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The periodicity of Vostok ice core climate temperature and gas 

concentration data  indicate inherent long term past regularity of 

Earth’s climate, with a period of around 100,000 years, warming 

around 15,000 and cooling of around 85,000 years. At this point we are 

at the top of one of the warming periods. Vostok data cover around 

430,000 years, ie 4 climate cycles (warming-cooling), of similar but 

not quite the same duration. In this paper we perform a detailed time 

and frequency analysis of these data for each of the cycles as well as 

their various combinations, including a full tested period of 430,000 

years. Time correlation analysis allows for more accurate time lag 

estimate in each cycle already noted between temperature change and 

carbon dioxide content. We estimate these lags to lie between 1000-

2500 years, longer than previously concluded. On the frequency side 

we perform Fast Fourier Analysis and identify full spectrum of 

harmonics for various cycles, and then perform energy analysis to 

identify which of the harmonics contributes the most. The idea is to 

reduce the computational load for further modeling and analysis using 

Kalman Filter based prediction method.  Once the prediction model is 

defined (a follow up paper) data will be split into two segments, 

Learning and Testing, in preparation of a Machine Learning fine 

tunning methodology. We can use last three or last two or even just last 

cycle to learn on, and then the current on going cycle to test on. This 

will result in real time prediction of relevant climate data. Assuming 

causal time regularity, more of these cycles are employed in training, 

more the prediction error for the next cycle should be reduced. Hence it 

is critical to perform very detailed time and frequency analysis of 

Vostok data as a solid data base for the prediction model to follow.   
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1. Introduction 

Extensive climatic data on the past four ice ages and beyond is available from various studies, commencing 

from mid 1950s until now.  Figure 1 shows various sites on Antarctica and Greenland where intensive ice core 

drilling has occurred since 1956, with several countries supporting more than a score of different drilling 

projects in the two areas. Currently, intensive ice core drilling is being conducted in other areas as well, so an 

even larger data set is anticipated. Reference [3] and [12] describe the history of ice core drilling in detail. Our 

purpose in this paper is to employ Vostok Station ice core data for a variety of time and frequency related 

analyses. The Vostok ice core data set includes derivations of relative temperature, carbon dioxide (CO2), 
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methane (CH4), oxygen and solar variation (insolation), during the last 430,000 years. Because isotopic 

fractionation of oxygen-18 and deuterium in snowfall is temperature dependent and a strong spatial 

correlation exists between mean annual temperature and mean isotopic ratios it is possible to derive ice-core 

climate records [15]. Reference [10]  presented the first record to span and full glacial-interglacial from an ice 

core drilled in the Russian Vostok station in Antarctica. A 430,000 year record was constructed from the Petit 

et al. study on a 3 km deep core of ice (Fig. 2). Another source of similar ice core data is available from 

European EPIC drilling project (European Project for Ice Coring in Antarctica) which lasted from 1998 until 

2005 (Fig. 3).  In this paper we focus on specific analysis related to only two Vostok data variables, namely 

relative temperature and CO2 content. Data used are as corrected in [4] and [5]. The variation of atmospheric 

CO2 and temperature is shown in Fig. 2.   Although originally thought that the CO2 data might be considered 

as proof of its causal role in global warming, it is now widely considered that CO2 lags temperature change 

and its lower rate of solution in and release from sea water is more likely the cause of the relationship.  

 

 
.  

Fig. 1  Ice Core drilling sites in Antarctica and Greenland.  Note that two maps are not to scale, for Greenland 

is less than 1/6
th
 of the size of Antarctica. 

