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 Design of Experiments (DOE) is statistical tool deployed in various types of 

system, process and product design, development and optimization. It is 

multipurpose tool that can be used in various situations such as design for 

comparisons, variable screening, transfer function identification, optimization 

and robust design. This paper explores historical aspects of DOE and provides 

state of the art of its application, guides researchers how to conceptualize, plan 

and conduct experiments, and how to analyze and interpret data including 

examples. In addition, this paper reveals that in past 20 years application of 

DOE have been growing rapidly in manufacturing as well as non-

manufacturing industries. It was most popular tool in scientific areas of 

medicine, engineering, biochemistry, physics, computer science and counts 

about 50% of its applications compared to all other scientific areas.  
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1. Introduction 

Design of Experiments (DOE) mathematical methodology used for planning and conducting experiments as 

well as analyzing and interpreting data obtained from the experiments. It is a branch of applied statistics that is 

used for conducting scientific studies of a system, process or product in which input variables (Xs) were 

manipulated to investigate its effects on measured response variable (Y).  

Over past two decades, DOE was a very useful tool traditionally used for improvement of product quality and 

reliability [1]. The usage of DOE has been expanded across many industries as part of decision making 

process either along a new product development, manufacturing process and improvement. It is not used only 

in engineering areas it has been used in administration, marketing, hospitals, pharmaceutical [2], food industry 

[3], energy and architecture [4][5], and chromatography [6]. DOE is applicable to physical processes as well 

as computer simulation models [7]. 

1.1. Historical perspective 

One Factor At a Time (OFAT) was very popular scientific method dominated until early nineteen century. In 

this method one variable/factor is tested at a time while the other variables are constrained except the 

investigated one. Testing multiple variables at a time is better especially in cases where data must be analyzed 
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carefully. In the 1920s and 1930s Ronald A. Fisher conducted a research in agriculture with the aim of 

increasing yield of crop in the UK. Getting data and was challenging e.g. if he relayed on his traditional 

method ANOVA (F-test, means Fisher - test) he may plant a crop in spring and get results in fall which is too 

long for getting data. Finally, he came up with design of experiment and officially he was the first one who 

started using DOE. In 1935, he wrote a book on DOE, in which he explained how valid conclusion could be 

drawn from the experiment in presence of nuisance factors. He analyzed presence of nuisance factors with 

fluctuation of weather conditions (temperature, rainfall, soil condition). Credit for Response Surface Method 

(RSM) belongs to George Box who is also from the UK. He was concerned with experimental design 

procedures for process optimization. In 1550s, W. Edwards Deming was concerned with design of 

experiment as well as statistical methods. Genichi Taguchi was Japanese statistician concerned with quality 

improvement methods. He contributed to statistic by introducing Loss function and experiments extending 

with an "outer array" in DOE as an advanced method in the Six Sigma initiatives [8]. 

 

1.2. The main uses of DOE 

Design of experiment is multipurpose tool that can be used in various situations for identification of important 

input factors (input variable) and how they are related to the outputs (response variable). Therefore, DOE 

mainly uses "hard tools" as it was reported in [9]. In addition, DOE is bassically regression analysis that can 

be used in various situations. Commonly used design types are the following[10]:   

1. Comparison ‒ this is one factor among multiple comparisons to select the best option that uses t‒test, 

Z‒test, or F‒test. 

2. Variable screening ‒ these are usually two level factorial designs intended to select important factors 

(variables) among many that affect performances of a system, process, or product. 

3. Transfer function identification ‒ if important input variables are identified, the relationship 

between the input variables and output variable can be used for further performance exploration of the 

system, process or product via transfer function. 

4. System Optimization ‒ the transfer function can be used for optimization by moving the experiment 

to optimum setting of the variables. On this way performances of the system, process or product can 

be improved. 

5. Robust design ‒ deals with reduction of variation in the system, process or product without 

elimination of its causes. Robust design was pioneered by Dr. Genichi Taguchi who made system 

robust against noise (environmental and uncontrollable factors are considered as noise). Generally, 

factors that cause product variation can be categorized in three main groups:  

 external/environmental (such as temperature, humidity and dust);  

 internal (wear of a machine and aging of materials); 

 Unit to unit variation (variations in material, processes and equipment). 

