steady-state-assumption on the number of infected mos-
quitoes, see again [72]. This incidence form is widely appeared in the literature
[3, 4, 5, 57, 66, 73, 82]. If we further assume

(4.7) β(a) =

{
0, a ∈ [0, τ̂) ,

β, a ∈ [τ̂ ,∞)

for some τ̂ ≤ h then we get a incidence rate by discrete delay:

S(t)

∫ h

0
F(τ)I(t− τ)dβ(τ) = βF(τ̂)S(t)I(t− τ̂).

In Figure 4.1 we illustrate graph trajectories of β such that the incidence rate
(4.6) is expressed by a discrete-delay and a distributed-delay, respectively.

Denote by C([−h, 0],R), the Banach space of continuous functions mapping
the interval [−h, 0] into R equipped with the sup-norm ∥ψ∥ = supθ∈[−h,0] |ψ(θ)|
for ψ ∈ C([−h, 0],R). We choose R+ ×C([−h, 0],R+)×R+ as the state space
of (4.5). For I we choose the initial condition as

I(θ) = φ(θ), θ ∈ [−h, 0]

with φ ∈ C([−h, 0],R+) and ∥φ∥ > 0. Let us denote Se, Ie and Re as the first,
second and third element of the endemic equilibrium, respectively. In [28] we
obtain a result for the global stability:

Theorem 4.3. Let us assume that R0 > 1. If

Se − δRe ≥ 0,(4.8)

then the endemic equilibrium of system (4.5) is globally asymptotically stable.
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Figure 4.1: Curves of age-dependent function β. (Left) The incidence rate (4.6)
is expressed by a discrete-delay. (Right) The incidence rate (4.6) is expressed
by a distributed-delay.

The condition (4.8) is firstly introduced in [66] with assuming no disease-
induced mortality rate (η = 0). One immediately obtains the following result
proven in the celebrated paper [57] by McCluskey.

Corollary 4.4. Let us assume that R0 > 1. If δ = 0 then the endemic
equilibrium of system (4.5) is globally asymptotically stable.

For the case δ = 0, the global stability of the endemic equilibrium has been
analysed in [4, 5, 3, 72]. With respect to delay, limited results are obtained:
if the time delay is small enough then the endemic equilibrium is globally
asymptotically stable. Their proofs are based on construction of Lyapunov
functionals. This problem is recently revisited by McCluskey [57] with a novel
Lyapunov functional and it is proven that the endemic equilibrium is always
globally asymptotically stable. For a complete presentation we would like to
show the proof of Theorem 4.3:

Proof. We define

G = {(s, φ, r) ∈ R+ × C([−h, 0],R+)× R+ : s ≥ 0, ∥φ∥ > 0, r ≥ 0}.

To construct Lyapunov functions, we introduce the following Volterra-type
function:

g(x) := x− 1− lnx, x ∈ R+ \ {0}.(4.9)

One can see that x = 1 is a strict global minimum with g(1) = 0. For ψ =
(s, φ, r) ∈ G, let us define the following functional:

U1(ψ) := Seg

(
s

Se

)
+ Ieg

(
φ(0)

Ie

)
+ SeIe

∫ h

0
F(τ)

∫ 0

−τ
g

(
φ(u)

Ie

)
dudβ(τ).
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We now show that U defined as

U(ψ) :=U1(ψ) +
δ

γSe

(r −Re)
2

2

+
δγ

η(2 + δ)Se

[
{s+ φ(0) + r − (Se + Ie +Re)}+ η

γ (r −Re)
]2

2

for η > 0 and

U(ψ) := U1(ψ) +
δ

γSe

(r −Re)
2

2
+

δ

4Se

{s+ φ(0) + r − (Se + Ie +Re)}2

2

for η = 0 is a Lyapunov functional. It suffices to show that

(4.10)
d

dt
U(S(t), It, R(t)) ≤ 0,

where (S(t), It, R(t)) is a solution of (4.5) and a solution segment It is defined
by It(θ) = I(t + θ) for θ ∈ [−h, 0]. See also the same notation introduced in
Section 2.1. In the following we drop e from the notations Se, Ie and Re. In
the proof of Theorem 4.1 in [57], the time derivative of the functional U1 along
the solution can be computed as follows.

dU1

dt
=− (S(t)− S)2

S(t)
+ δR

(
1− S

S(t)

)(
R(t)

R
− 1

)
− SI

∫ h

0
F(τ)

{
g

(
S

S(t)

)
+ g

(
S(t)I(t− τ)