 

    

 
 

Fig. 2  Vostok data variation in global relative temperature and CO2 content  

(Barnola at al. 1999, 2003) 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 
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Fig. 3  EPICA ice core temperature and CO2 data compared to Vostok data; Vostok data from 

source: http://www.usgcrp.gov/usgcrp/images/Vostok.jpg 
 

2.   Spectral Analysis Methodology 
 

The famous statistician Fisher [7] was an early exponent of testing statistical significance in harmonic 

analysis.  Some preliminary spectral analysis has been conducted on Vostok ice core data set in [21] but 

without major impact.  Here, spectral analysis in R as described in [18] and [20] was applied in [4] and [5] for 

their data set.  In such analyses, time series are decomposed into underlying sine and cosine functions into the 

most important different frequencies. Various texts on fast Fourier transforms were also sources for frequency 

determination. These approaches allow construction of periodograms quantifying the contributions of of the 

individual frequencies to the time series regression. The GeneCycle R Package [19] developed for 

bioinformatics has general application for time series and was employed in this study. Some recent time series 

analysis research deals with data classification as well as data series use in environment, production and 

financial research [24],[25],[26]. In our paper we perform our own Vostok data analysis using R and Excel,  in 

both time and frequency domains. Our aim is to use it for Machine Learning training and testing to follow.  

We analyzed all four Vostok cycles, C1, C2, C3 and C4 as indicated in Fig. 2 above. The cycles are 

determined by locating maximum values for relative temperature and CO2. Becuase of a lag determined 

between relative temperature and CO2 content the number of data points is slightly different in two data sets. 

The overall number of data points for both variables is 363. Individual cycles differ in data points slightly. 

Table 1 summarises the number of data points in each cycle. Note that the number of data poiunts is not the 

same for each cycle. This will have important effect on our Machine Learning method and it has to be 

addressed properly. Also note that the cycle C1, the current cycle we live in, is still evolving and new data 

may be added if required. This data may be skewed by „global warming effects“ which did not exist in 

previous cycles. Comparison of two data sets may be very useful in estimating global effects of temperature 

and CO2 content. In addition to the above, the uneven data distribution  (non uniform data sampling times 

within each separate cycle) may pose some numerical issues as well for the analysis in the context of Machine 

Learning prediction methodology. This will be dealth with in our follow up paper. There are various methods 

to deal with this as described in [22] [23]. One of the simpler methods, yet effective one, is to „fill in“ missing 

data by some approximation method. In any case in this initial paper no additional data insertions are done for 

smplicity. Our aim is to gain more insight into Vostok data in time and frequency domains, and check the 

corresponding „energy“ content in order to reduce number of significant harmonic components which will 

reduce complexity of our Machine Learning prediction model. 
 

Table 1 Number of data points for each cycle 

No of Data 

Points 

Cycle C1 Cycle C2 Cycle C3 Cycle C4 

Temperature 74 136 99 54 

CO2 80 135 99 49 

http://www.usgcrp.gov/usgcrp/images/Vostok.jpg
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3.   Data Analysis of Vostok Ice Core Data 
 

3.1  Data cycles  
 

In this Section we summarise the ice core data analyses. Figs. 4-7 show data for relative temperature and CO2 

for each cycle, analyzed individualy as far as time correlations and also harmonic and energy content.    

 
Fig. 4: Cycle C1 relative temperature and CO2 content 

 

 
Fig. 5: Cycle C2 relative temperature and CO2 content 

 
Fig. 6: Cycle C3 relative temperature and CO2 content 

 
Fig. 7: Cycle C4 relative temperature and CO2 content 
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3.2  Duration and sampling times in cycles  

 

As Table 1 indicates the number of data points for each cycle is quite different. This has to be taken into 

account when analysis is performed. For example some data will not be used in cross correlation calculations 

between temperature and CO2. The number of such data is small and will not affect the analysis very much. 

From Figs. 4-7 we can note general similarity between various cycles data sets. The difference is in the length 

of each cycle in thousands of years. Table 2 summarizes approximate duration of each cycle based on our 

analysis (Section 3.4). 