 

1.3. DOE application in research and procedure  

Even though DOE tool are not new techniques but its application has expended rapidly over the scientific 

areas including product/process quality improvement [11], product optimization [12] and services in the past 

two decades. Trainings and recent user-friendly commercial and non-commercial statistical software packages 

contributed significantly to DOE expansion in the research in this period.  DOE application over the globe and 

across various scientific areas in the period from 1920 to 2018 is shown in Figure 1. 
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Figure 1. DOE application in scientific research[13]
1
 

Application of DOE in research started in 1920s with Fisher's research in agriculture. Over four upcoming 

decades later it application in the research was negligible. Significant use of DOE in the research project was 

noticed in the late 1960s and 1970s. Thus, it took about 50 years for the DOE to achieve significant 

application in the research. Since in this period there were no software packages that would foster its 

application DOE had not signified a strong expansion. Thanks to edication and software development in 

1990s and later, the use of DOE in research over various scientific areas has risen sharply. A linear model that 

represents a rapid increase in the use of DOE in the research projects is shown in Figure 2 and represented by 

a mathematical linear model. 

 

Figure 2. Progressive use of DOE as scientific method over past two decades[13]
2
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DOE application in the future can be predicted with linear regression model, which is based on past date over 

18 years. Therefore, it can be expectedthat DOE usage expansion will continue in the future including its 

application in the existing and new scientific areas. The state of the art of DOE application in certain scientific 

areas is shown in Figure 3. 

 

 

Figure 3. DOE application per scientific area[13]
3
 

DOE as scientific method was most popular in scientific areas of medicine, engineering, biochemistry, physics 

and computer science. Its application in these areas counts about 50% compared to all other scientific areas. 

Only medicine participates about 18%, while engineering and biochemistry together participate with 20%; and 

physics and computer together science participate with 13%.   

General practical steps and guidelines for planning and conducting DOE are listed below:  

 

1. State the objectives ‒ it is a list of problems that are going to be investigated. 

2. Response variable definition‒ this is measurable outcome of the experiment that is based on 

defined objectives. 

3. Determine factors and levels ‒ selection of independent variable (factors) that case change in the 

response variable. To identify factors that may affect the response variable fishbone diagram 

might be used. 
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4. Determine Experimental design type‒ e. g. a screening design is needed for significant factors 

identification; or for optimization factor-response function is going to be planned, number of test 

samples determination. 

5. Perform experiment using design matrix. 

6. Data analysis using statistical methods such as regression and ANOVA.  

7. Practical conclusions and recommendations‒ including graphical representation of the results 

and validation of the results. 

Most difficult part of DOE is to plan experiment in term of selecting appropriate factors for testing 

(x‒variables), what ranges of x's to select, how many replicates is supposed to be used, and is center point 

required? 

1.4. DOE Software  

DOE can be quickly designed and analyzed with the help of suitable statistical software. For this purpose, 

there are some commercial and freeware statistical packages. The well-known commercial packages include: 

Minitab, Statistica, SPSS, SAS, Design-Expert, Statgraphics, Prisma, etc. The well-known freeware packages 

are: R and Action for Microsoft Excel [14]. 

The most popular commercial packages Minitab and Statistica are equipped with user friendly interface and 

very good graphics output. Freeware package Action has suitable graphics output and utilizes R platform 

together with Excel 

Also, DOE design and analysis can be done easily in Microsoft Excel, using the procedure and formulas 

described in the following paragraphs. To perform any DOE as it was described earlier, understanding of 

analysis of variance (ANOVA) and linear regression as statistical methods is required. Therefore, more details 

about these two statistical methods are provided below. 

2. Statistical Background 

2.1. Analysis of variance (ANOVA) 

In cases that there are more than two test samples ANOVA is used to determine whether there are statistically 

significant differences between the means the samples (treatments). In cases, that experiment contains two 

samples only, and then t-test is good enough to check whether there are statistically significant differences 

between the means of treatments. In this case it is tested hypothesis assuming that a least one mean treatment 

value (μ) differs from the others. Therefore, null and alternative hypotheses can be express as [15]: 

 
H0: μ1 = μ1 = ... = μk = 0  

H1: μ j ≠ 0 for at least one j different than zero. 
(1) 

The procedure of test involves an analysis of variance (ANOVA) and performing F-test. Observed value is 

calculated as the ratio between treatment mean squares (    ) and error mean squares     (error variance): 

    
    
   

 

    

   
   

      

 (2) 

where,     is sum of squares of treatment,     is sum of squares of error,       represents treatments 

degrees of freedom,        represents error degrees of freedom, a is number of treatments (number of 
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samples), n is number of observation for particular treatment. Total sum of squares (     is addition of sum of 

squares of treatment and sum of squares of error and it is calculated as:  

                        
 

   

          
 

 

   

 (3) 

whre,     is the predicted value for the ith test,    is the mean of response variable observations,    is the ith 

observed value of the response variable.  

