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Abstract 
 
The objective of this paper is to present new and simple mathematical approach to deal with uncertainty 
transformation for fuzzy to random or random to fuzzy data. In particular we present a method to describe fuzzy 
(possibilistic) distribution in terms of a pair (or more) of related random (probabilistic) events, both fixed and 
variable. Our approach uses basic properties of both fuzzy and random distributions, and it assumes data is both 
possibilistic and probabilistic.  We show that the data fuzziness can be viewed as a non uniqueness of related 
random events, and prove our Uncertainty Balance Principle. We also show how Zadeh’s fuzzy-random 
Consistency Principle can be given precise mathematical meaning. Various types of fuzzy distributions are 
examined and several numerical examples presented.  
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1. Introduction 
In studies of uncertain phenomena, several methods are 
employed. Two most widely used are random and 
fuzzy data approaches. They are typically described in 
terms of random and fuzzy distributions [7]. These two 
methods look at the uncertainty from different points of 
view. In literature one can find various terms for fuzzy 
data, such as possibilistic, soft and subjective [3], as 
opposed to random called probabilistic, hard and 
objective [21]. These terms are somewhat arbitrary and 
there are authors who used probability distributions to 
represent subjective information [42, 43, 44]. Similarly, 
other authors used fuzzy sets and possibility 
distributions to describe objective imprecise 
information either about constants or about probability 
distributions [41]. Historically, probability is defined in 
the context of some physical measurement and 
mathematically in terms of probability axioms by 
Kolmogorov [34] where probability space, events and 
associated probabilities are defined. Related notion of 
random variables are defined in terms of mappings 
from probabilistic space of events to real line, carrying 
an underlying probabilities from the original event 
space. Indexing with some independent variable, such 
as time, one can define random processes as dynamic 
versions of random variables. On the other hand fuzzy, 
possibilistic approach relates to some intuitive 
uncertain notion (often of human nature) of an 
underlying uncertain event with some confidence 
(presumption) levels defined. Often in fuzzy data there 
is no reference, at least not directly, to any experiment 
or hard measurement. It is more representation of our 
confidence level in an uncertain phenomenon. If a need 
arises to combine fuzzy and random data, such as in 
soft/hard data fusion, [7],[21], each distribution is 

typically handled separately for a specific problem at 
hand, and to our knowledge no rigorous mathematical 
methodologies exist for a practical uncertainty 
alignment between two types of data. In a fundamental 
paper by Zadeh [2], a concept of possibilistic fuzzy 
distributions was introduced as opposed to random and 
probabilistic distributions. The possibilistic distribution 
is shown to be equivalent numerically to fuzzy 
membership function. In classic fuzzy references 
[7],[8], various algebraic operations on fuzzy data are 
dscribed, as well as the methods as how to combine 
fuzzy and random data in meaningful ways. One 
obvious method is to normalize random data 
distribution to unity and combine it with the fuzzy data. 
Mathematically correct in principle, this method can be 
considered as a sort of uncertainty alignment from 
random to fuzzy data. Unfortunately the method is not 
practical because of loss of information in the process 
[7]. Also, in our opinion this method does not have any 
strong conceptual ground.  Another approach is to 
define hybrid data which retains both fuzzy and 
random properties of original data. One can define 
random fuzzy data where fuzzy distribution argument 
is “randomized” according to a probabilistic 
distribution density. Or, one can consider fuzzy random 
data where the value of random distribution density is 
fuzzified according to fuzzy distribution. From these 
original ideas, there was very extensive development 
last two decades, [9]-[19] in the area of "random fuzzy 
sets" and "fuzzy random variables". Neither is the focus 
of our paper. The subject of our paper is to consider 
fuzzy to random uncertainty alignment (i.e. starting 
with  fuzzy  and  generating random data, or vice versa)  
using very basic properties of fuzzy and random 
distributions.  Our  motivation  is to produce a common  
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fuzzy or random data base to process the data further 
for either decision making process for a given 
application or a possible data filtering. In our approach 
we employ three step methodology, i.e.: 

(I) Decompose any fuzzy distribution via 
cumulative (probabilistic) distribution functions (CDF). 
We do not use probabilistic density functions (PDF), a 
derivative of CDF, for two reasons. First, it may not 
always exist [34], and second is that CDF is normalized 
to unity by the definition, similar to fuzzy distributions.  

(II) Use basic probabilistic axioms whereas the 
CDFs are defined in terms of random event 
probabilities of the form P(X≤x), [34],[35], and 
combined with (I) above resulting in probability 
differences ∆P(Ai) for some TBA events Ai. 

(III) Use Big Data or some other statistical 
methodologies to produce best ∆P(Ai) choices in (II). a 

 
The result of our approach is that for any unimodal 
fuzzy data, fuzzy distribution can be thought of as a 
combination of fixed and variable probability events. In 
the case of multimodal fuzzy data, this representation 
consists of a number of fixed and variable random 
events. We believe  our approach can bring about new 
avenues in aligning fuzzy and random data, in 
particular in very important area of soft-hard (human-
machine) data fusion [21]. In our previous introductory 
paper [40] we presented the basics of our uncertainty 
alignment methodology. This paper extends these 
results with additional fuzzy to random alignment 
methods, and it presents a unifying Uncertainty 
Balance Principle of the general form Π(x) + 
∑∆P(Ai,Aj) = 1 and Π(x) =  ∑∆P(Ai,Aj) for all 
alignment cases. The paper is organized as follows. 
Section 2  summarize, very briefly, basic probabilistic 
and possibilistic results employed in this paper.  We do 
not aim to be complete with these summary, just what 
is of interest for the current paper. In Section 4 we 
introduce our main fuzzy to random uncertainty 
alignment arguments using standard triangular fuzzy 
distribution (TFN). The approach applies to any fuzzy 
distribution. We describe steps which result in fuzzy 
distribution as a combination of fixed and variable 
probabilities. In Section 4 we formalize and prove key 
results:  

(i) Probabilistic decomposition of an n-modal 
fuzzy distribution 

(ii) Universal Uncertainty Balance Principle 
which is presumption and x-invariant, and related 

(iii) Uncertainty Change Law. 
  

In Section 4.7 we point to a potential use of our 
methodology in Data Fusion and Decision Making 
situations. Section 5 presents numerical examples  
showing fuzzy distributions in terms of fixed (unique) 
and variable (non unique) random events and related 
probabilities. Symmetric and non symmetric TFN, 
convex and non convex distributions are illustrated. 
The numerical examples confirm results of Section 4. 
Section 6 has the pseudo code for the uncertainty 
alignment algorithms, Conclusion is in Section 7, and 
key references are included in Section 8. 

2. Random (Probabilistic) Distributions    

       And Fuzzy (Possibilistic) Distributions 
For the purposes of this paper we recall few basic 
classic probability and cumulative distribution facts as 
well as elementary fuzzy distributions results used in 
this paper.  

2.1.  Probability and Cumulative Distribution 

The random events A, A1, A2, etc. are the subsets of a 
certain event S and they are assigned probabilities P. 
From classic references [34], [35] we have: 
 
              0 ≤ P(A) ≤ 1,  P(S) = 1, P(O) = 0                 (1) 

      P(A1UA2) = P(A1) + P(A2) – P(A1∩A2)            (2) 
 
where O is an impossible event. If  A1UA2 = S and two 

events are mutually exclusive, then P(A1UA2) = 

P(A1)+P(A2)=1, hence A1 and A2 are complementary 

with P(A1) = 1 – P(A2) = P(A2*) and A2* indicates 

complementary event to A2. For any event A, the 

following holds: 

                            P(A) + P(A*) = 1                            (3) 
 

If the events are independent, then we have: 
 
                   P(A1∩A2) = P(A1)P(A2)                        (4) 

 
Mutual exclusivity and independency do not imply each 
other.  A random variable X(ξ)  is a function that 
assigns a real number to each outcome ξ in the sample 
space S of a random experiment [34],[35]. If an event A 
is given in S such that A={ξ: X(ξ)ϵB}, where B is a 
subset of real line R, then A and B are equivalent 
events with the same probability: 
 

                P(XϵB) = P(A) = P(ξ: X(ξ) ϵB)               (5) 
 
Cumulative distribution function (CDF) of X is defined 

as: 

          FX(x) = F(x) = P(X ≤ x), - ∞ ≤ x ≤ + ∞         (6) 
 

which is a probability that  X has a value in (-∞, x], and 

hence it is a function of x. Figure 1 shows uniform CDF 

and related PDF, which is a derivative of CDF. The 

properties of CDF and PDF can be found in any classic 

probability theory reference, such as [34] and [35]. 
 
 
 

 
Figure 1. Uniform CDF and PDF 

In this paper we deal with the cumulative rather than 

density functions (which may not exist in some cases), 

for mathematical as well as conceptual and practical 

reasons.  

2.2.   Possibility and Fuzzy Distributions 

x 

   a            b                               a             b 

 

x 

1/(b-a) 
1 

F(x)  f(x) = F’(x)  
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Possibility theory was developed early on by Zadeh [2]-

[5] as an extension of fuzzy sets theory, in the context 

of information meaning, in particular in the context of 

semantic variables and human soft (fuzzy) data. 