 

Table 2  Cycles approximate duration in years 

Duration in 

Years 

Cycle C1 Cycle C2 Cycle C3 Cycle C4 

Temperature 127,726 115,156 86,462 96,782 

CO2 128,399 109,800 86,148 95,587 

 

Note that CO2 lags relative temperature in C4, C3, and C2 (Table 2). In C1 the data may be a little skewed due 

to number of recent data points where maximum values are not clearly identified in Vostok data (left most 

CO2 data). Another feature to keep in mind is very different time differences when the data is obtained from 

ice core readings. In some cases difference between two data samples are only few years, or 400-500 years, 

but in some as much as 5,000 years. This adds to the imprecision of any analysis. For each cycle we calculated 

average time sampling values as summarized in Table 3. In our follow up paper this will be corrected.  

 

Table 3  Average data sampling time in years for each cycle 

Average Sampling 

Time in Years 

Cycle C1 Cycle C2 Cycle C3 Cycle C4 

Temperature 1,703 800 865 1,792 

CO2 1,605 813 862 1,911 

 

The differences in average sampling times obviously come from the number of data points collected and the 

duration of each individual cycle. To facilitate our Machine Learning approach all other possible data samples 

have been also created, i.e. any combination of available cycles not necesarily in time order as they transpired. 

The idea is to add to the richness of all available data for training purposes of a Machine Learning approach. 

For example Table 4 indicates respectively average sampling times for Cycle C1 and C2 combined (noted as 

C12), Cycle 2 and C3 combined (C23), as well as Cycle 2, Cycle 3 and Cycle 4 combined (C234), plus total 

C1234. The total number of data points, duration and can be easily obtaind from Tables 1 and 2. Note from 

Table 4 that more cycles we add the more uniform data sampling times become. 

 

Table 4  C12, C23, C234 and total C1234 average data sampling times in years 

Average Sampling 

Time in Years 

Cycle C12 Cycle C23 Cycle C234 Cycle C1234 

Temperature 1,087 827 1,008 1,149 

CO2 1,108 834 1,020 1,149 

 

3.3  Time correlation analysis 

 

Time correlation analysis produces a variety of useful information about periodicity and correlation strenght 

among data samples of a given quantity. In particular autocorrelations produce the measure of self correlation 

of a data series. Standard definition of the autocorrelation for a data time series x(t), t = 1,2,...,N, such as 

relative temperature or CO2 content, is given as: 

 

                                                       Rxx(m) = ∑t x(t)x(t-m), t =1,2,...,N                                                         (1) 

 

where m stands for the lag (delay), and m=1,2,...,N-1. Standard definition of crosscorrelation for two discrete 

time data series x(t) and y(t), such as relative temperature  and CO2 concentration in our case, is given as: 
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                                              Rxy(m) = ∑t x(t)y(t+m), m= -N+1,...,-2,-1,0,1,2,...,N-1                                   (2) 

 

Here m stands fot the lag (delay) and t =1,2,...,N. The above formulas are implemented in various ways 

depending on the software tool used, such as R, Matlab or Python. In our work reported in this paper we used 

mostly R for coding and analysis. One property of crosscorrelations is very useful in analysis of relative 

temperature vs CO2 content and that is the estimate of the time delay between the two. In general one needs to 

locate the maximum value point for Rxy and locate the corresponding argument, time lag in our case, between 

relative temperature and CO2 content i.e.: 

                                                                        τdelay = arg maxm Rxy(m)                                                        (3) 

 

Fig. 8 illustrates short term calculations for autocorrelations for relative temperature and CO2 (first two 

diagrams) as well as the corresponding cross correlation between the two variables (third diagram) for the 

entire Vostok data data set. We can read the value of  τdelay between temperature and CO2 as approximately 

equal to 2 lag units. Since the calculation is done for the entire Vostok data set, from Table 4 we can read an 

average sampling time for C1234 as 1,149 years, hence we can make an upper limit approximation of the size 

of the delay to be: 

                                                     τdelay  < 2 times 1,149 years = 2,298 years                                               (4) 

 