Having calculated Fo, H0 can be accepted or rejected in the following cases: 

      
                              
                                

  (4) 

H0 is going to be rejected if observed value of    is grater than its critical value                . The critical 

value is taken from corresponding statistical table for significance level α, the degrees of freedom for the 

numerator (a ‒ 1), and degrees of freedom for the denominator a(n ‒ 1). Also, H0 is going to be accepted if 

observed value is lower than its critical value (                  ). If p-value approach for the statistics    is 

used than H0 is going to be rejected if p < α, and will be accepted if p > α. 

2.2. Linear regression 

A general multiple linear regression model with k repressor variables is express as:  

                         (5) 

where, y is response variable also called dependant variable, βj, βj, j = 0. 1, 2, …, k, are regression coefficients 

or parameters and represent expected change in response variable per unit change in input variable, xj, is 

regressesor variable or input variable or independent variable, ε is random error, which supposed to be 

normally distributed with N (0, σ
2
) for given values of x and y. 

Parameter estimate in multiple linear regression models is done using least squares method. In case that there 

are multiple observations (n) on the response variable y1, y2, …yn, and that there are observation at each input 

variable xij, (i = 1, 2, …, n) than it can be represented as matrix in Table 1 an written as[16]: 

                              (6) 

             

 

   

              (7) 

 

Table 1. Multiple linear regression model data 

y x1 x2 … xk 

y1 

y2 

… 

yn 

x11 

x21 

… 

Xn1 

x12 

x22 

… 

Xn2 

… 

… 

… 

… 

x1k 

x2k 

… 

Xnk 
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Referring to Table 1, it can be formulated using the general multivariate linear regression model in matrix 

form as follows:    

                            (8) 

where, Y denotesan (n x 1) vector of dependent variable observation, X is a n x (k+1) matrix of independent 

variables, β is a ((k+1) x 1) vector of unobserved parameters of interest, and ε is an (n x 1) random errors 

vector. Subscript n is a number of observations, subscript k is a number of independent variables. The general 

matrix form of the model becomes as follows: 

  

  
  
 
  

   

       
       
   

    
    
  

           

  

  
  
 
  

   

  
  
 
  

  (9) 

 

After slowing the function that minimizes sum of squared errors ε
2
, the least squared estimator of   can be 

calculated from the following:  

         
  

    (10) 

Significance test of regression model is to determine existence of the significant relationship between input 

variable and output variable. In this case it is tested hypothesis assuming that a least one   parameter differs 

from the others. 

 
H0: β1 = β1 = ... βk = 0  

H1: βj ≠ 0 for at least one j different than zero. 
(11) 

The procedure of test involves an analysis of variance (ANOVA) and performing F-test. Observed value is 

calculated as the ratio between regression mean squares (   ) and error mean squares     (error variance): 

    
   
   

 

   

 
   

     

 (12) 

where,     regression sum of squares,     is error sum of squares,k is degree of freedom for the numerator, (n 

‒ k ‒ 1) is degree of freedom for the denominator. Total sum of squares is addition of regression sum of 

squares and error sum of squares and it is calculated as:  

                       
 

   

          
 

 

   

 (13) 

whre,     is the predicted value for the ith test,    is the mean of all response variable observations,    is the ith 

observed value of the response variable.  

       
                         
                           

  (14) 
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H0 is going to be rejected if observed value of    is grater than its critical value           . The critical value 

is taken from corresponding statistical table for significance level α, the degrees of fridom for the numerator k, 

and degrees of freedom for the denominator (n ‒ k ‒ 1). Also, H0 is going to be accepted if observed value is 

lower than its critical value (             ). If p-value approach for the statistics    is used than H0 is going 

to be rejected if p < α, and will be accepted if p > α. 