Possibility was associated with fuzziness, either due to 

lack of knowledge or related to the subset for which 

possibility is defined. Since its inception possibility 

theory was developed in an axiomatic framework. We 

do not aim to discuss recent theoretical developments in 

possibility theory which there are many [9]-[19]. We 

simply recall possibility distribution ΠX(ξ) as a fuzzy 

restriction on the values assigned to an uncertain 

variable X and numerically equivalent to fuzzy 

membership function µA(ξ), i.e. ΠX(ξ) = µA(ξ). For 

simplicity of the notation we use Π(x), x representing 

specific choice of fuzzy variable X. Here we recall  just 

a few fuzzy distribution properties which are used in 

this paper. 
 
           0 ≤ Π(A) ≤ 1,   Π(S) = 1, Π(O) = 0               (7) 

 
where O is an empty set and S is a universe of 

discourse, with all subsets to which we can assign 

possibilities. For any A we also have: 
 
                          Π(A) + Π(A*) ≥ 1                          (8) 

 
where A* indicates complementary event to A. The full 

axiomatic description can be found in [18]. 
 

2.3.   Consistency Principle 

We find it useful for our paper to recall Consistency 

Principle between fuzzy and random variable X defined 

in Zadeh’s classic paper [2] as: 
 

      ΓX = ∑ PiΠi = P1Π1+ P2Π2+ …+ PnΠn               (9) 
 

where i=1,…,n and variable X can be interpreted both 

as probabilistic and possibilistic, with the 

corresponding distributions consisting of the same 

number of choices in the interval of interest. 

Consistency Principle carries an intuitive observation 

that reducing the possibility of an event tends to reduce 

its probability. The opposite may not hold. If there is a 

precise (point wise) match between possibilistic and 

probabilistic distributions, Pi = Πi, then:  

 

                        ΓX = ∑ Π2
i = ∑ P2

i                          (10) 
 

Consistency Principle as given in (9) may be useful 

when possibility is known about uncertain event X but 

not the probability. Our paper expands this idea via 

Uncertainty Balance Principle which produces variable 

probability from given possibility. In that sense our 

approach is similar to (10) rather than (9), as shown in 

Section 4. Our approach also lends itself to a precise 

mathematical and quantitative treatment.  
 

3.  Fuzzy To Random Alignment 
 

Methodology described in this paper can be of good use 

in decision making process where data is inherently 

mixed, both soft (fuzzy) and hard (random). Often in 

literature one finds terms such as objective, sensor 

based, or machine for hard data, and subjective, human 

based for soft data. One particular area of interest is 

human-machine (soft-hard) data fusion [21]. The main 

contribution of our work can be understood as two fold: 
  
     (i) If fuzzy data is available, we can produce 

variable random data with variable probabilities 

reflecting original fuzziness.  
 
     (ii) On the other hand, if a variable random data is 

available we can produce corresponding fuzzy 

distribution, both contributions per our Uncertainty 

Balance Principle. 
 

3.1.  General Considerations  
We proceed by considering a typical triangular fuzzy 

distribution number (TFN) given in Figure 2 with the 

interval of interest {a,b,c} for any a, b and c, and the 

corresponding fuzzy distribution Π(x) numerically 

equivalent to the fuzzy membership function µ(x), [2]. 

At this point we will not write equations for the 

segments of Π(x). This is done in Section 6 with 

numerical examples. Note that our approach can be 

applied to any other fuzzy variable, unimodal or 

multimodal, symmetric or not, normal or non normal, 

convex or non convex, trapezoidal or arbitrary shaped 

fuzzy distribution. Section 5.5 shows additional 

examples of fuzzy distributions. The key is that the 

CDF properties [35] are satisfied. Next step is to define 

a pair of CDF’s such as in Figure 1 to “decompose” 

TFN distribution Π(x):  
 

                      Π(x) = F1(x) – F2(x)                         (11) 
 

where F1(x) and F2(x) are shown in Figure 3. They are 

both uniform probabilistic distributions. The purpose of 

the decomposition (11) is a first step in relating fuzzy to 

random variables. Our first idea to define (11) came 

from an obvious fact that CDF is maximum at 1 similar 

to Π(x). Next step is to find a way how to describe both 

rising and falling part of  Π(x), and hence (11) came as 

a natural solution. Recall that a CDF is a probability of 

an event A = “X ≤ x” as given in (6). It is critical we 

assume the uncertain variable X is both possibilistic 

and probabilistic. 

 

Next we take another “probabilistic” step to refine (11) 

using basic probability relation in (2). The key is that 

equation (1) has negative term in it which we can 

associate with F2(x) in (11). This negative term can take 

different form depending how we move different terms 

around in (2). Three methods are described. 
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Figure 2. Triangular fuzzy number (TFN) 

 

 

 
Figures 3. CDF’s  F1(x) and F2(x) 

 
 
3.2.   Method 1 
This method is described in full details in our earlier 
paper [40]. It is summarized here. We rewrite (2) as:  
 

   P(A1) – P(A1∩A2) = P(A1UA2) – P(A2)         (12) 
 

Each side of Equation (12) is a probability and it 
satisfies basic probabilistic axioms in (1) and (2). 
Nice property of (12) is that both sides have 
negative terms, as does Equation (11). See also 
Figure 4. We proceed in two Π(x) parts, rising and 
falling.  
 

Rising Part.  We equate left side of (12) with (11): 
  

 Π(x) = F1(x) – F2(x) = P(A1) – P(A1∩A2)        (13) 
 
from where F1(x) and F2(x) could be uniquely 
associated with the corresponding probabilities in 
(13). The aim of this step is to formally align F1(x) 
with P(A1) and F2(x) with P(A1∩A2), with an idea 
that an intersection of two events A1∩A2 can 
produce probability non uniqueness, whereas A1 
would be fixed. We again recall the fact that CDF 
is a probability of an event per (6). Next, the 
events A2 and A1∩A2 (their probabilities P(A2) and 
P(A1∩A2) given via F1(x) and F2(x)) are to be 
determined.  What is not uniquely determined is A2 
because different A2 can produce the same 
intersection A1∩A2. A little reflection on set theory 
brings us to: 
 

             P(A1∩A2) ≤ P(A2) ≤ 1 - Π(x)                (14) 
 
producing the same P(A1∩A2). The right side 1 – 
Π(x) ≤ Π*(x) represents complementary fuzzy 
distribution to Π(x), which upholds the condition 
in (10). Note that non unique A2 corresponds to 
x≤b, while A2 is unique for b ≤ x, due to a 

simultaneous action of  conditions  in  (14).  One  
can  consider  that the interplay of  unique  P(A1) 
and non unique P(A2) in P(A1∩A2), produces 
“fuzziness” on the left hand side of Π(x). See also 
Figures 5. 
 

Falling Part. We equate right side of (12) with 

(11): 
 

  Π(x) = F1(x) – F2(x) = P(A1UA2) – P(A2)       (15) 
 
 
where P(A2) is uniquely defined in (15). The 
events A1UA2 and A1 are to be determined.  

 

 

 

 

 

 

 

 

 

 

 

 
          Figures 4. Method 1: CDF’s F1(x) and F2(x) 
 
 

 

 
           Figures 5. Rising part bounds on P(A2)  

 

 
Figures 6. Falling part bounds on P(A1) 

 
 

Note that the forms of F1 and F2 are same as before  

but we interpret them differently, i.e. as  P(A1UA2) 

x 

a                b                c 

P(A1) 

x 

 a               b                c 

P(A1UA2) 

x 

a                b                c 

1 

x 

a                b                c 

1 P(A1∩A2) 

x 

F2(x)         P(A1∩A2)         P(A2) 
P(A3) – P(A3∩A4) 
 

a                b                c  

x 

a                b                c 

F1(x)          P(A1)                   P(A1UA2) 

x 

a                b                c 

1 

x 

a                b                c 

1 

x 

a                b                c 

1 

Π(x) = µ(x) 

F1(x) 

F2(x) 1 

1 

1 

1 - Π(x) 

P(A2) 
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and P(A2). To further clarify  A1, we consider 

union A1UA2, which produces the following 

condition on P(A1): 
                  

         Π(x) ≤ P(A1) ≤ P(A1UA2)                   (16) 
 

Figures 6 summarize P(A1) and bounds given in 

(16) for  Π(x) using P(A1UA2). The gray area in 

P(A1) indicates its non unique choices. They will 

all generate the same F1=P(A1UA2). Note that the 

grey area corresponds to b ≤ x, while P(A1) is 

uniquely defined for x ≤ b, due  to a simultaneous 

action of conditions (16). As in Rising Part, one 

can consider that the interplay of unique  A2 and 

P(A2) and non unique A1 and P(A1UA2) is 

equivalent to “fuzziness” of the right hand side of 

Π(x), when b ≤ x. By combining two parts, we 

conclude that non unique choices for A1 and A2 

and their corresponding probabilities P(A1) and 

P(A2), correspond to the non zero part of the 

distribution  Π(x). Outside of  that, when Π(x)=0, 

they can be considered independent for the trivial  

cases  of   probabilities 0 or 1, per Table 1, where 

we used the notation P1=P(A1) and P2=P(A2). Note 

that the non zero Π(x) corresponds to the gray 

shaded areas in Table 1. 
 
Table 1. Π(x), Method 1. Equations (16) and (19) 

x A1 A2 A1  vs.  A2 

0 ≤ x < a P1 = 0 P2 = 0 P1 + P2  = 0 

a ≤ x < b P1 = Π Non 
unique 

P1 + P2  ≤ 1 

b ≤ x < c Non 
unique 

P2 = 1 - Π P1 + P2  ≤ 1 

c ≤ x 0 = P1  P2 = 1 P1 + P2  = 1 
  

Final note is that if we choose (13) for the Falling 

Part instead of (15) we end up with P(A1) and 

P(A2) as constant probabilities, given  Π(x), and 

there will be no “fuzziness” induced by variable 

probabilities.  
  