One needs to note here that the calculation is not very precize primarily due to very non uniform dsitribution 

of Vostok data. We will address how to harmonize these data in our subsequent work. The point is that the 

delay is of order of 2,000 years and not of 100 or 200 years. That is an important finding which can influence 

our thinking about global climate change caused by natural processes that happened prior to CO2 increase 

caused by human actions.  Instead of calculating cross correlation point by point, one can also calculate 

correlation coefficient, which are single numbers and they can be used as a simple measures of cross 

correlation intensity between two variables. There are several coefficients named after their inventors such as 

Spearman, Pearson and Kendal [6] and they all indicate certain statistical properties which tie two data series 

together.  Table 5 summarizes standard  cross coefficient (x) between relative temperature and CO2 for 

individual cycles as well as for the entire Vostok data set. The intensity of the cross correlation is quite high, 

on average more than 0.82 for the entire set. 

 

Table 5 Cross correlation coefficient for individual and entire cycle 

Cross Correlation 

Coefficient 

Cycle C1 Cycle C2 Cycle C3 Cycle C4 Entire Cycle C1234 

Temperature, CO2 0.83885075 0.861018891 0.876113 0.744963 0.82097999 

 

Continuing with our analysis, Fig. 9 indicates entire (long) term auto and cross correlation. It is clearly visible 

that we are dealing with a periodic process with non uniform periods. This is also confirmed in harmonic 

analysis in Section 5. In order to determine average time delays between relative temperature and CO2 for 

individual we look at Figs. 10-13. The first two diagrams (in Fig. 10 part a) are autocorrelations and they also 

indicate certain periodicity within the each cycle but obviously not as much on the entire data set. Again this 

will be confirmed with our harmonic analysis. The third (fourth in Fig. 10) diagram shows short term and long 

term cross correlation, and they indicates periodicity between two varaibles. The time delay can be read from 

short term cross correlation. For Cycle 1 it is less than one lag but more than zero lag, we can estimate it at a 

bit less than half of one lag. From Table 3 for both relative temperature and CO2 the average data sampling 

times are 1,703 and 1,605 years which puts the delay at around 800 – 850 years. Similar calculations can be 

done for other cycles as well. To get a more precise approximation we would need more data and finer 

resolution around the zero lag where the cross correlation is maximum. It is also worth noting that that the 

maximum values of autocorrelation and cross correlation indicate average energy in the data series itself or 

between the two series. Next to each harmonic there is an indication (in parenthesis) of harmonic. For 

example 1 is the basic one, 2 indicates half of it (in years), and so on. For example if the 1st harmonic is 

75,000 years, the second will be half of that, i.e. 37,500 years, 10th harmonic will be equal to 7,500 years, and 

so on. Considering frequency values, 75,000 years corresponds to 1/75,000 = 0.000013333 = 1.3333x10
-5

 Hz. 

For the entire Vostok data set some of the harmonics, per our anlysis in Section 5, are of order of 375,000 

years which corresponds to 1/375,000 = 0.0000026666 = 2.6666x10
-6

 Hz. Typically, first several harmonics 

carry most of the energy, as given in Section 4 on energy considerations.  



 PEN Vol. 7, No. 2, August 2019, pp.907- 923 

 

913 

 
Fig. 8 Short term temperature, CO2 autocorrelations and cross correlation 

 
Fig. 9 Total long term temperature, CO2 autocorrelations and cross correlation 

 
Fig. 10  Cycle C1 temperature, CO2 autocorrelations and cross correlation 

 
Fig. 11 Cycle C2 temperature, CO2 autocorrelations and cross correlation 
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Fig. 12  Cycle C3 temperature, CO2 autocorrelations and cross correlation 

 
Fig. 13:  Cycle C4 temperature, CO2 autocorrelations and cross correlation 

 

3.4  Harmonic Analysis 

 