SI(t)

)}
dβ(τ).(4.11)

Noting that I(t) = N(t)− S(t)−R(t), we get

1

2

d

dt

{
(R(t)−R)2

}
=(R(t)−R) {γI(t)− (1 + δ)R(t)}
=(R(t)−R) {γ(N(t)−N)− γ(S(t)− S)− (1 + γ + δ)(R(t)−R)} .(4.12)

For the case η > 0, we have dN(t)
dt = B −N(t)− ηI(t), which implies

dN(t)

dt
+
η

γ

dR(t)

dt
=B −N(t)− ηI(t) +

η

γ
(γI(t)− (1 + δ)R(t))

=B −N(t)− η(1 + δ)

γ
R(t).
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It follows that
1

2

d

dt
{(N(t)−N) +

η

γ
(R(t)−R)}2

=

{
(N(t)−N) +

η

γ
(R(t)−R)

}(
dN(t)

dt
+
η

γ

dR(t)

dt

)
=

{
(N(t)−N) +

η

γ
(R(t)−R)

}{
B −N(t)− η(1 + δ)

γ
R(t)

}
.

Since at the equilibrium B −N − η(1+δ)
γ R = 0 holds, we derive

1

2

d

dt
{(N(t)−N) +

η

γ
(R(t)−R)}2

=

{
(N(t)−N) +

η

γ
(R(t)−R)

}{
−(N(t)−N)− η(1 + δ)

γ
(R(t)−R)

}
=− (N(t)−N)2 − η(2 + δ)

γ
(N(t)−N)(R(t)−R)

− η2(1 + δ)

γ2
(R(t)−R)2.

(4.13)

Combining (4.11), (4.12) and (4.13), we obtain
dU

dt

=− (S(t)− S)2

S(t)
+ δ

(
1− S

S(t)

)
(R(t)−R) +

δ

S
(R(t)−R)(N(t)−N)

− δ(R(t)−R)

(
S(t)

S
− 1

)
− δ(1 + γ + δ)

γS
(R(t)−R)2

− δγ

η(2 + δ)S
(N(t)−N)2 − δ

S
(N(t)−N)(R(t)−R)

− δη(1 + δ)

γ(2 + δ)S
(R(t)−R)2 −

∫ h

0
F(τ)

{
g

(
S

S(t)

)
+ g

(
S(t)I(t− τ)

SI(t)

)}
dβ(τ).

By the following equality(
1− S

S(t)

)
(R(t)−R)− (R(t)−R)

(
S(t)

S
− 1

)
=− (R(t)−R)

(
S

S(t)
− 2 +

S(t)

S

)
=− (R(t)−R)

(
S(t)2 − 2SS(t) + S2

SS(t)

)
=− (R(t)−R)

(S(t)− S)2

SS(t)
,
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we get

dU

dt
=− (S + δ(R(t)−R))

(S(t)− S)2

SS(t)
− δγ

η(2 + δ)S
(N(t)−N)2

−
{
δ(1 + γ + δ)

γS
+
δη(1 + δ)

γ(2 + δ)S

}
(R(t)−R)2

−
∫ h

0
F(τ)

{
g

(
S

S(t)

)
+ g

(
S(t)I(t− τ)

SI(t)

)}
dβ(τ).

Since the condition (4.8) implies

S + δ(R(t)−R) ≥ S − δR ≥ 0,(4.14)

we obtain

dU

dt
≤− (S − δR)

(S(t)− S)2

SS(t)
− δγ

η(2 + δ)S
(N(t)−N)2

−
{
δ(1 + γ + δ)

γS
+
δη(1 + δ)

γ(2 + δ)S

}
(R(t)−R)2

−
∫ h

0
F(τ)

{
g

(
S

S(t)

)
+ g

(
S(t)I(t− τ)

SI(t)

)}
dβ(τ).(4.15)

For the case η = 0, we have dN(t)
dt = B −N(t), thus

1

2

d

dt
(N(t)−N)2 = (N(t)−N)

dN(t)

dt
= (N(t)−N)(B −N(t)).