3.3.  Method 2 

Now we use Equation (2) and define fuzzy 

distribution  (11), with the following choices for 

CDF’s F1(x) and F2(x): 
  
                  F1(x) = P(A1) – P(A1∩A2)              (17a) 

      F2(x) = P(A3) – P(A3∩A4)             (17b) 
  

Venn diagrams in Figures 7 are for x ≤ b with the 

arrows indicating  two evens A1 and A2 “extending” to 

eventually form a certain event with the probability 1, 

with either  P(A1∩A2) = 0 (A1 and A2 meet) or 

P(A1∩A2) ≠ 0 (A1 and A2 overlap), with P(A1) + P(A2) - 

P(A1∩A2) = 1 in either case. This corresponds to the 

presumption (possibility) level of  Π(x) = 1.   
                          
 

  
 

Figures 7. Formation of fuzzy distribution Π(x) in (17a) 
 
 

 

 

 

 

 
 

 

 

 

 
 

Figures 8 Method 2: CDF’s F1(x) and F2(x) 
 
 

For b ≤ x, the same process starts with two new events, 

A3 and A4 with the probabilities in (17b) for F2. For c ≤ 

x we have Π = 0, when the events (A1, A2) and (A3,A4) 

form P1 + P2 - P12 = 1 and P3 + P4 - P34 = 1 canceling 

each other. See Table 2. Figures 8 show probability 

diagrams. The shaded areas indicate non unique 

probabilities. The probability limits are obtained for x ≤ 

b from Figures 7, 8, and from (17a): 
 

         Π(x) = P(A1) – P(A1∩A2)                   (18) 
 

with A1 is chosen first and A1∩A2 and A2 follow, to 

obtain: 
 

  Π(x) ≤ P(A1) ≤ 1              

0 ≤ P(A1∩A2) ≤ 1 - Π(x) 

                         0 ≤ P(A2) ≤ 1 - Π(x)                  (19) 
 
 

Similarly for A3 chosen then A3∩A4 and A4 follow on b 
≤ x, and from (17b): 
 

     Π(x) = 1 -  [P(A3) – P(A3∩A4)]               (20) 
 
producing: 
 

  1 - Π(x) ≤ P(A3) ≤ 1              

0 ≤ P(A3∩A4) ≤ Π(x) 

                            0 ≤ P(A4) ≤ Π(x)                    (21) 
 
 
 

Table 2 has Method 2 summary, with Pi=P(Ai), 
Pij=P(Ai∩Aj), i,j=1,2. Note that the role of events 
A1 and A2 can be reversed, and similarly for A3 
and A4, i.e. either pair of events can be chosen 
first. There may be some TBD probabilistic  
connection between events (A1, A2) and (A3, A4). 
 
Table 2. Π(x) using Method 2, Equations (17a,b) 

x A1,  A3 A2,  A4 A1  vs. A2,  A3 vs A4 

x 

a                b                c  

x 

a                b                c 

F1(x) = P(A1) – P(A1∩A2) 

A1 

A2 

A1 

A2 
A1∩A2 

1 

1 

F2(x) = P(A3) – P(A3∩A4) 
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0 ≤ x ≤ a Pi = 0 Pj = 0 Pk + Pk+1  = 0, k=1,3 

a ≤ x ≤ b 
P3=P4=0 

A1 non 
unique 

A2 non 
unique 

Π = P1 - P12 

0 ≤ P1 + P2 - P12 ≤ 1 

b ≤ x ≤ c 
P1=P2=0 

A3 non 
unique 

A4 non 
unique 

Π = P3 – P34 

0 ≤ P3 + P4– P34 ≤ 1 

c ≤ x Pi = 1 Pj = 1   Pk+Pk+1-Pk,k+1=1, k=1,3 

  

3.4.  Method 3  
We use (1) and define fuzzy distribution 
decomposed as in (11), with the following choices 
for F1(x) and F2(x): 
  
     F1(x)=P(A1UA2)=P(A1)+P(A2) – P(A1∩A2)       (22a) 
  F2(x) = P(A3UA4)=P(A3) + P(A4) – P(A3∩A4)       (22b)   
Figures 7 applies here as well. For b ≤ x, the same 

process starts with two new events (A3,A4) with the 

corresponding F2(x) probabilities (22b). For c ≤ x we 

have Π(x) = 0, when (A1,A2) and (A3,A4) form P1+P2-

P12=1 and P3+P4-P34=1 compensating each other. See 

also Table 3. Figures 10 show two diagrams with the 

corresponding probabilities. The shaded areas indicate 

non unique probabilities. The probability limits similar 

to (14) and (16) can be obtained from Figures 7 and 8, 

as we assume A1 is chosen first and then A2 and A1∩A2 

follow for x ≤ b: 
 

  0 ≤ P(A1) ≤ Π(x)               

0 ≤ Π(x) – P(A1) ≤ P(A2) ≤ Π(x) 

                 0 ≤ P(A1∩A2) ≤ P(A1) ≤ Π(x)           (23) 
 

which is equivalent to: 
 
                0 ≤ P(A1), P(A2), P(A1∩A2) ≤ Π(x)           (24) 
 
Similarly for A3, A4 and A3∩A4 for b ≤ x we have: 
 
        0 ≤ P(A3), P(A4), P(A3∩A4) ≤ Π(x)           (25) 
 
Table 3 has Method 3 summary. Note that the role 
of A1 and A2 can be reversed, and also for A3 and 
A4. We assume that the events A1, A2 are not 
related to A3, A4. 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figures 9. Method 3: CDF’s F1(x) and F2(x) 
 
 

Table 3. Π(x) using Method 3, Equations (22a,b) 

x A1,  A3 A2,  A4 A1  vs. A2,  A3 vs A4 

0 ≤ x < a Pi = 0 Pj = 0 Pk + Pk+1  = 0, k=1,3 
a ≤ x < b 
P3=P4 =0 

A1 non 
unique 

A2 non 
unique 

Π = P1 + P2 - P12 

0 ≤ P1 + P2 - P12 ≤ 1 
b ≤ x < c 
P1=P2=0 

A3 non 
unique 

A4 non 
unique 

Π = P3 + P4 – P34 

0 ≤ P3 + P4– P34 ≤ 1 

c ≤ x Pi ≤ 1 Pj ≤ 1 Pk+Pk+1-Pk,k+1=1,k=1,3 

 

3.5.  Other Methods 

Before we state the main results in the next Section 4, 

few comments are in order. By considering Section 3.1 

and Equation (11) we can attempt to decompose Π(x) in 

other ways. For example an “obvious” choice is  Π(x) = 

F1(x) – F2(x) = P(A1) – P(A2). The problem with this 

choice is that  it does not offer any probability 

variations (non uniqueness). Similarly if we choose 

Π(x) = F1(x) – F2(x) =  [P(A1) + P(A2)] – [P(A3) + 

P(A4)], the same comment applies, i.e. once we choose 

say P(A1), then P(A2) follows uniquely, and the same 

for P(A3) and P(A4). We comment on this further in 

Section 4.5. 
 

4.   Uncertainty Balance Principle 

This section advances Section 4 results and states 

several general results. The main goal is to produce a 

usable and practical result to relate fuzzy and variable 

random data. 
 

4.1.  General Considerations 
For simplicity we assume TFN within the intervals 
{a,b} and {b.c} non zero Π(x). The results are general 
for any fuzzy distribution Π(x) which can be 
represented by repeated procedure (11) for increasing x 
values. These distributions can be non convex, non 
normalized, and of other shapes, symmetric, non 
symmetric, unimodal and multimodal. Figure 10 shows 
a bimodal fuzzy distribution consisting of two non-
overlapping TFNs. They can also overlap. 
 
 

 
 

 

 

 

 

 

                       Figure 10. Bimodal TFN 
 

The Π(x) decomposition consists of two pairs of 

cumulative probabilistic distributions: 
 

        Π(x) = F1(x) – F2(x) + F3(x) – F4(x)              (26) 
 
By an induction extension of (2), for “n” modal 
TFN we have the following general result: 
 
Theorem 1. Fuzzy n-modal distribution function 
Π(x) can be decomposed as a difference of sums of 
probabilistic cumulative distributions: 
 
                        Π(x) = ∑ Fi(x) – ∑ Fj(x)                    (27) 

 
 

x 

    a1    b1              c1      a2     b2   c2 

1 
Π(x) = µ(x) 

x 

F2(x) = P(A3UA4) = P(A3) + P(A4) – P(A3∩A4) 
 

a                b                c  

x 

a                b                c 

F1(x) = P(A1UA2) = P(A1) + P(A2) – P(A1∩A2) 
1 

1 
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with i = 2k-1, j = 2k, k = 1,2,…,n, for any x,  where the 

odd functions amount for rising portion of fuzzy 

distribution and even for the falling portion. 
 
For an unimodal distribution, n = 1, (27) reduces to 

(11), and for a bimodal one, n = 2, and (27) reduces to 

(26). In terms of expressing (27) as specific 

probabilities, we have three possibilities depending on 

how we use (1). 
 