Goodness of fit of a model is measured by coefficient of determination R
2
, which is a measure of how well 

real data points are approximated with regression model. It measures how amount of reductions of variability 

in response variable caused using input variables in regression model.  

    
   
   

 (15) 

Higher value of R
2
 means better fit. If R

2
 = 1 it means that there is perfect fit. However, having a higher value 

dos not meat that there is a good fit and that regression model is good one because adding a new variable to 

the model (either the variable is significant or not) will increase R
2
 value, which will lead to poor prediction. 

To solve this, an adjusted R
2
 is introduced, which will not always increase with adding a new variable. 

     
  

   
   

 (16) 

If non-significant variable is added to the model     
  will decrease and vice versa. 

3. Factorial Design 

Factorial experiments can be design with one, two, three and more factors. Experiments with only one factor 

are often called simple comparative experiments. In these cases, t‒test or ANOVA were used for analysis.  

Factorial experiments with two factors (A and B) usually include two level factorial designs for identification 

of factor effects on the response variable by investigating all possible combinations of the factor levels. The 

factor effect is defined as change in the response variable by changing the level of the factor.  

Factorial experiments with multiple factors (A, B, …, K), with two levels ("low" and "high") the complexity of 

experimentation might be a problem. The number of possible combinations goes up with the number of 

factors, for instance a 2-level design with 8 factor has 256 combination which very set such type of 

experiments and analyze data. Multiple factor experiment requires a lot of resources, materials and it is time 

consuming and expensive.  Additional problem with multiple factorial design is to maintain experimental 

conditions unchanged during a huge number of experiments. 

Trying to overcome the problems with multiple factor factorial designs and depending from a case to case, it 

is possible to be designed as Full Factorial Design 2
k
 or Fractional Factorial Design 2

k‒p
. In this case number 2 

represents number of levels, while k is number of factors and p is the fraction size of the full factorial used. 

More details about full factorial and fractional factorial design with examples is provided below[17]. 

3.1. Full Factorial Design 

A full factorial design is convenient for a low number of factors if the resources are available. Conceptual 

approach for DOE is explained for two 2
2
 and three 2

3
 factors as well as general 2

k
 factorial design, in which k 

represents number of factors while number 2 represents number of levels. Uppercase letters A, B, C… are 

usually used for factor designation while lowercase letters are used treatments. Each factor has two levels low 

(‒) and high (+). Number of combinations for 2
2
 is four, for 2

3
 is eight and so on. Each combination is called 

treatment which is represented with a lowercase letter. The number of test units for each treatment is called 
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the number of replicates. For example, if three units / samples were tested at each treatment, the number of 

replicates is three. 

Design matrix for a 2
2
 factorial design is given inTable 2: 

 

Table 2. design matrix and signs for effects in 2
2
 factorial design 

 A B AB 

‒1 

a 

b 

ab 

‒1 

+1 

‒1 

+1 

‒1 

‒1 

+1 

+1 

+1 

‒1 

‒1 

+1 

where, A and B represent factors while AB represents interaction between A and B factor. 

This design is an orthogonal. The following linear regression model is used for the analysis the analysis: 

                          (17) 

Where, x1 and x2 represent coded variables of factors A and B respectively, while x1x2 cross‒product and 

represents AB interaction, xj= ‒1 and xj= +1 represent low and high levels of factors. 

    
 

   
            (18) 

Whre, contrast is obtained from Table 2 as sum of products of signs in corresponding column and the runs 

listed in corresponding rows. 

 

3.2. General 2
k
 Factorial Design 

Experimental data analysis was done using Design of Experiment (DOE) ‒ full factor factorial design. 

Generalized case of a 2
k
 factorial design is introduced and applied in this study, where k is number of factors 

at two levels.  Statistical model includes k main effects,  
 
 
  two‒factor interaction,  

 
 
  three‒factor 

interactions, …,  
 
 
  one k‒factor interaction. The procedure for a 2

k
 factorial design was the following:  

1. estimated factor effect ‒ effects are estimated and their magnitudes were examined with the aim of 

important factors identification; 

2. initial model formulation ‒ full model is included that takes in account all main effects and 

interactions; 

3. statistical testing ‒ ANOVA is used to test significance of main effects and interactions; 

4. model refinement ‒ non-significant factors from initial model are removed; 

5. residual analysis ‒ to check adequacy of the model and assumptions; 

6. result interpretation ‒ graphical analysis of the results such as main effects, interactions etc. 