Since at the equilibrium N = B holds, one can get

1

2

d

dt
(N(t)−N)2 = −(N(t)−N)2.(4.16)

Combining (4.11), (4.12) and (4.16), we obtain

dU

dt
=− S

(S(t)− S)2

SS(t)
+ δ

(
1− S

S(t)

)
(R(t)−R)− δ(R(t)−R)

(
S(t)

S
− 1

)
− δ

S
(R(t)−R)2 +

δ

S
(R(t)−R)(N(t)−N)− δ

4S
(N(t)−N)2

− βSI

∫ h

0
F(τ)

{
g

(
S

S(t)

)
+ g

(
S(t)I(t− τ)

SI(t)

)}
dβ(τ)

− δ

γS
(1 + δ)(R(t)−R)2.
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It follows from the inequality (4.14) and

− (R(t)−R)2 + (R(t)−R)(N(t)−N)− 1

4
(N(t)−N)2

=−
{
(R(t)−R)− 1

2
(N(t)−N)

}2

,

that

dU

dt
≤− (S − δR)

(S(t)− S)2

SS(t)
− δ

S

{
(R(t)−R)− 1

2
(N(t)−N)

}2

−
∫ h

0
F(τ)

{
g

(
S

S(t)

)
+ g

(
S(t)I(t− τ)

SI(t)

)}
dβ(τ)

− δ

γS
(1 + δ)(R(t)−R)2.(4.17)

From (4.15) and (4.17), for both cases η > 0 and η = 0, we obtain (4.10) for
all t > 0. We define a set

G := {ψ ∈ G : U(ψ) ≤ U(S(0), I0, R(0))} .

One can see that G is closed and positively invariant. Thus the closure of G
is itself and G contains (S(t), It, R(t)) for all t > 0. Since U is continuous on
G, U is a Lyapunov functional on G. We define the set

E =

{
ψ ∈ G :

dU

dt
(ψ) = 0

}
.

We get

E =

{
ψ = (s, φ, r) ∈ G

∣∣∣s = S, r = R,
sφ(−τ)
Sφ(0)

= 1

}
.

Let M be the largest subset in E that is invariant with respect to (4.5). By
LaSalle invariance principle ([49, Corollary 5.2]), the solution tends to M . We
can prove that M consists only of the infected equilibrium. Thus every solution
tends to the endemic equilibrium, that is, the endemic equilibrium is globally
attractive. Since the endemic equilibrium is asymptotically stable, the endemic
equilibrium is globally asymptotically stable.

We solve (4.8) with respect to δ to get an explicit global stability condition
in terms of δ for a fixed R0, see [66, 28] for the proof.

Proposition 4.5. The condition (4.8) is equivalent to

δ ∈ R+ for R0 ∈
(
1, 1 +

1 + η

γ

]
,

δ ∈
[
0, δ̂(R0)

]
for R0 ∈

(
1 +

1 + η

γ
,∞

)
,
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where
δ̂(R0) :=

1
R0

1+ 1+η
γ

− 1
.

In [28] it is shown that the idea of the Lyapunov functional can be success-
fully applied for an SIRS model with a nonlinear incidence rate, if the incidence
function has a monotone property, see also [27, 39, 58, 46, 45] for analyses of
SIR models. Another type of stability conditions are given in [29] constructing
a different Lyapunov functional.

As in [63] we can obtain a different condition for the global stability by the
monotone iterative method, which amounts to find convergence sequences for
eventual upper and lower bounds of the solutions [62, 63]. It is now convenient
to assume η = 0 holds, i.e., no disease-induced mortality rate. Then one has

lim
t→∞

(S(t) + I(t) +R(t)) = lim
t→∞

N(t) = B,

thus we get the following limit system:

dI(t)

dt
=(B − I(t)−R(t))

∫ h

0
F(τ)I(t− τ)dβ(τ)− (1 + γ)I(t),(4.18a)

dR(t)

dt
=γI(t)− (1 + δ)R(t).(4.18b)

We have the following theorem from [63, Corollary 1.1]. For readers we adopt
the proof used in [63] for (4.18).

Theorem 4.6. Let us assume that R0 > 1. If η = 0 and

δ > max{0, γ − 1},(4.19)

then the endemic equilibrium of system (4.18) is globally asymptotically stable.

Proof. For a function f : R+ → R, we write

f = lim sup
t→+∞

f(t), f = lim inf
t→+∞

f(t).

We show that the condition (4.19) implies I = I. From the fluctuation lemma
(see [77, Lemma 4.2] and [38, Lemma 4.2]), there exists a sequence {tn}∞n=1

such that tn → ∞ as n→ ∞ and

lim
n→∞

I(tn) = I.