4.2.  Method 1 

Using (26) and Section 3.2 results for bimodal case, we 

have: 
 

      Π(x) = P(A1)–P(A1∩A2)+P(A3)–P(A3∩A4)       (28a) 
  

for two rising parts of  Π(x) and: 
 

     Π(x) = P(A1UA2)–P(A2)+P(A3UA4)–P(A4)       (28b) 
 

for  two falling parts of  Π(x). With (27) and (28a,b) we 

have the following: 
 
 
Corollary 1.1.  Fuzzy n-modal distribution 
function given in Theorem 1 can be further 
expressed as a difference of sums of probabilities: 
 
                 Π(x) = ∑P(Ai) – ∑P(Ai∩Aj)                  (29a) 
 
for two rising parts of  Π(x), and: 
  
                 Π(x) = ∑P(AiUAj) – ∑P(Aj)                  (29b) 
 

for  two falling parts of  Π(x), with i = 2k-1 and j = 2k, 

k = 1,2,…,n.   
 
When n=1, for unimodal fuzzy distribution, (29a,b) 

reduce to (13) and (15), and for n=2, bimodal fuzzy 

distribution, (29a,b) reduce to (28a,b), respectively. 

Next, we define: 
 

             ∑∆P(Ai,Aj) = ∑∆P(Ai) + ∑∆P(Aj)               (30) 
 

as total probability change, with: 
 
                  ∆P(Ak) = P(Ak)M – P(Ak)m                      (31) 
 
as probability range for event Ak, where “M” stands for  

maximum value, and “m” is for minimum value. We 

now state  the following general result which relates a 

fuzzy distribution and a set of changes in related 

random event probabilities.  
 
Theorem 2. Any multimodal fuzzy distribution Π(x) 

can be expressed in terms of fuzzy presumption-

invariant and x-invariant universal fuzzy-random 

Uncertainty Balance Principle: 
 
                         Π(x) + ∑∆P(Ai,Aj) = 1                   (32a)   

                           Π*(x) ≥ ∑∆P(Ai,Aj)                     (32b) 
 
for any x, with  i = 2k-1, j = 2k,  k = 1,2,…,n.  
  
Note that practical implication of this Theorem is to be 

able to express fuzzy data distribution as a combination 

of a number of variable random events and 

corresponding probabilities. We illustrate this notion in 

Section 5 with numerical examples, and in particular in 

Example of Section 5.5 which discusses a specific 

fuzzy distribution and specific resulting variable 

probabilities. To continue, note that for simplicity, we 

did not burden the notation in Theorem 2 with stating 

dependency of ∆P’s on x. The key feature of Theorem 2 

is that it holds for any x and any presumption level of 

Π(x).  We prove the unimodal case when n=1, for TFN 

in Figure 2.  The proof for any n and Π(x) is 

straightforward, by repeating the procedure n times. 

From (14) and (16) we obtain (see also Section 5 

examples): 
 
For x ≤ b:                                                                   (33) 

                                     P(A1)m = P(A1)M 

                     ∆P(A1) = P(A1)M – P(A1)m = 0 

                                     P(A2)M = 1- Π(x), P(A2)m = 0 

                     ∆P(A2) = P(A2)M – P(A2)m = 1 – Π(x) 
 

For b ≤ x:                                                                   (34) 
 

                                     P(A1)m = Π(x), P(A1)M = 1 

                     ∆P(A1) = P(A1)M – P(A1)m = 1 – Π(x) 

                                     P(A2)m = P(A2)X 

                     ∆P(A2) = P(A2)M – P(A2)m = 0 
 
Note that the point “b” is maximum  Π(x) point of a 

TFN, or any other unimodal fuzzy distribution. 

Replacing (33) and (34) into (32), for n = 1, we obtain: 
 
               Π(x) + ∆P(A1) + ∆P(A2) = 1                     (35) 

 

or: 

                     Π(x) + ∆P(A1,A2) = 1                        (36a) 

                       Π*(x) ≥ ∆P(A1,A2)                          (36b)                                
 
holding across the full range of argument x and Π(x), 

and (36b) follows from (10). 
 
One can interpret Theorem 2 result as “randomness” 

pool left to form fuzzy distribution to a random 

certainty. This also means that for higher 

“presumption” levels, near 1, corresponding 

randomness pool is smaller (less uncertainty to adjust) 

and for lower “presumption” levels it is larger (more 

uncertainty to adjust). Examples in Section 7 and 

Figures 10 show that clearly. We have the following 

result based on Theorem 2: 
 
Corollary 2.  Any fuzzy distribution derivative 

dΠ(x)/dx can be expressed for any argument x as a 

universal fuzzy-random Uncertainty Change Law: 
 

             dΠ(x)/dx = - ∑d[∆P(Ai,Aj)]dx                   (38a) 

             dΠ*(x)/dx ≥ ∑d[∆P(Ai,Aj)]dx                   (38b) 
 

and i = 2k-1, j = 2k, k = 1,2,…,n. For n = 1, we have 
 

                 dΠ(x)/dx = - d[∆P(A1,A2)]/dx                 (39a) 

                 dΠ*(x)/dx ≥ d[∆P(A1,A2)]/dx                 (39b) 
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Due  to  the  fact  that  the  changes  in  two  

probabilities ∆P(A1) and ∆P(A2)  are  not zero at 

different arguments x (39a) reduces to a very simple 

fact: 
 

                    dΠ(x)/dx = - d[∆P(Ai)]/dx                     (40) 
 

where ∆P(Ai) is ∆P(A1) or ∆P(A2) for i=2, depending 

on x value. Simply stated, (40) says that the change in 

fuzzy distribution is the opposite of probability change. 

This is also shown in Section 6 with numerical 

examples and in Figures 11. The first diagram shows 

Π(x) changes with ∆P, for any fuzzy distribution. This 

is a consequence of Theorem 2 and presumption and x-

invariant nature of it. The second diagram in Figure 11 

indicates how dΠ/dx and d(∆P)/dx relate, based on 

Corollary 2.1. The diagrams are universal for any Π(x), 

for any Fi(x). This is also illustrated in Section 6 with 

various distributions Π(x). 
 
4.3.   Method 2 

In this case Theorem 1 still holds as stated above. 

Instead of Corollary 1.1 and using (17ab), we have: 
 

 

 

 

 

 

 

Figures 11:  Method 1: Theorem 2 and Corollary 2 
 

Corollary 1.2.  Fuzzy n-modal distribution 
function given in Theorem 1 can be expressed as a 
difference of sums of probabilities: 
 
                    Π(x) = ∑P(Ai) - ∑P(Ai∩Aj)                  (41) 
 
with i = 2k-1 and j = 2k, k = 1,2,…,n.   
 

For n=1, we obtain Π(x) = P(Ai) - P(Ai∩Aj). Using 

(17a,b)-(21), with total probability change: 
 
          ∑∆P(Ai,Aj) = ∑∆P(Ai) - ∑∆P(Ai∩Aj)            (42) 
 
we state the following general result similar to Theorem 
2. 
 

Theorem 3. Any multimodal fuzzy distribution Π(x) 

can be expressed in terms of fuzzy presumption-

invariant and x-invariant universal fuzzy-random 

Uncertainty Balance Principle. For any x ≤ b, we have: 
 

                   Π(x) + ∑∆P(Ai,Aj) = 1                        (43a)    

                     Π*(x) ≥ ∑∆P(Ai,Aj)                          (43b)         
 
and for any b ≤ x: 
     
                       Π(x) = ∑∆P(Ai,Aj)                           (44a) 
                    Π*(x) + ∑∆P(Ai,Aj) ≥ 1                      (44b) 
 

Similar to Theorem 2, the result above holds for  any x 

and any  presumption level  of  Π(x).  We  prove the 

case when n=1, for TFN in Figure 2. The proof for any 

n and any Π(x) is straightforward. From (18) through 

(21) we obtain: 
 
For x ≤ b:                                                                  (45)                                                       

         P(A1)m = Π(x),  P(A1)M = 1 

               ∆P(A1) = P(A1)M – P(A1)m = 1 - Π(x) 

   P(A1∩A2)m = 0,  P(A1∩A2)M = 1 - Π(x) 

 ∆P(A1∩A2) = P(A1∩A2)M – P(A1∩A2)m = 1 - Π(x) 

                    P(A2)m = 0,  P(A2)M = 1 - Π(x) 

               ∆P(A2) = P(A2)M – P(A2)m = 1 - Π(x)  
                                  
Replacing (45) into (43), for n=1, we obtain:  
 

    Π(x) + ∆P(A1) + ∆P(A2) - ∆P(A1∩A2) = 1        (46) 
 
or: 
 
                  Π(x) + ∆P(A1,A2)  =  1                       (47a) 

                       Π*(x) ≥ ∆P(A1,A2)                          (47b) 
 
For b ≤ x:                                                                 (48)  
    

               P(A3)m = 1 - Π(x),  P(A3)M = 1 

               ∆P(A3) = P(A3)M – P(A3)m = Π(x) 

                        P(A3∩A4)m = 0,  P(A3∩A4)M = Π(x) 

        ∆P(A3∩A4) = P(A3∩A4)M – P(A3∩A4)m = Π(x)       

          P(A4)m = 0,  P(A4)M = Π(x) 

                    ∆P(A4) = P(A4)M – P(A4)m = Π(x)  
        
Replacing (48) into (43), for n = 1, we obtain:  
 

   1 - Π(x) + ∆P(A3) + ∆P(A4) - ∆P(A3∩A4) = 1     (49) 
 

or: 

                        Π(x) = ∆P(A3,A4)                         (50a) 

                   Π*(x) + ∆P(A3,A4)  ≥ 1                     (50a) 
 

Next, we have the following result based on Theorem 

3: 
 
Corollary 3.  Any n-modal fuzzy distribution 

derivative dΠ(x)/dx can be expressed for any argument 

x as a universal fuzzy-random Uncertainty Change 

Law: 
 

              dΠ(x)/dx = - ∑ d[∆P(Ai,Aj)]/dx                (51a) 

               dΠ(x)/dx = ∑ d[∆P(Ai,Aj)]/dx                 (51b)  
 

for x≤b and b≤x respectively, i = 2k-1, j = 2k, k = 

1,2,…,n.  
 