The key item in our Machine Learning Vostok ice core data preprocessing summarized in this paper lies in 

both time correlation analysis (Section 3.3) as well harmonic analysis in this Section. The methodology used 

is based on calculating FFT (Fast Fourier Transform) using an R language tool and then recalculating to real 

frequencies. The „real“ frequencies (harmonics) are approximations due to a non uniform data points 

distributions. There are methods described in literature to deal with certain non uniform data sets, but we did 

not pursue that in this paper. Our approach was to use an average data sampling due to a wide sampling time 

variability in Vostok data set.  Our follow up work addresses nonuniformity of data with filling for missing 

data. Figs. 14-18 indicate FFT diagrams for both relative temperature as well as CO2. The frequencies on 

horizhontal axes are normalized FFT frequencies which need to recalculated to correspond to real frequencies 

assuming correctness of average sampling times. We also included data sets for individual cycles to have a 

feel for their variability within each cycle. Note that vertical lines indicate Fourier coefficients which indicate 

energy level of a specific harmonics. It is obvious from all FFT diagrams that the energy is concentrated in 

very small frequency range which has several harmonics carrying majority of the energy content of a specific 

sdata set. Energy analysis is presented in Section 4 with an indication for each cycle or combination of cycles 

as to the energy distribution across various harmonics. This distribution is a base for making a reasonable 

approximation in our Machine Learning approach and it will be used to train and learn from past data to 

predict the future ones. In this case „future“ refers to both actual past data which will be used to test how the 

„training“ is sucessfull as well as real future of new data sets to be predicted by our methodology. In order to 

calculate real frequencies from the FFT ones indicated in Figs. 14 – 18 (obtained from data in Figures 4-7) we 

perform the following simple calculation: 

                                                                              fR = fFFT times Ts                                                            (6) 

 

where  fR is a real frequency in Hertz, fFFT is normalized FFT frequency and Ts is an average sampling time, 

different for each different cycle scenario. Normalized FFT frequencies go from zero up to 0.5, and FFT 

algorithm all produce number of normalized frequencies which correspond to half of the number of data 
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points available for analysis. The time periods which correspond to each individual harmonics are calculated 

by simple inverse operation, i.e.  

                                                                                     TR = 1/fR                                                                  (7) 

 

FFT assumes that number of data points is always a power of 2, such as 2
6
 = 64 data points, or 2

8
 = 256. If 

data set does not have precise power of 2 data points, then certain number of zeroes are appended to the end of 

the series to make up to power of 2. In our case, since the total number of data points is 363, and the next 

higher power of 2 above 363 is 2
9
 = 512, a total of 149 zeros are appended to the end of both relative 

temperature and CO2. This is all taken care of by R statistical software tool. As an example Table 6 shows the 

first five most energy containing harmonics for temperature and CO2 for the entire Vostok data set as well as 

for four individual cycles. Due to very small frequency values, Table 6 shows the corresponding time duration 

of one period of each harmonics per formula 7 (harmonic wave length). This is also more natural to visualize 

and associate to the number of (thousands of years, as well as to the each cycle duration. The numbers are 

rounded for simplicity. Several observations can be made from Table 6. First, it is  not always the case the 

first harmonic is the most „energetic“. For example for the entire Vostok data set cycle (428,000 years 

approximately) for relative temperature (Table 6), the most energy is carried in the 5th harmonic followed by 

the 3rd, whereas for CO2 it is vice versa, and so on. More is described in Section 4 on energy considerations. 

Second oof all, in most cases both temperature and CO2 carry very similar, few times equivalent harmonics, 

but not necessarily with the same enrgy. We also note from the Figs. 14 – 18 that longer the cycle or cycle 

combinations are, more harmonics are present which carry considerable energy in the total signal. Another 

observation is that, for example, for Cycle 4 temperature shows only two very significant harmonics and CO2 

only one. That could due to lack of data points in Vostok set (Table 1), as there are only around 50 data points 

collected, whereas for other cycles it is 100 or more, for Cycle 2 and Cycle 3, and around 75 for Cycle 1. It is 

worth nothing that Cycle 1 is still ongoing and more data in the future will be collected. Plus it is not clear if 

we are on top of Cycle 1, it will take many years to test this. One of important items for future research is to 

try to identify known climate related events, including Milankovitch Cycles of certain duration which may 

coincide with the harmonics in our analysis.  