Since 0 ≤ B−I(tn)−R(tn) and lim infn→+∞R(tn) ≥ R, we get 0 ≤ B−I−R.
Similarly, B − I −R ≥ 0 holds. We thus have

(4.20) B − I −R ≥ 0 and B − I −R ≥ 0.
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Considering similar sequences for R we obtain

0 ≤ K
(
B − I −R

)
I − (1 + γ) I,(4.21)

0 ≤ γI − (1 + δ)R(4.22)

and similarly

0 ≥ K
(
B − I −R

)
I − (1 + γ) I,(4.23)

0 ≥ γI − (1 + δ)R,(4.24)

where

K :=

∫ ∞

0
F(τ)dβ(τ).

From (4.21) and (4.24) one can obtain that

0 ≤ B − I −R− 1 + γ

K
≤ B − I − γ

1 + δ
I − 1 + γ

K
.

It also holds

0 ≥ B − I −R− 1 + γ

K
≥ B − I − γ

1 + δ
I − 1 + γ

K
.

Note that R0 > 1 ↔ B − 1+γ
K > 0. We consequently get

I − I ≤ γ

1 + δ

(
I − I

)
.(4.25)

Since the condition (4.19) is equivalent to γ
1+δ < 1, the inequality (4.25) shows

I = I. Since it holds that

γ

1 + δ
I ≤ R ≤ R ≤ γ

1 + δ
I,

we obtain R = R. Hence the endemic equilibrium of (4.18) is globally at-
tractive. Since the endemic equilibrium is asymptotically stable, the endemic
equilibrium is globally asymptotically stable.

For the case η = 0, from Theorems 4.3 and 4.6, using Proposition 4.5, we
can illustrate parameter regions of global stability of the endemic equilibrium
in (R0, δ) plane, see Figure 4.2 for γ > 1. At first glance, the global stability
conditions in Theorems 4.3 and 4.6 do not cover the whole parameter plane
where R0 > 1.
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Figure 4.2: Global stability regions of the endemic equilibrium (E∗) when
γ > 1. The global stability conditions in Theorems 4.3 and 4.6 are illustrated
as a set of regions (i) and (ii), respectively. GAS = “globally asymptotically
stable” and LAS = “locally asymptotically stable”.

§5. On the discrete delay model

In Section 4.2 one sees that the incidence rate can be given as a discrete delay:

S(t)

∫ h

0
F(a)I(t− a)dβ(a) = βS(t)I(t− τ̂)F(τ̂)

if we assume (4.7). For this scenario it would be natural to decompose the
infectious compartment into two classes as

I(t) = Ê(t) + Î(t),

where

Ê(t) :=

∫ τ̂

0
b(t− a)F(a)da, Î(t) :=

∫ ∞

τ̂
b(t− a)F(a)da.

With (4.7) the interpretations of those compartments are clear: only the in-
fected individuals in the compartment Î transmit the disease. Now we aim
to formulate the equivalent model to (4.5) in terms of Ê and Î. First let us
introduce a connection between I and Î.

Lemma 5.1. We have
Î(t) = I(t− τ̂)F(τ̂).
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Proof. One can see that

Î(t) =

∫ ∞

τ̂
b(t− a)F(a)da =

∫ ∞

0
b(t− τ̂ − s)F(τ̂ + s)ds.

Since F(τ̂ + s) = F(τ̂)F(s) from Assumption 3.1, we get

Î(t) =

∫ ∞

0
b(t− τ̂ − s)F(s)dsF(τ̂) = I(t− τ̂)F(τ).

Therefore one can see that βS(t)I(t− τ̂)F(τ̂) = βS(t)Î(t) and that (2.8) is
finally expressed as the following SEIRS model:

d

dt
S(t) = B − S(t)− βS(t)Î(t) + δR(t),(5.1a)

d

dt
Ê(t) = βS(t)Î(t)− βS(t− τ̂)Î(t− τ̂)F(τ̂)− (1 + η + γ) Ê(t),(5.1b)

d

dt
Î(t) = βS(t− τ̂)Î(t− τ̂)F(τ̂)− (1 + η + γ) Î(t),(5.1c)

d

dt
R(t) = γ

(
Î(t) + Ê(t)

)
− (1 + δ)R(t).(5.1d)

The specification (4.7) implies that infected individuals obtain infectivity after
infection-age is τ̂ , thus discrete delay appears in (5.1). Similar models are
considered in [10, 40, 80] assuming that latent individuals stays a fixed period
in the compartment. In [40] the authors consider the case δ = 0 and obtain
the global stability of the endemic equilibrium. In [80] uniform persistent of
the solution is shown if R0 > 1 for the case δ > 0, but the global stability of
the endemic equilibrium is not discussed.