For unimodal distribution, n = 1, Figures 12, we have: 
 

              dΠ(x)/dx = - d[∆P(A1,A2)]/dx                   (52a) 

                dΠ(x)/dx = d[∆P(A3A4)]/dx                    (52b) 

 
 

4.4.  Method 3 
 

Theorem 1 still holds. Using (22a) and (22b), we have: 

 

 

∆P(A1,A2) 

Π(x) dΠ/dx 

d[∆P(A1,A2)]/dx 

1 

1 
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Figures 12:  Method 2: Theorem 3 and Corollary 3 

 

Corollary 1.3.  Fuzzy n-modal distribution 
function given in Theorem 1 can be further 
expressed as a difference of sums of probabilities: 
 

   Π(x)=∑P(AiUAj)=∑P(Ai) +∑P(Aj) - ∑P(Ai∩Aj)   (54)      
 

with i = 2k-1 and j = 2k, k = 1,2,…,n.   
 

Using (23)-(25), as well as (18) and (21), and with: 
 
 ∑∆P(Ai,Aj)=∑∆P(Ai) + ∑∆P(Aj) - ∑∆P(Ai∩Aj)     (55) 
 

for total probability change, we state the following: 
 

Theorem 4. Any multimodal fuzzy distribution Π(x) 

can be expressed in terms of fuzzy presumption-

invariant and x-invariant universal fuzzy-random 

Uncertainty Balance Principle. For any x ≤ b, we have: 
 

                          Π(x) = ∑∆P(Ai,Aj)                        (56a)         

                      Π*(x) + ∑∆P(Ai,Aj) ≥ 1                      (56b)                  
                               
and for any b ≤ x: 
     
 

                     Π(x) + ∑∆P(Ai,Aj) = 1                       (57a) 

                      Π*(x) ≥ ∑∆P(Ai,Aj)                            (57b) 
 

We  prove for n = 1, TFN in Figure 2. The proof for 

any n and any Π(x) is straightforward. From (23)-(25) 

we obtain: 
 
For x ≤  b:                                                                 (58) 
                                             

    P(A1)m = 0,  P(A1)M = Π(x) 

∆P(A1) = P(A1)M – P(A1)m = Π(x) 

P(A1∩A2)m = 0,  P(A1∩A2)M = Π(x) 

 ∆P(A1∩A2) = P(A1∩A2)M – P(A1∩A2)m = Π(x) 

    P(A2)m = 0,  P(A2)M = Π(x) 

∆P(A2) = P(A2)M – P(A2)m = Π(x)  
                                            

Replacing (58) into (56a), for n = 1, we obtain:  
 

       Π(x) = ∆P(A1) + ∆P(A2) - ∆P(A1∩A2)           (59) 
 
or: 
                     Π(x) = ∆P(A1,A2)                              (60a) 

                 Π*(x) + ∆P(A1,A2) ≥ 1                       (60b) 
                              

with ∆P(A1,A2) representing total probability change 

for two events A1 and A2.  
 

For b ≤ x:                                                                   (61) 

                P(A3)m = 0,  P(A3)M = Π(x) 

                      ∆P(A3) = P(A3)M – P(A3)m = Π(x) 

            P(A3∩A4)m = 0,  P(A3∩A4)M = Π(x) 

  ∆P(A3∩A4) = P(A3∩A4)M – P(A3∩A4)m = Π(x)       

                         P(A4)m = 0,  P(A4)M = Π(x) 

                    ∆P(A4) = P(A4)M – P(A4)m = Π(x) 
 
 
Replacing (61) into (56b), for n = 1, we obtain: 
 
 
     Π(x) + ∆P(A3) + ∆P(A4) - ∆P(A3∩A4) = 1           (62) 
 
or: 

                      Π(x) + ∆P(A3,A4)  = 1                         (63a) 

                      Π*(x) ≥ ∆P(A3,A4)                               (63b) 
 

with: 
  
    ∆P(A3,A4) = ∆P(A3) + ∆P(A4) - ∆P(A3∩A4)         (64) 
 
representing total probability change of random events 

A3 and A4. We have the following result based on 

Theorem 4: 
 
Corollary 4.  Any n-modal fuzzy distribution 

derivative dΠ(x)/dx can be expressed for any argument 

x as a universal fuzzy-random Uncertainty Change 

Law: 
 

                      dΠ(x)/dx = ∑ d[∆P(Ai,Aj)]/dx                    (65a) 

                      dΠ(x)/dx =  -∑ d[∆P(Ai,Aj)]/dx                  (65b)  
 
for x ≤ b and b ≤ x  respectively, i=2k-1, j=2k, 

k=1,2,…,n. For unimodal distribution n=1, Figure 13, 

we have: 
 

                  dΠ(x)/dx = d[∆P(A1,A2)]/dx                  (66a) 

                 dΠ(x)/dx = - d[∆P(A3,A4)]/dx                 (66b) 
 
and: 

                           Π(x) = ∆P(A1,A2)                         (67b) 
 
                       Π*(x) + ∆P(A1,A2) ≤ 1                     (67a) 
                                      
for x ≤ b and b ≤ x  respectively.  
  
Note that three methods (Theorems 2, 3, and 4) produce 
similar but not quite equivalent results. They offer 
different choices for variable probabilities. The 
common feature is that all state Uncertainty Balance 
Principle in which fuzzy distribution is either equal to 
probability change or offset by it, adding up to 1, i.e. 
certain event in random and presumption level 1 in 
fuzzy distribution. Corresponding Corollaries state 
Uncertainty Change Laws. Hence we have more than 
one option to transform fuzzy to random data, and vice 
versa. Section 7 illustrates all results with several 
numerical examples and suggests ideas how to generate 
fuzzy distributions using variable random events. 
 
 
 

∆P(A3,A4) 

dΠ/dx 

d[∆P(A3,A4)]/dx 

  b ≤ x   

1 

∆P(A1,A2) 

 

Π(x) dΠ/dx 

d[∆P(A1,A2)]/dx 

x ≤ b 

1 

1 

Π(x) 

1 
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Figures 13. Method 3: Theorem 4 and Corollary 4 
 

We also state the reverse result to Theorems 2, 3 and 4, 

i.e. random to fuzzy uncertainty alignment, as: 
 

Corollary 5.  Given a probabilistic and possibilistic 

uncertain variable X, with defined range of 

probabilities ∑∆P(Ai,Aj) defined for random events Ai 

and Aj, i = 2k-1, j = 2k, k = 1,2,…,n, a possibilistic 

distribution Π(x) can be formed observing Uncertainty 

Balance Principle in either of the forms:  
 

                         Π(x) = 1 - ∑∆P(Ai,Aj)                     (68a) 

                            Π(x) = ∑∆P(Ai,Aj)                       (68b) 
 
 
depending on the uncertainty alignment method used, 

and the rising or falling side of Π (x) represented.  
 
Note that the results of this section can be also used in 

hard-soft data fusion where the staring point are 

probabilistic rather than possibilistic data. This gives 

our results an universal applicability in either fuzzy-

random or random-fuzzy uncertainty data alignment. 
 

4.5.  Other Methods 

As described in Section 4.5 we may consider to use 

other probability decomposition methods in (14) such 

as Π(x) = F1(x) – F2(x) =  [P(A1) + P(A2)] – [P(A3) + 

P(A4)]. These choices do not offer any variability of 

probabilities, once one is chosen, the other follow 

uniquely. Hence there is no “fuzziness” involved, i.e. 

all ∆P(Ai,Ai+1) are zero. For such cases Uncertainty 

Balance Principle reduces to “Certainty Principle” of 

the form: 
 
                       Π(x) = P(A1) + P(A2)                       (69a) 

                     Π(x) + P(A3) + P(A4)  = 1                  (69b) 
 
 
for x ≤ b and b ≤ x  respectively and it looks to be of 

less practical use. Note that for probability variability 

we need presence of non zero intersection of the 

random events and non zero probability P(Ai∩Aj). This 

is because specific P(Ai∩Aj) can be generated by a 

variety of random events Ai and Aj and their 

corresponding probabilities. This is illustrated in 

Section 5.5. 
 

4.6.  Consistency Principle as Uncertainty Balance 

Principle 

Referring back to Zadeh’s Consistency Principle [2], as 

given in (7a) for an unimodal fuzzy distribution, one 

can re interpret it in the light of our Theorems 2, 3 and 

4 which hold for any multimodal fuzzy distribution, any 

presumption level and any argument x. In this 

reinterpretation the Principle has a clear conceptual and 

numeric meaning, as well as an intuitive rationale. We 

can consider it as a “Fuzzy-Random Uncertainty 

Balance Principle” and it can be an alternative to 

Consistancy Principle given in (9).  Instead of 

multiplying Pi  and Πi, we can use the sum of ∆Pi‘s and 

Πi in the spirit of Theorems 2, 3 and 4 where “i” now 

points to a different x, that is xi. Recall that all 

Theorems hold for any presumption level Π(x) as well 

as any x. For example, from Theorem 2 we can redefine 

Consistence Principle using  our Uncertainty Balance 

Principle general form Πi + ∆Pi = 1, equivalent to  Πi = 

1 - ∆Pi = ∆P*i or Π*i ≥ ∆Pi which hold for any xi, (i.e. 

on both sides of Π(x)) as: 
 

                ΓX = ∑(Πi + ∆Pi) = ∑(∆Pi∆P*i) = n       

                         ΓX ≤ ∑(ΠiΠ*i)                                  (70) 
 

where i=1,…,n and ∆Pi is the corresponding total 

probability change in the x range where  Πi’s are non 

zero. Complementary values are indicated with “*”. 