General form of ANOVA mentioned in step 3 is shown in the following table [17]: 
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Table 3. ANOVA for a general 2
k
 design 

Source of variation Sum of squares Degrees of 

freedom 

Mean Square Fo 

k main effects     

A 

B 

… 

K 

SSA 

SSB 

… 

SSK 

1 

1 

… 

1 

    
   
   

    
   
   

 

 
 
 
  two‒factor 

interaction 

    

AB 

AC 

… 

JK 

SSAB 

SSAC 

… 

SSJK 

1 

1 

… 

1 

     
    

          
    

    
   

 

 
 
 
  three‒factor 

interactions 

    

ABC 

ABD 

… 

IJK 

… 

SSABC 

SSABD 

… 

SSIJK 

… 

1 

1 

… 

1 

… 

… … 

 
 
 
 k‒factor 

interaction 

    

ABC…K 

Error 

Total 

SSABC…K 

SSE 

SST 

1 

2
k
(n‒1) 

n2
k
‒1 

… … 

 

To estimate sum of squares and effects, contrasts associated with the effect were determined first.  

                               (19) 

 

where, a, b, …, kare experiment treatment combinations. 

After computation of the contrast, the effects and the sum of squares can be estimated as follows: 

       
 

   
               (20) 

 

         
 

   
              

  (21) 

where, n represents number of replicates. 
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Total sum of squares is calculated using the following equation: 

 

                  
 

 

   

 

   

 

   

               (22) 

 

where,      is an observation for factor A at i-th level (i = 1, 2, … a) and for B factor at j-th level (j = 1, 2, … 

b) and for k-th replicate (k = 1, 2, … n).  

 

Sum of squares of error can be obtained from using the following equation: 

             (23) 

where,      is model sum of squares and it is equal:                   . 

 

3.3. Fractional Factorial Design 

If the number of factors is increased, then the number of test units and treatment combinations (runs) is going 

to be increased. For instance, for 5 factors, 32 units and treatments are needed (2
5
=32). Since a low number of 

main effects and lower order interactions are significant to the response variable, and usually higher order 

interactions are not significant to the response variable, than fractional factorial designs are introduced. 

Therefore, fractional factorial designs take in account only a low number of main effects and lower order 

interactions. The higher order interactions are neglected due to its negligible effects on the response variable. 

For instance, 2
3
 = 8, and has 8 treatment combination and 8 test units is required. For some reason he cannot 

afford all 8 combinations he decided to run one half factorial design 2
3‒1

 = 4. Therefore, instead of 8 test units 

he will test only 4. Now he needs to determine which four treatment combinations to test.  As the first step, he 

complete 2
3
 full factorial design matrix shown in Table 4 and selected those with positive values in ABC 

column as it shown in  

Table 5. 

 

Table 4. Full 2
3
 factorial design matrix 

  I A B AB C AC BC ABC 

(1) 1 -1 -1 1 -1 1 1 -1 

a 1 1 -1 -1 -1 -1 1 1 

b 1 -1 1 -1 -1 1 -1 1 

ab 1 1 1 1 -1 -1 -1 -1 

c 1 -1 -1 1 1 -1 -1 1 

ac 1 1 -1 -1 1 1 -1 -1 

bc 1 -1 1 -1 1 -1 1 -1 

abc 1 1 1 1 1 1 1 1 
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Table 5. The 2
3‒1

 factorial design factorial design matrix with the defining relations I = ABC and I = ‒ABC 

  I A B AB C AC BC ABC 

a 1 1 -1 -1 -1 -1 1 1 

b 1 -1 1 -1 -1 1 -1 1 

c 1 -1 -1 1 1 -1 -1 1 

abc 1 1 1 1 1 1 1 1 

(1) 1 -1 -1 1 -1 1 1 -1 

ab 1 1 1 1 -1 -1 -1 -1 

ac 1 1 -1 -1 1 1 -1 -1 

bc 1 -1 1 -1 1 -1 1 -1 

 

 

 