 
Fig. 14  Full Vostok ice core temperature and CO2 harmonic content, FFT normalized 

 

 
Fig. 15  Cycle 1 temperature and CO2 harmonic components, FFT normalized 

 

CO2 

CO2 Temperature 

Temperature 
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Fig. 16  Cycle 2 temperature and CO2 Harmonic components, FFT normalized 

 

 
Fig. 17  Cycle 3 temperature and CO2 harmonic components, FFT normalized 

 
Fig. 18 Cycle 4 temperature and CO2 harmonic components, FFT normalized 

 

Table 6   First five harmonics for individual and entire Vostok ccyles 

Harmonics 

(in years) 

 

Cycle C1 

 

Cycle C2 

 

Cycle C3 

 

Cycle C4 

 

Entire C1234 

Temperature 127,726 (1) 115,156 (1) 86,462 (1) 96,782 (1) 86,175 (5) 

 63,863 (2) 57,578 (2) 43,231 (2) 48,391 (2) 143,625 (3) 

 21,288 (6) 38,385 (3) 21,615 (4) 24,196 (4) 53,859 (8) 

 31,932 (4) 19,193  (6) 12,352 (7) 32,261 (3) 107,718 (4) 

 15,966 (8) 14,394 (8) 28,821 (3) 19,356 (5) 39,170 (11) 

     28,725 (18),  430875 (1) 

CO2  128,399 (1) 109,800 (1) 86,147 (1) 95,587 (1) 143,625 (3) 

 42,800 (3) 54,900 (2) 43,074 (2) 11,948 (8) 86,175 (5) 

 64,200 (2) 36,600 (3) 17,229 (5) 23,897 (4) 107,719 (4) 

 14,267 (9) 27,450 (4) 21,537 (4) 19,117 (5) 430,875 (1) 

 18,343 (7) 18,300 (6) 28,716 (3) 31,862 (3) 53,859 (8) 

Temperature CO2 

Temperature CO2 

Temperature CO2 
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Figures 19 – 23 have the results of harmonic analysis of selected cycle combinations. 

 
Fig. 19  Cycles 1 and 2, temperature and CO2 harmonic components, FFT normalized 

 
Fig. 20  Cycles 2 and 3, temperature and CO2 harmonic components, FFT normalized 

 
Fig. 21  Cycles 3 and 4, temperature and CO2 harmonic components, FFT normalized 

 
Fig. 22  Cycles 1, 2 and 3, temperature and CO2 harmonic components, FFT normalized 

 
Fig. 23  Cycles 2, 3 and 4, temperature and CO2 harmonic components, FFT normalized 

Temperature CO2 

Temperature CO2 

Temperature CO2 

Temperature CO2 

Temperature CO2 
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3.5  Preliminary Time_Frequency Analysis 

 

To conclude this Section we also show very preliminary results on simultaneous time-frequency analysis of 

Vostok ice core data using Short Term Fourier Transform (STFT). The idea is to se the results for short and 

long term predictions for both relative temperature and CO2 via so called Uncertainty Principle which relates 

resolution in time (short term) vs frequency (long term). One version of the Principle [9] reads as: 

 

                                                                                Δt Δf ≥ 1/4π                                                                  (8) 

 

where loosely speaking Δt and Δf represent essential time and frequency range around a certain moment in the 

data series time. There are other versions of the Principle as well. This principle resembles classis Heisenberg 

Uncertainty Principle in physics and comes from very similar mathematical analysis [9]. Figs. 24 – 27 

(normalized frequency vs time) show results for STFT for Cycles 1 through 4, for temperature (first figure), 