Theorems 3 and 4 produce similar result, with slight 

modification: 
 

              ΓX = ∑(ΠiΠ*i) + ∑(∆Pi∆P*i)  = n                (71) 
 
where i and j can go from 1 to n/2 or some other ratio.  

We see how Consistency Principle as defined above is a 

reflection of our Uncertainty Balance Principle, and 

besides an intuitiveness it has a definite numerical 

meaning as well. For example we can agree that ΓX = 

10 is better consistency than ΓX = 5, if 10 and 5 are 

number of arguments xi for which we have the 

agreement (or knowledge) that Πi = ∆Pi. This can be 

used in decision making situations when we need to 

combine soft (fuzzy) with hard (random) data, starting 

from either one. The assumption is, as stated earlier, 

that the uncertain variable X is both possibilistic as well 

as probabilistic. See also Table 4 bellow. We will 

elaborate on various applications of Uncertainty 

Balance Principle in our currently going research work 

on soft-hard or hard-soft data fusion. 
     

4.7.  Note On Soft-Hard Data Fusion 

One of the practical motivations for this work, is to 

have a methodology to transform fuzzy data to random, 

and vice versa, so we can apply unique approach and 

available tools  to both. In the first case it is 

probabilistic methodology, once fuzzy data are 

∆P(A3,A4) 

Π(x) dΠ/dx 

d[∆P(A3,A4)]/dx 

b ≤ x   

∆P(A1,A2) 

 

Π(x) dΠ/dx 

d[∆P(A1,A2)]/dx 

x ≤ b 
 

1 

1 

1 

1 
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described in terms of certain variable probabilities. At 

the same time we can reverse the process, and given 

probabilistic description of some phenomenon, where 

there is a natural variability of probabilities, we can 

transform random to fuzzy and use all the fuzzy tools 

available. In either case our approach can enhance 

decision making process where both soft and hard data 

are present, and both are to be used to make some 

decision. Section 3.6 points to one way to judge level of 

alignment of fuzzy and random data, in the situations 

where both are generated for a phenomenon which can 

be treated both as a fuzzy and as random. This 

phenomenon may come from a system of sensors or 

soft valuations such as coming from a human operator 

[21]. Table 4 has an intuitive summary of various 

equivalent descriptions and attributes found in literature 

on  soft (human generated) and hard (sensor or 

machine) generated data. Other views on what is hard 

and soft and when to apply fuzzy vs. random are 

possible as well [41]-[44]. 
 

Table 4. Intuitive Soft and Hard Data Designations 
Soft Data ↔ Human 

Operator 

Hard Data ↔ Sensor 

(Sensors - Machine) 

Subjective Objective 

Expresses Valuation Expresses Measure 

Qualitative Quantitative 

Possibilistic Methodology Probabilistic Methodology 

Fuzzy Models Random Models 

Distribution ΠX(x) = µX(x) Distribution FX(x) 

 

4.8.  Other Fuzzy Distributions 

Figures 14  show  other  types  of  fuzzy distributions 

which can be handled by our approach. The first one is 

a trapezoidal distribution which can be decomposed 

using a pair of CDFs. The second one is a bimodal and 

a combination of two distributions put together (gray 

area can belong to either). It can be decomposed by 

using two pairs of CDFs. The next one is a convex 

distribution with the maximum at “b”. It can be 

decomposed by a pair of CDFs, with the break at “b”. 

The last one is a concave distribution. First two fuzzy 

distributions consist of uniform random distributions, 

and the last two are not uniform. Any combination of 

the above distributions is possible too. Uncertainty 

Balance Principle and Uncertainty Change Law hold in 

any case, for uniform or non uniform distributions. In 

Section 6 we  show four numerical examples, two 

uniform, two non uniform fuzzy distributions. Note that 

in every case the continuity conditions for CDFs are 

observed when Π(x) is expressed in terms of Theorem 

1.  
 

 

 

5.  Numerical Examples 
 

5.1. Examples of  Π(x) Distributions 
In this section we consider four numerical examples 
which illustrate the main results of the paper.  Figure 2 
and Equation (11) give a simple TFN decomposition 
with the CDFs as: 
 
             F1(x) =   0,        x < a 
                     =   (x – a)/(b-a),  a ≤ x < b 
                     =   1,        b ≤ x 
            F2(x) =   0,        x < b 
                     =   (x – b)/(c-b),  b ≤ x < c 
                     =   1,        c ≤ x                              (72) 
 
 

 

 

 

 
Figure 14. Various fuzzy distributions 

 
which is used in Examples 1 and 2 bellow. Last two 
distributions in Figures 14 are used for Examples 3 and 
4. Recall that F1 and F2 are equal to various 
probabilities as described in Methods 1, 2 and 3.  
 
5.2.  Method 1 
 
Example 1 The symmetric TFN triplet {a, b, c} in 
Figure 2 is {2,3,4}. Table 5 has the values for x and the 
corresponding fuzzy “presumption” Π(x) levels.  The 
gray areas show Π(x) and ∆P(A2) and ∆P(A1).  For x ≤ 
b,  the probability P(A1) is fixed for a fixed x. On the 
other hand, P(A2) resides in ∆P(A2). We observe that 
for small  Π(x) values (low fuzzy “presumption”) the 
corresponding range of P(A2) is wider (more 
uncertainty), and for bigger values of Π(x) (high fuzzy 
“presumption” level),  range of P(A2) is narrower (less 
uncertainty). This makes intuitive sense. We have  the 

x 

    a             b               c  

Π(x) 

x 

   a      b                       c  

x 

  a1      b1              c1      a2    b2    c2 

Π(x) 

x 

   a      b                c       d   

1 

1 

1 

1 

Π(x) 

Π(x) 
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same situation for b ≤ x, except that the non unique 
probability is now P(A1) residing in ∆P(A1). 
 
Example 2. We change the triplet {a,b,c} in Figure 5 to 
{10,15,30}, a non symmetric TFN with a larger spread 
of x. Table 6 shows numerical values. The same 
comments apply as in Example 1. Note that Π(x)  
values and probability ranges ∆P(A) are as in Example 
1 (confirming x-and fuzzy presumption invariance).  
 
Example 3. For Example 3 we choose a fuzzy 
distribution described by a half circle with {a,b,c} = 
{1,2,3}  where   “b” is at  the  circle center,  with radius 
1, and outside of {1,2,3} distribution is 0. For 1≤ x < 3: 
 
                        Π(x) = √[1 – (x – 2)2]                        (73) 
 
Table 6 has the results. Note that the Π(x) values are 
not uniformly distributed. The distribution changes the 
fastest right from x=1 and left from x=3, as in Table 7. 
Still linear Uncertainty Balance Principle holds. 
 
Example 4.  This example is two quarter circles of 
radius 1, centered at (1,1) and (3,1): 
  
          Π(x) = 1 - √[1 – (x – 1)2],    1 ≤ x < 2 
              = 1 -  √[1 – (x – 3)2],        2 ≤ x < 3     (74) 
 
Π(x) values are not uniformly distributed. The 

distribution changes faster near x=2, on both sides. For 

all examples Figures 12, 13 and 14 as illustrated in 

Tables 5, 6, 7 and 8, confirm linear relationships of any 

Π(x) (or Π*(x)) with total probability change ∆P(Ai,Aj), 

as well as linear relationship of dΠ(x)/dx and 

d[∆P(A1,A2)]/dx. 
 