Figure 4. The 2
3‒1

 factorial design factorial design orthogonal representation with defining relations: (a) 

principal fraction I = ABC; (c) alternative fraction I = ‒ABC 

 

In this example ABC is called the generator. It noticed that some columns in  

Table 5 have the same values (they are the same) and they are colored in the same color (I = ABC, A = BC, B 

= AC, C = AB), where I is called defining relation, which may be aliased with several effects. The alias can be 

determined by using the defining relation I = ABC by multiplying any column by the defining relation yields 

the aliases such as: A · I = A · ABC = A
2
BC . Since square of any column is equal to identity I, then it can be 

written as: A = BC. The other aliases may be obtained, B · I = B · ABC = AB
2
C and C · I = C · ABC = ABC

2
, 

and replacing squared member by I it is obtained B = AC, C = AB. Therefore, when A, B and C is estimated it 

is actuality estimated A + BC, B + AC, C + AB.  

Resolution a two-level fractional factorial design 2
3‒1 

is called a resolution III design andit is equal to the 

number of letters in the shortest word in the defining relation in which Roman numbers in subscript are used 

to define resolution (e.g.     
    design for I = ABC and I = ‒ABC;    

    design for I = ABCD and I = ‒ABCD 

etc.). 

Designs with a resolution less than III are never used. Fractional factorial designs with the highest available 

resolution with their defining relations is shown in Table 6. 

 

abc bc

c

+ + ac   

C C

b      ab

+ +

B B

‒ ‒ ‒ ‒

A a (1) A

(a) (b)
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Table 6. The 2
3‒1

 factorial design factorial design matrix with the defining relations I = ABC and I = ‒ABC 

Number of factors Fraction Resolution Runs (treatments) Defining relation 

3 2
3‒1

 III 4 I = ABC 

4 2
4‒1

 IV 8 I = ABCD 

5 2
5‒1

 V 16 I = ABCDE 

6 2
6‒1

 VI 32 I = ABCDEF 

7 2
7‒1

 VII 64 I = ABCDEFG 

 

4. Application 

4.1. The 2
4
Full Factorial Design 

DOE a very suitable tool used for process performance and product quality improvement [18], for solar 

technologies [19] etc. In this example DOE is applied on injection-molding process with the aim of improving 

product quality such as excessive flash. Factors considered as affecting for flash formation are: pack pressure 

(A), pack time (B), injection speed (C), and screw RPM (D), while clamping pressure, injection pressure and 

melting temperature were under control. Each factor affecting flash formation is considered at low and high 

levels and shown in Table 7. 

Table 7. Factors contributing to flash formation  

FACTORS low  (‒1) High  +1 

Pack pressure (A) in bar 10 30 

Pack time (B), in sec 1 5 

Injection speed (C) in mm/sec   12 50 

Screw RPM (D) in rpm 100 200 

 

The design matrix for 2
4
 factorial design and single replicate response data for flash size in millimeters is 

shown in Table 8. 

Table 8. Design matrix for flash formation 

Run Run 

label 

A B C D AB AC AD BC BD CD ABC BC

D 

AC

D 

AB

D 

ABCD Flash 

(mm) 

1 (1) -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 0.22 

2 a 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 6.18 

3 b -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 0 

4 ab 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 1 -1 1 5.91 

5 c -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 -1 -1 6.6 

6 ac 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 6.05 

7 bc -1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 6.76 

8 abc 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 8.65 

9 d -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 0.46 

10 ad 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 5.06 

11 bd -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 0.55 

12 abd 1 1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 -1 4.84 

13 cd -1 -1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 11.55 

14 acd 1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 9.9 

15 bcd -1 1 1 1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 9.9 

16 abcd 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9.9 
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Applying Equations (19) and Equation (20) in the design matrix (Table 8) main effects are calculated and 

shown in Table 9. 