CO2 (second figure) and cross spectrum between the two (third figure). Darker areas indicate higher harmonic 

energy. Note dark areas in cross correlation are concentrated around certain time and indicate CO2 delay with 

respect to temperature (for example longer for C1 compared to C4). Note also more energy (dark area) on the 

right of second diagram in Figure 24 (CO2) comapred to the first diagram Figure 24 (temperature). Compare 

this with Figure 4 earlier indicating lots of CO2 data „activity“ vs much less for temperature towards the end 

of the C1 record. These kinds of considerations can be used to further fine tune our algorithm for short and 

long term training and prediction. As stated in Abstract we are working on Kalman Filter Predictor as a base  

of Machine Learning prediction methodology which we will report in a follow up paper. 

 
Fig. 24  Cycle 1 Temperature, CO2 and cross harmonics, using STFT 

 
Fig. 25 Cycle 2 Temperature, CO2 and cross harmonics, using STFT 

 
Fig. 26   Cycle 3 Temperature, CO2 and cross harmonics, using STFT 

 
Fig. 27 Cycle 4 Temperature, CO2 and cross harmonics, using STFT 
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4.  Energy Consideration 

 

This section summarizes Vostok ice core data energy analysis. The idea is based on choosing only the highest 

energy harmonics to simplify future Machine Learning algorithm development. For this we set, as an 

example, a limit that any number of harmonics need to add up to more than 90% of the total data set energy 

for each cycle or any of their combinations. We expect that this will result in a considerable reduction of 

required harmonic components for further inclusion in any training and testing approaches. The FFT 

algorithm in R produces a set of Fourier transform coeffficients which indicate energy level of each harmonic. 

They correspond to Table 6 harmonics for each cycle as well as the entire Vostok data set.  The values are 

higher for CO2 compared to relative temperature due to larger values of original data points. As mentioned 

earlier, these values are Fourier Transform coefficients. The total energy in the data set can be me3asured 

using harmonic components or using time data samples. Per Plancherel Theorem (or Parsseval) both 

approaches produce the same energy content, and for FFT and DFT (Discrete Fourier Transform) this is stated 

as in: 

                                              Energy = ∑n |x(t)|
2
 = (1/N) ∑k |X(k)|

2
), n and k = 0,1,...,N-1                           (9) 

 

where X(k) is the DFT of x(t), both data sets of of length N. The formula applies to both relative temperature 

as well as CO2 as they are examples of data sequencies. The Theorem above simply states that there is a one-

to-one correspondence between original data set x(t) ND ITS Fourier Transform version in frequency domain. 

Hence total signal energy in time is equivalent to total ener gy in frequency domain. Because of that we can 

freely look for energy distribution in frequency domain and use it to choose the most „energetic“ harmonics in 

temperature or CO2 data set. As the number of these components will be just few of all present but carrying 

most of the energy (typically 5 components carry more than 90% of the total energy) per Table 7 bellow, this 

will simplify choice in Machine Learning approach of an appropriate method to utilize these harmonics. We 

are working to develop Kalman Filter like methodology to employ these results in the energy domain. 

 

Table 7  First 5 „energy“ harmonics for individual and entire Vostok cycles 

Harmonics 

Energy 

 

Cycle C1 

 

Cycle C2 

 

Cycle C3 

 

Cycle C4 

 

Entire C1234 

Temperature 470 395 362 4605 820 

 178 311 159 108 719 

 23 212 76 12 620 

 20 68 18 95 246 

 12 39 15 7 197 

     121 and  111 

CO2  54,884 38,194 49,542 42926 74,646 

 4,577 21,600 9,497 945 68,694 

 3,652 7,960 5,056 867 31,585 

 1,245 5,743 2,628 579 22,495 

 

853 1,759 1,635 

431 

 21,783 

 

5.  Results summary 

  