Since β defined in (4.7) can be seen as a special case of the one considered
in Section 4.2, global stability results in the same section automatically hold
for (5.1). Again a natural question arises: is the endemic equilibrium always
globally asymptotically stable for (5.1)?

SEIRS models with a constant transition rate from E to I studied in [52, 37],
formulated by a system of ordinary differential equations, are closely related to
the model (5.1). For those models the global stability of the endemic equilib-
rium had been an open problem for a long time. In the paper [52] partial results
were obtained by a geometric approach-a generalisation of the Bendixon-Dulac
criteria [53]. Recently, a paper [13] has been published, where the authors im-
prove the proof used in [52] and show that the endemic equilibrium of the
SEIRS epidemic model is indeed globally asymptotically stable. The geomet-
ric approach is, however, not directly applicable to the infinite-dimensional
dynamical systems such as (5.1).
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§6. Other epidemic models with waning immunity

Finally we here briefly discuss other epidemic models taking into account wan-
ing immunity to close the paper.

6.1. Multi-group epidemic model

Epidemic models, in which the heterogeneous population is subdivided into
several homogeneous groups due to the heterogeneity (e.g., sex, age, position,
etc.) of each individual, are called multi-group models. In 1976, the paper
[51] studied the global stability of a multi-group SIS epidemic model for the
spread of gonorrhea. For multi-group SIR epidemic models, the local stability
of equilibria had been studied by several authors (see e.g., [36]), however, the
global stability of the endemic equilibrium had been an open problem for a
long time. In 2006, the paper [30] proved the global asymptotic stability of
a multi-group SIR epidemic model for R0 > 1 by using a novel Lyapunov
functional method based on the graph theory. After that, their method has
been applied to various multi-group models by many authors (see e.g., [31] for
a multi-group SEIR model, [54] for a SIR-type model with distributed time
delays, [71] for an SIR model with nonlinear incidence, [48] for a discretized
age-structured SIR model, etc).

Recently, the global stability of a multi-group SIRS epidemic model is con-
sidered in [64]. In their result, the global asymptotic stability of the endemic
equilibrium is guaranteed if the basic reproduction number is greater than one
and the similar condition with that in Theorem 4.3 holds. Although their
proof is partly based on the idea of construction of a Laplacian matrix as in
the graph-theoretic approach of [30], Muroya et al. showed that the graph-
theoretic approach can be essentially reduced to the usual calculation of the
derivative of Lyapunov functional together with the Volterra-type function
(4.9). This way of calculation has been applied to various multi-group models
by the same authors (see e.g., [64] for a multi-group SIR epidemic models with
patch structure). In [65], the monotone iterative method of [63] is extended to
a multi-group SIRS model.

6.2. Epidemic models with nonlinear incidence rate

The incidence rate, which characterises a new infection per unit of time, is
modified by a class of nonlinear incidence rates. One of the pioneering works
is achieved in [8] introducing a saturation level for the force of the infection,
motivated by cholera epidemic spread in Bari in 1973. Observing that the num-
ber of contacts of susceptible individuals to infective individuals may decrease
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when there is a large number of infected individuals, they consider psycholog-
ical effects and model the nonlinear incidence rate, namely βSG(I) where G
is a saturated function.

For SIRS and SEIRS epidemic models periodic oscillation appears through
Hopf bifurcation, if the incidence rate increases “faster” than the bilinear in-
cidence rate [55]. On the other hand, it is shown that a class of nonlinear
incidence rates do not change the qualitative dynamics of epidemic models.
For example, in [78] the authors consider an SIRS epidemic model with a
nonmonotone incidence rate, namely

(6.1) βS(t)
I(t)

1 + αI2(t)
,

and prove that the endemic equilibrium is globally stable if it exists. Compar-
ing with the Theorem 4.1 one can see that the nonlinearity in the incidence
rate do not affect the qualitative dynamics. SIRS model in [78] is extended
by introducing delay in the nonlinear incidence rate [79, 26]. In [26] we ex-
plore a class of nonmonotone incidence rates such that the endemic equilibrium
is always asymptotically stable. Here it is shown that nonmonotonicity with
time delay in the incidence rate is a necessary ingredient for destabilisation
of the endemic equilibrium. In that paper the global stability of the endemic
equilibrium is not discussed. We expect that the endemic equilibrium is glob-
ally asymptotically stable, when the local stability condition does not depend
on the delay. However, the treatment of the nonmonotonicity in the global
stability analysis, e.g. construction of a Lyapunov function, seems to be a
challenging problem.
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