Table 9. Factor effect estimate and sum of squares  

Model 

term 

Effects Coefficients = 

(effect / 2) 

SS Percent contribution 

A 2.5575 1.27 26.16323 0.12126637 

B 0.061875 0.03 0.015314 7.0981E-05 

C 5.76125 2.88 132.768 0.6153788 

D 1.47125 0.73 8.658306 0.04013119 

AB 0.466125 0.23 0.86909 0.00402823 

AC -2.6345 -1.31 27.76236 0.12867835 

AD -0.748 -0.374 2.238016 0.01037319 

BC 0.218625 0.10 0.191188 0.00088615 

BD -0.507375 -0.25 1.029718 0.00477273 

CD 1.82325 0.91 13.29696 0.06163133 

ABC 0.556875 0.27 1.240439 0.00574943 

BCD -0.598125 -0.29 1.431014 0.00663274 

ACD 2.22045E-16 1.11E-16 1.97E-31 9.1409E-34 

ABD -0.130625 -0.06 0.068252 0.00031635 

ABCD -0.067375 -0.03 0.018158 8.416E-05 

Mean
4
  5.78   

In this example there is a problem to apply F-test. Since there is only one replicate of the response variable F-

test is not possible to be done because error degrees of freedom is zero (MSE = SSE/0; ‒ division by zero is 

undefined). Potential solution can be a graphical solution such as Normal probability diagram of effects
5
, or 

dropping entire factors from the model. Therefore based on Table 9, a graphical solution is used to represent 

main effects and identification of those significant, which is shown in Figure 5. 

 

Figure 5. Normal probability plot of the effects 

                                                      

 
4
Mean response, calculated as average flash value. 
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From normal probability diagram of effects, it is observed that A, C, D, are significant factors and AC, and CD 

are significant interactions. Plots of the main effects of factor A, C, D as well as AC and CD interactions are 

shown in Figure 6. 

 

   

a) b) c) 

 
 d)                                                        e)  

Figure 6. Main effects and interactions 

 

Refereeing to Figure 6 it is observed that all three main effects are positive indicating that the molding process 

supposed to be performed on low level to minimize flash size. Alongside main effects there are significant 

interactions. Since main effect are involved with significant interactions than they have no much meaning. 

Screw RPM and injection speed have little meaning at high pack pressure but has better performances in 

reducing flash size at low level. Therefore, the best setup for getting better product quality (reducing flash 

size), is obtained when all factors A, C, D are at the low level. 

 

Since factor B is not significant it is dropped from the model. All associated interactions with B factor are 

dropped from as well.  Therefore, the design becomes a 2
3
 factorial design with two replicates so called 

hidden replication (still has 16 responses).  In this the mean case sum of squares of error (MSE) can be 

calculated because degrees of freedom are different than zero (2
k
(n‒1) = 2

3
(2‒1) = 8). ANOVA result for 2

3
 

factorial design with two replicates is shown in Table 10. 
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Table 10. Factor effect estimate and sum of squares  

  SS DF MSS Percent 

contribution 

F0 Fcr = 

Fα=5%,ν1,ν2 

F0> Fα=5%,ν1,ν2 

A* 26.16 1 26.16 0.1212 29.47 5.32 Sign. 

C* 132.76 1 132.76 0.6153 149.57 5.32 Sign. 

D* 8.65 1 8.65 0.0401 9.75 5.32 Sign. 

AC* 27.76 1 27.76 0.1286 31.27 5.32 Sign. 

CD* 13.29 1 13.29 0.0616 14.97 5.32 Sign. 

Model 

(SSM) 

208.64       

Error (SSE) 7.10 8 0.88     

Total (SST) 215.75 15 14.38         

Where, total sum of squares (SST) is obtained using Equation (22), model sum of squares is obtained as SSM = 

Σ SSA,B,C…K = SSA + SSC + SSD + SSAD + SSCD, while error sum of squares is obtained as SSE = SST ‒ SSM.  

Regression model that represent predicted/fitted value for flash formation is given below, and includes only 

significant factor and interactions. 

                                           (24) 

Based on Equation (24), it is possible to perform diagnostic check if it is applied to the residuals.  

Table 11. Factor effect estimate and sum of squares  

Run label y           

(1) 0.22 -0.427625 0.647625 

a 6.1875 4.764375 1.423125 

b 0 -0.427625 0.427625 

ab 5.9125 4.764375 1.148125 

c 6.6 7.968125 -1.368125 

ac 6.05 7.891125 -1.841125 

bc 6.765 7.968125 -1.203125 

abc 8.657 7.891125 0.765875 

d 0.462 1.043625 -0.581625 

ad 5.06 6.235625 -1.175625 

bd 0.55 1.043625 -0.493625 

abd 4.84 6.235625 -1.395625 

cd 11.55 9.439375 2.110625 

acd 9.9 9.362375 0.537625 

bcd 9.9 9.439375 0.460625 

abcd 9.9 9.362375 0.537625 

Normal probability plot of residuals and residuals versus predicted value of flash size is shown in Figure 7.  
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Figure 7. Model adequacy checking 

Residuals versus predicted value plot shows randomly dispersed data around the horizontal axis (predicted 

values), therefore the variance has no tendency to change along predicted value axis indicating that linear 

regression model is appropriate for the data. 