Various results of the analysis in this paper are summarized in Table 8 for ease of getting a general and 

complete view of the results. As stated earlier, all possible combinations of four cycle data were analyzed with 

the idea to enrich the data set for Machine Learning work in progress. Table 8 shows results for four cycles 

plus few more cycle combinations, as examples. Laft half of the table is devoted to relative temperature and 

the nrigh halh to CO2. C1, C2 etc indicate which cycle the data refers to. On the upper left there is an 

indication of the length of the cycle period in thousand of years, and also the number of data points for each 

case, together with the information as to how many „energy“ harmonics were chosen. For example, for C1 

temperature portion this is 5 harmonics out of 37, which is 13.5%. This corresponds to 93% of the total 

energy. There is also an indication of average sample time, for C1 temperature it is 1,703 years. 
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Table 8.  Summary of results 
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Next three sub columns to the right indicate presence of specific harmonic numbers (1, ½ or 1/3, etc.), plus 

normalized FFT harmonics in time, and finally real harmonics estimate in 1000s of years. This is then 

repeated for all other cases of temperature (left side of the Table) as well as for CO2 on the right side. This 

way one we can quickly compare temperature data with that of CO2 as far as how many harmonics each 

requires, what is the enrgy percentage of the total energy, as well as average time sampling in years, as well as 

the cycle duration. The table can be expanded to incorporate all other possible cycle combinations for the sake 

of enriching Machine Learning data sset for training, testing and predicting purposes. We expect more data to 

be beneficial in order to reduce prediction errors. As the errors get calculated, they can be added to this table 

for completeness and quick analysis. 

 

 



 PEN Vol. 7, No. 2, August 2019, pp.907- 923 

 

922 

6.  Conclusion, Future work and Machine Learning 

 

In this paper we analyzed Vostok ice core data using (i) time correlations, (ii) harmonic analysis, as well as 

(iii) energy consideration. The general approach split the Vostok data set into 4 smaller sets, as per climate 

periodiciy indicated in the set. The general outcome is a choice of set of high energy harmonics for all cycles 

and any of their combinations for Kalman Filter based predictor for Machine Learning prediction purposes. 

The minimal choice of harmonics will allow us to devise a reasonably simple Machine Learning algorithm for 

training, testing and prediction purposes.  For example long data set in C234 can be used as a Training Data 

Set, so can C23 (shorter though), in order to "predict" C1, calculate prediction error E1,234 (Error in 

predicting C1 given C2, C3 and C4 cycles) or E1,23 (preedicting C1 given onbly C2 and C3 data). This 

applies to both temperature and CO2. We will repeat the above analysis for other components in Vostok data 

set, such as methane, oxygen and insolation. Similarly for European EPICA data set as well as set of cycles 

indicated in Milankovich theory. Hence, once we predict C1 using C123 or C23, we obtain errors E1,234 and 

E1,23. Intuitively we can expect that E1,23 > E1,234, i.e. training based on larger data set ideally would 

produce smaller test and prediction errors. With this in mind we can use C1234 to predict time now, or in the 

near or far away climate future of the data set. Using other C combinations not necesarilly next to each otrher 

in time (such as C13, C14, C24, C123, C134), it is conceivable we will be able to reduce the erros even 

further, all for the benefit of predicting NOW and in the FUTURE. If a precise numerical correlations are 

found between Vostok and Milankovitch data sets [14], prediction using our Machine Learning approach can 

be combined with Milankovitch future cycles as they can be correctly predicted. When chosing harmonics set, 

various energy targets, such as at 90%, 93%, 95% or 99%, at the expense of incorporating more harmonic 

components. Another by-product of the temperature data  analysis is to estimate the likely water vapour 

content of atmospheres of different eras. Given that we have proposed positive forcing from irrigation water 

[11] in addition to other primary sources of warming such as the Milankovitch astronomical cycles. This may 

prove a more reliable means of correlation using the link already established between water vapour 

responsible for more than 80% of the heating of air [11].   
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