Table 5. Example 1 
x F1 F2 Π P1M P1m ∆P1 P2m P2M ∆P2 

1.5 0 0 0 0 0 0 0 1 1 

2 0 0 0 0 0 0 0 1 1 

2.2 0.2 0 0.2 0.2 0.2 0 0 0.8 0.8 

2.4 0.4 0 0.4 0.4 0.4 0 0 0.6 0.6 

2.6 0.6 0 0.6 0.6 0.6 0 0 0.4 0.4 

2.8 0.8 0 0.8 0.8 0.8 0 0 0.2 0.2 

3 1 0 1 1 1 0 0 0 0 

3.1 1 0.1 0.9 1 0.9 0.1 0.1 0.1 0 

3.3 1 0.3 0.7 1 0.7 0.3 0.3 0.3 0 

3.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 0 

3.7 1 0.7 0.3 1 0.3 0.7 0.7 0.7 0 

4 1 1 0 1 0 1 1 1 0 

4.5 1 1 0 1 0 1 1 1 0 

 
Table 6. Example 2 

x F1 F2 Π P1M P1m ∆P1 P2m P2M ∆P2 

8 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 0 0 1 1 

11 0.2 0 0.2 0.2 0.2 0 0 0.8 0.8 

12 0.4 0 0.4 0.4 0.4 0 0 0.6 0.6 

13 0.6 0 0.6 0.6 0.6 0 0 0.4 0.4 

14 0.8 0 0.8 0.8 0.8 0 0 0.2 0.2 

15 1 0 1 1 1 0 0 0 0 

18 1 0.2 0.8 1 0.8 0.2 0.2 0.2 0 

21 1 0.4 0.6 1 0.6 0.4 0.4 0.4 0 

27 1 0.8 0.2 1 0.2 0.8 0.8 0.8 0 

30 1 1 0 1 0 1 1 1 0 

35 1 1 0 1 0 1 1 1 0 

Table 7. Example 3 
x F1 F2 Π P1M P1m ∆P1 P2m P2M ∆P2 

.5 0 0 0 0 0 0 0 1 1 

1 0 0 0 0 0 0 0 1 1 

1.2 0.6 0 0.6 0.6 0.6 0 0 0.4 0.4 

1.4 0.8 0 0.8 0.8 0.8 0 0 0.2 0.2 

1.6 0.9 0 0.9 0.9 0.9 0 0 0.1 0.1 

1.8 .98 0 .98 .98 .98 0 0 0.02 0.02 

2 1 0 1 1 1 0 0 0 0 

2.2 1 0.6 .98 1 0.98 0.02 0.6 0.6 0 

2.4 1 0.8 0.9 1 0.9 0.1 0.8 0.8 0 

2.8 1 .98 0.6 1 0.4 0.4 .98 .98 0 

3 1 1 0 1 0 1 1 1 0 

3.5 1 1 0 1 0 1 1 1 0 
 

Table 8. Example 4 
x F1 F2 Π P1M P1m ∆P1 P2m P2M ∆P2 

.5 0 0 0 0 0 0 0 1 1 

1 0 0 0 0 0 0 0 1 1 

1.2 .02 0 .02 .02 .02 0 0 .98 .98 

1.4 .08 0 .08 .08 .08 0 0 .92 .92 

1.6 .2 0 .2 .2 .2 0 0 .8 .8 

1.8 .4 0 .4 .4 .4 0 0 .6 .6 

2 1 0 1 1 1 0 0 0 0 

2.2 1 .02 .98 1 .98 .02 .02 .02 0 

2.4 1 .08 .92 1 .92 .08 .08 .08 0 

2.6 1 .2 .8 1 .8 .2 .2 .2 0 

2.8 1 .4 .6 1 .6 .4 .4 .4 0 

3 1 1 0 1 0 1 1 1 0 

3.5 1 1 0 1 0 1 1 1 0 

 
5.3.  Method 2 

We use Example 1 from Method 1 again. Now we have 

more complexity due to more variable probabilities, 

P(A1) and P(A2) but also P(A1∩A2), which is not 

always zero. This gives more options to form fuzzy 

distribution Π(x). Conditions (19), (20) and (21) are 

used to determine values of various probabilities, as 

summarized in Tables 9.1 and 9.2 bellow. For 

simplicity we only included minimum number of  

values of fuzzy distribution Π(x), due to many different 

combinations of individual probabilities P(A1),  P(A2), 

and P(A1∩A2). Table 9.1 corresponds to x ≤ b, rising 

part of Π(x) and F1(x), and Table 9.2 corresponds to b ≤ 

x and the falling part of Π(x) and F2(x). Table 9.1 

confirms Theorem 3 and Corollary 3. Of many options 

in Tables 9 we can simplify things by choosing, for 

example, various probabilities to be 1 or 0 at the critical 

points [a,b,c] (boldfaced). Also, between the critical 

points we can reduce number of options. Double lines 

indicate breaks in Tables 9 where probability values in 

between are obvious. Examples 2, 3 and 4, are not 

repeated for simplicity. 
 
5.4.  Method 3 
For simplicity we will not repeat all the details for 
Method 3. The key is for the probabilities to follow 
conditions (23) and (25), given in Theorem 4 proof. 
Other comments given for Method 3 apply for Method 
2 as well. As in previous two Methods, we can see a 
variety of probability choices which generate the same 
presumption level Π(x). Depending on the specific 
application we can choose specific ∆Pi’s. 
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Table 9.1 Example 1 (F1, P1m, P2m and P12m are zero) 
x Π Π* F1 P1M ∆P1 P2M ∆P2 P12M ∆P12 

0.5 0 1 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 0 0 

1.2 0.2 0.8 0.2 0 0 0.2 0.2 0 0 

    0.1 0.1 0.1 0.1 0 0 

    0.2 0.2 0 0 0 0 

    0.2 0.2 0.1 0.1 0.1 0.1 

    0.2 0.2 0.2 0.2 0.2 0.2 

1.5 0.5 0.5 0.5 0.0 0.0 0.5 0.5 0 0 

    0.1 0.1 0.4 0.4 0 0 

    0.2 0.2 0.3 0.3 0 0 
          

    0.4 0.4 0.1 0.1 0 0 

    0.5 0.5 0.0 0.0 0 0 

    0.5 0.5 0.1 0.1 0.1 0.1 
          

    0.5 0.5 0.5 0.5 0.5 0.5 

2 1 0 1 0.0 0.0 1.0 1.0 0 0 

    0.1 0.1 0.9 0.9 0 0 

    0.2 0.2 0.8 0.8 0 0 

    0.3 0.3 0.7 0.7 0 0 
          

    0.8 0.8 0.2 0.2 0 0 

    0.9 0.9 0.1 0.1 0 0 

    1.0 1.0 0.0 0.0 0 0 

    1.0 1.0 0.1 0.1 0.1 0.1 
          

    1.0 1.0 0.9 0.9 0.9 0.9 

    1.0 1.0 1.0 1.0 1.0 1.0 
 
 

Table 9.2 Example 1 (F2, P3m, P4m and P34m are zero) 
x Π Π* F2 P3M ∆P3 P4M ∆P4 P34M ∆P34 

2.1 0.9 0.1 0.1 0.1 0.1 0 0 0 0 

    0.1 0.1 0.1 0.1 0.1 0.1 

2.2 0.8 0.2 0.2 0 0 0.2 0.2 0 0 

    0.1 0.1 0.1 0.1 0 0 
          

    0.2 0.2 0.1 0.1 0.1 0.1 

    0.2 0.2 0.2 0.2 0.2 0.2 

2.5 0.5 0.5 0.5 0 0 0.5 0.5 0 0 

    0.1 0.1 0.4 0.4 0 0 

    0.1 0.1 0.5 0.5 0.1 0.1 

    0.2 0.2 0.3 0.3 0 0 
          

    0.2 0.2 0.5 0.5 0.2 0.2 

    0.3 0.3 0.2 0.2 0 0 

    0.3 0.3 0.3 0.3 0.1 0.1 
          

    0.3 0.3 0.5 0.5 0.3 0.3 

    0.4 0.4 0.1 0.1 0 0 

    0.4 0.4 0.1 0.1 0.1 0.1 
          

    0.4 0.4 0.4 0.4 0.4 0.4 

    0.5 0.5 0 0 0 0 

    0.5 0.5 0.0 0.0 0.1 0.1 
          

    0.5 0.5 0.5 0.5 0.5 0.5 

3.0 0 1 1 0 0 1.0 1.0 0 0 

    0.1 0.1 0.9 0.9 0 0 

    0.1 0.1 1.0 1.0 0.1 0.1 

    0.2 0.2 0.8 0.8 0 0 

    0.2 0.2 0.9 0.9 0.1 0.1 

    0.2 0.2 1.0 1.0 0.2 0.2 

    0.3 0.3 0.7 0.7 0 0 
          

    0.4 0.4 0.9 0.9 0.3 0.3 

    0.4 0.4 1.0 1.0 0.4 0.4 

    0.5 0.5 0.5 0.5 0 0 
          

    0.8 0.8 0.2 0.2 0 0 

    0.9 0.9 0.1 0.1 0 0 

    1.0 1.0 0 0 0 0 

    1.0 1.0 0.1 0.1 0.1 0.1 
          

    1.0 1.0 0.9 0.9 0.9 0.9 

    1.0 1.0 1.0 1.0 1.0 1.0 

3.5 0 1 1 1.0 1.0 1.0 1.0 1.0 1.0 

 

5.5.  Practical Example of Π(x) 
Finally, we illustrate our methodology by a specific 
TFN fuzzy distribution describing people productivity, 
and other similar fuzzy applications, [23]-[29]. The 
triplet {a,b,c} is {10,45,90} expressed in years. 
Assumption is that an average person is the most 
productive around age of 45 which corresponds to Π(x) 
= 1. On the opposite end, it is assumed person has zero 
productivity at age of 10 and 95, hence Π(x) =0. 
Obviously this is just an approximation but it serves our 
purposes here. Using (71) we obtain Table 10 where the 
second row will be described shortly. 
 

Table 10. People Productivity Example, Method 2 
x, Age Π Π* ∆P1 ∆P2 ∆P12 ∆P3 ∆P4 ∆P34 

   Educ Empl 

Edu. 
x 
Empl Healt Marri 

Healt 
x 

Marri 

10 0 1 1 1 1 0 0 0 

27.5 0.5 0.5 0.5 0.5 0.5 0 0 0 

36.25 0.75 0.25 0.25 0.25 0.25 0 0 0 

45 1 0 0 0 0 1 1 1 

57.5 0.75 0.25 0.25 0.25 0.25 0.75 0.75 0.75 

70 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

95 0 1 0 0 0 0 0.5 0 
 
If we use Method 2, the following relations hold:  

   
For x≤ 45:  Π(x) + ∆P(A1) + ∆P(A2) - ∆P(A1∩A2) = 1 
For 45≤x: Π*(x) + ∆P(A1) + ∆P(A2) - ∆P(A1∩A2) = 1 
 
So how do we interpret the results ? It is assumed the 
variable X is both possibilistic (fuzzy) and probabilistic 
(random). Data produced by different sources related to 
peoples productivity may be soft (subjective, expert 
opinions) or hard (statistics, random analysis, 
objective). Hence we can assume that the fuzzy 
presumption level  Π(x) is generated by an interplay of 
P(Ai) and P(Ai∩Ai+1) per of Corollary 1.2, i.e.:  

For x ≤ 45:  Π(x) = P(A1) - P(A1∩A2) 

For 45 ≤ x:  Π(x) = P(A3) - P(A3∩A4)  
From Theorem 3 we know that all of the probabilities 
vary for a given presumption level Π(x) hence 
producing “fuzziness” of uncertain variable X. Table 10 
indicates that as well. Next we can assume that the 
random (probabilistic) events A1 through A2 are related 
to level of people’s productivity. For example, given 
the age x and presumption level Π(x) we can assume 
there are other factors playing the role in productivity 
for the given age. One possibility may be as given in 
Table 11. There are other posibilities as well, per 
specific interest.  Second row in Table 10 indicates 
choices from Table 11. 
 