4.2. The 2
4‒1

Fractional Factorial Design 

Applying the 2
4‒1

 fractional factorial design on the previous example with the highest possible resolution (IV) 

and using defining relation I=ABCD it is obtained the 2
3
design, which is shown in Table 12. 

Table 12. The    
   

 factorial design with the defining relation I=ABCD 

   Basic Design         Flash   Residuals 

RUN  Run 

label 

A B C D=ABC AB AC AD y    Σ(yi‒ )
2
  

      

 

 alias  BCD ACD ABD ABC BC BD CD         

1 (1) -1 -1 -1 -1 1 1 1 0.22 -0.8975 30.4704 1.1175 

2 ab 1 1 -1 -1 1 -1 -1 5.9 4.7375 0.0256 1.1625 

3 ac 1 -1 1 -1 -1 1 -1 6.05 7.2125 0.0961 -1.1625 

4 bc -1 1 1 -1 -1 -1 1 6.7 7.8175 0.9216 -1.1175 

5 ad 1 -1 -1 1 -1 -1 1 5.1 6.2625 0.4096 -1.1625 

6 bd -1 1 -1 1 -1 1 -1 0.55 1.6675 26.9361 -1.1175 

7 cd -1 -1 1 1 1 -1 -1 11.5 10.3825 33.1776 1.1175 

8 abcd 1 1 1 1 1 1 1 9.9 8.7375 17.3056 1.1625 

 mean        5.74    

Referring to Table 12 factors A, B and C, represent basic design factors that are aliased with three factor 

interactions BCD, ACD and ABD respectively, while factor D is aliased with ABC three factor interaction. 

The two factor interactions AB, AC and AD are re aliased with the other two factor interactions BC, BD and 

CD respectively. Therefore, the relationships are: A = BCD, B = ACD, C = ABD, D = ABC, AB = BC, AC = 

BD and AD = CD. Using Equation (20) and multiplying corresponding column with measured values (flash) 

and summing up, a contrast is obtained for the certain column. Using Eq. (21), contrast is divided by       

and main effects are obtained for number of replicates n = 1, and number of factors k = 3 and shown in Table 

13. 
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Table 13. Estimate of effects and aliases 

Effect estimate Aliased structure 

[A] = 1.995 [A] → A + BCD 

[B] = 0.045 [B] → B + ACD 

[C] = 5.595 [C] → C + ABD 

[D] = 2.045 [D] → D + ABC 

[AB] = 2.28 [AB] → AB + BC 

[AC] = -3.12 [AC] → AC + BD 

[AD] = -0.52 [AD] → AD + CD 

Plot of main effects is shown in Figure 8. 

 

 

Figure 8. Normal Probability plot of effects 

From normal probability diagram of effects it is observed that A, C, and D, are significant factors and AC, and 

AB are significant interactions. Based on the above analysis it is possible to predict flash size using the 

following regression model: 

                                                (25) 

5. Conclusion 

Thanks to software development, the use of DOE as scientific tool has increased rapidly in past 20 years in 

manufacturing and non‒manufacturing industries over the world. It was most popular tool used by scientist in 

medicine (with 18%), engineering and biochemistry (with 20%), physics and computer science (with 13%), 

providing about 50% participation of these scientific areas compared to the all other scientific areas. The trend 

of use of DOE is rapidly growing and it is expected to slow down in the near future for current scientific 

areas, but also will expanded over new scientific areas and have rapid grow there.   

Implementing valid and efficient factorial experiments provide quantitative data that can be used as support 

for decision making during system, process and product design or improvement. Full factorial design and 

fractional factorial design with examples of application of DOE in product quality improvement is presented 

with sep‒by‒step procedures and result interpretation. This can be a very useful guide to experimenter how to 

design and conduct experiments, and how to analyze and interpret data. 
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