Table 11. Random event categories 
 A1 

∆P1 

A2 

∆P2 

A12 

∆P12 

A3 

∆P3 

A4 

∆P4 

A34 

∆P34 

Education X      

Employment  X     

Educ. vs. Employm.   X    

Health    X   

Marriage     X  

Health vs. Marriage      X 
 
All of the Ai’s and their probabilities ∆P’s can be 
described by some CDF, uniform or non uniform, 
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obtained analytically or statistically.  Once Ai are 
defined we can interpret variable probabilities 
accordingly.  For example for x=36.25 years in Table 
11, presumption level is Π(x) = 0.75. Corresponding 
∆P’s are all 0.25 on rising part of  Π(x) and that can be 
interpreted as variability of education, employment and 
their intersection for that age. On the other hand for the 
falling part of Π(x), when  Π(x)=0.75 we note larger 
variability of 0.75 of ∆P’s, and this refers to health, 
marriage and their intersection. Methods 1 and 3 could 
have been used as well. Which Method do we use may 
depend on a specific fuzzy distribution and application, 
and more research needs to be done in this subject, 
looking into specific applications. Note also that Big 
Data methodology or various statistical methods can be 
used to have specific choices for the probabilities in 
Table 11, which exhibit strongest correlations with the 
original uncertain soft data. 
 
Per Corollary 5, one can reverse the problem. Namely, 
instead of starting with the possibilistic description and 
produce (or interpret it via) a probabilistic one, we can 
start with the probabilistic and produce possibilistic 
description using essentially the same methodology 
described in this paper, just in a reverse order. This may 
be advantageous in some specific cases where we have 
the fuzzy tools or other fuzzy applications available, but 
the initial data is random and probabilistic in nature. 
 

6.  Uncertainty Alignment Algorithms 
In this Section we present pseudo codes for the 
algorithms for generating various probability values in 
Methods 1, 2 and 3, once fuzzy distribution Π(x) is 
specified. We assume in each case that the uncertain 
variable X is both possibilistic and probabilistic, hence 
Uncertainty Balance and Consistency Principles apply.   
We do not elaborate on how to generate various 
probabilities, which is specific for an application at 
hand, such as illustrated in Section 5.5 
 
Method 1 (Section 3.2) 
START  Method 1  
    For Rising Part: (x ≤ b)     
             Given Π(x), 0 ≤ Π(x) ≤ 1 
             Π(x) = F1(x) – F2(x) = P(A1) - P(A1∩A2) 
                   P(A1∩A2) = 0 
             Choose Random Event A1 

    Set P(A1) = Π(x)  
             Choose Random Event A2 
                   P(A2), P(A1∩A2) ≤ P(A2) ≤ 1- Π(x) 
    End Rising Part 
    For Falling Part: (b ≤ x) 
             Given Π(x), 0 ≤ Π(x) ≤ 1 
             Π(x) = F1(x) – F2(x) = P(A1UA2) - P(A2) 
                   P(A1UA2) = 1 
             Choose Random Event A2 

     P(A2) = 1 - Π(x)  
             Choose Random Event A1 
                   P(A1) → Π(x) ≤ P(A1) ≤ P(A1UA2) 
    End Falling Part 
END Method 1 
 
 

Method 2 (Section 3.3) 
START  Method 2  
    For Rising Part: (x ≤ b)   
             Given Π(x), 0 ≤ Π(x) ≤ 1 
             Π(x) = F1(x) = P(A1) - P(A1∩A2) 
                   P(A1∩A2) ≠ 0 
             Choose Random Event A1 

                   P(A1) → Π(x) ≤ P(A1) ≤ 1 
             Choose Random Event A2 
                   P(A2) →  0 ≤ P(A2) ≤ 1 - Π(x)   
                   P(A1∩A2) → 0 ≤ P(A1∩A2) ≤ 1 - Π(x)   
    End Rising Part  
    For Falling Part: (b ≤ x) 
             Given Π(x), 0 ≤ Π(x) ≤ 1 
             Π(x) = 1 – F2(x) = P(A3) - P(A3∩A4) 
                   P(A3∩A4) ≠ 0 
             Choose Random Event A3 

                   P(A3) → Π(x) ≤ P(A3) ≤ 1 
             Choose Random Event A4 
                   P(A4) →  0 ≤ P(A4) ≤ 1 - Π(x)   
                   P(A3∩A4) → 0 ≤ P(A3∩A4) ≤ 1 - Π(x)   
    End Falling Part 
END Method 2 
 
 
Method 3 (Section 3.4) 
START  Method 3  
    For Rising Part: (x ≤ b) 
             Given Π(x), 0 ≤ Π(x) ≤ 1 
             Π(x) = F1(x) = P(A1) + P(A2) - P(A1∩A2) 
                   P(A1∩A2) ≠ 0 
             Choose Random Event A1 

                   P(A1) → 0 ≤ P(A1) ≤ Π(x) 
             Choose Random Event A2 
                   P(A2) →  0 ≤ P(A2) ≤ Π(x)   
                   P(A1∩A2) → 0 ≤ P(A1∩A2) ≤ Π(x)   
    End Rising Part  
    For Falling Part: (b ≤ x) 
             Given Π(x), 0 ≤ Π(x) ≤ 1 
             Π(x) = 1 - F1(x) = P(A3) + P(A4)  - P(A3∩A4) 
                   P(A3∩A4) ≠ 0 
             Choose Random Event A3 

                   P(A3) →  0 ≤ P(A3) ≤ Π(x) 
             Choose Random Event A4 
                   P(A4) →  0 ≤ P(A4) ≤ Π(x)   
                   P(A3∩A4) → 0 ≤ P(A3∩A4) ≤ Π(x)   
    End Falling Part 
END Method 3 
 

7.  Conclusion 
In this paper we define new fuzzy to random 
uncertainty alignment methodology, in which fuzziness 
can be described as precisely defined non unique 
randomness. We employ the most basic properties of 
random and fuzzy distributions for this result, starting 
from fuzzy distributions decomposed as a combination 
of probabilistic cumulative distribution functions, 
CDFs, rather than probabilistic density functions, 
PDF’s, which may not always exist. We also give 
precise both upper and lower bounds of changes in 
random distributions, required to produce data 
fuzziness. The range of randomness of the 
corresponding probabilistic events is a function of 
fuzzy distribution presumption levels and it holds for 
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any fuzzy distribution. The main results is a universal 
fuzzy-random (possibilistic-probabilistic) uncertainty 
alignment law  which we named Uncertainty Balance 
Principle, for its simple statement Π(x) + ∑∆P(Ai,Aj) = 
1, which is a linear law, fuzzy presumption-invariant  
and fuzzy argument x invariant for any fuzzy 
distribution. Another byproduct of this Principle is also 
a linear law, Uncertainty Change Law which relates 
changes in fuzzy distribution against corresponding 
changes in probabilities. Our results hold for any fuzzy 
distributions, triangular, trapezoidal, convex, non 
convex, symmetric or not, normalized or not, uni modal 
or multi modal alike. This universal range of 
applicability comes as a result of employing CDF rather 
than PDF. The results of this paper can be employed 
effectively in a variety of data fusion and decision 
problems where both objective (hard, random, 
probabilistic, sensor based) data are to be fused with 
subjective (soft, fuzzy, possibilistic, human based) data 
[9], [10], [21]. They can be also used to generate 
random from fuzzy data for other applications. 
Additional feature of our approach is a reverse 
applicability of the results, i.e. going from random to 
fuzzy. If the range of probabilities is given we can form 

corresponding fuzzy distribution satisfying Uncertainty 
Balance principle. Another way to interpret the results 
is as precise mathematical description of Consistency 
Principle first introduced by Zadeh in his classic 
“possibility” paper [2], as a loose and intuitive notion 
connecting fuzzy and random data. As defined in [2] 
this Principle relates fuzzy and random distributions in 
an intuitive way. In our paper, a precise mathematical 
definition is given for the modified Consistency 
Principle in terms of Uncertainty Balance Principle of 
this paper, as a measure of agreement between fuzzy 
and random data distributions. This can be effectively 
used to measure level of agreement between related 
fuzzy and random data in decision making process. In 
our future work we will extend the results in decision 
making areas such as machine-human data fusion 
where using both types of data is crucial for the fusion 
usefulness. Also, further properties of both random and 
fuzzy data will be analyzed in the light of the paper’s 
main results. In particular we will consider relationship 
between probabilistic and possibilistic axioms in the 
light of this paper results, as well as special cases such 
as random events independence or dependence. 
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