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1. Introduction 

Let D be the unit disk {z : z  C and |z| < 1}, A be the class  of all functions analytic in D, satisfying 

the conditions 

f(0) = 0 and f (0) = 1. 

 

Then each function f in A has the Taylor expansion 

.zazf(z)
2n

n

n




               (1.1) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Periodicals of Engineering and Natural Sciences (PEN - International University of...

https://core.ac.uk/display/229562419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Damodaran and Srutha Keerthi.  PEN Vol. 6, No. 1, 2018, pp. 296 – 304 

297 

 

Further, by S we shall denote the class of all functions in A which are univalent in D. The koebe one-quarter 

theorem [7] states that the image of D under every function f from S contains a disk of radius 
4

1
, Thus every 

such univalent function has an inverse  f 
1

 which satisfies 

D)(zz,(f(z))f 1   

and                  

                                      f(f 
1

(w)) = w,          (|w| < r0(f); r0(f)  
4

1
), 

 where         

                        4

432

3

2

3

3

2

2

2

2

1 )waa5a(5a)wa(2awaw(w)f  

A function f(z)  A  is said to be bi-univalent in D if both f(z) and f 
1

(z) are univalent in D. If the 

functions f and g are analytic in D, then f is said to be subordinate to g, written as  

D)(zg(z),f(z)   

 

if there exists a Schwarz function w(z), analytic in D, with 

w(0) = 0     and     |w(z)| < 1     (z  D) 

 

such that f(z) = g(w(z))     (z  D). 

 

Let  denote the class of bi-univalent functions defined in the unit disk D. Lewin [11] studied the 

class of bi-univalent functions, obtaining  the bound 1.51 for modulus of the second coefficients |a2|. 

Netanyahu [14] showed that max|a2| = 
3

4
 if f(z)  . Subsequently, Brannan and Clunie [4] conjectured that 

|a2|  2  for f  . Brannan and Taha [3] introduced certain subclasses of the bi-univalent function class  

similar to find familiar subclasses. Recently, many authors investigated bounds for various subclasses of bi-

univalent functions ([1], [6], [12], [15], [17]).  

Not much is known about the bounds on the general coefficient |an| for n  4. In the literature, there are only a 

few works determining the general coefficient bounds |an| for the analytic bi-univalent functions ([2], [5], [9], 

[10]). The coefficient estimate problem for each of |an|  (n  N / {1, 2};  N = {1, 2, 3, ...})  is still an open 

problem. 

 Chebyshev polynomials have become increasingly important in numerical analysis, from both theoretical and 

practical points of view. There are four kinds of Chebyshev polynomials. The majority of books and research 

papers  dealing with specific orthogonal polynomials of  Chebyshev family, contain mainly results of 

Chebyshev polynomials of first and second kinds Tn(x) and Un(x) and their numerous uses in different 

applications, see  for example, Doha [8] and Mason [13]. 

The Chebyshev polynomials of the first and second kinds are well known. In the case of a real 

variable x on [1, 1], they are defined by  

     Tn(x) = cos n, 
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                                                Un(x) =  ,
θsin

1)θsin(n 
 

where the subscript n denotes the polynomial degree and where x =  cos . 

 

Definition 1 

For 0    1, l  (
2

1
, 1],  |t|  1 and t  1 (t is real), a function f(z)   is said to be in the class C(, 

l , t), if the following subordination hold 

 
2 2

2 2 2

2

(1 t)[zf (z) (2 ) z f (z)] 1
(z, ) (z D)

[4( )(z tz)+(2 ) (f (z) f (tz)) 1 2 z z

                                +(2 3 1)(f(z) f(tz))]

H l
z t l

 

   

 

 
 

    
  

       
    

                                                                                                (1.2) 

and 

 
2 2

2 2 2

2

(1 t)[wg (w) (2 ) g (w)] 1
(w, ) (w D)

[4( )(w-tw)+(2 ) (g (w) g (tw)) 1 2 w w

                                +(2 3 1)( (w) (tw))]

w
H l

w t l

g g

 

   

 

 
 

    
  

      
    

  

                                                                                                                          (1.3) 

where g(w) = f 
1

(w). 

We note that if l = cos ,   






 

3

π
,

3

π
, then 

n

2
n 1

1 sin(n 1)α
H(z, ) 1 z (z D).

1 2 z z sin α
l

l






   

 
  

Thus 

2 2 2H(z, ) 1 2cosαz (3cos α sin α)z (z D).l        

 

Following see, we write 

2

1 2H(z, ) 1 U ( )z U ( )z (z D, ( 1,1)),l l l l        

where 

2
1n

1

)ssin(narcco
U

l

l




 

(n  N) are the chebyshev polynomials of the second kind. Also it is known that  
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),(U)(U2)(U 2n1nn llll    

and 

 ,48)(U1,4)(U,2)(U 3

3

2

21 lllllll             (1.4) 

The Chebyshev polynomials Tn(l), l  [1, 1], of the first kind have the generating function of the form 

D).(z
zz21

z1
)z(T

2
0n

n

n 







 l

l
l  

 

However, the Chebyshev polynomials of the first kind Tn(l) and the second kind Un(l) are well connected by 

the following relationships 

).(U)(U)(2T

),(U)(U)(T

),(nU
d

)(dT

2nnn

1nnn

1n
n

lll

llll

l
l

l













 

 

In this paper, motivated by the earlier work of Srutha keerthi [16]. 

 

 

2. Coefficient bounds for the function class C(, l ,  t) 

 

Theorem  1 

Let the function f(z) given by (1.1) be in the class C(, l , t). Then  

2

2

2 2 (2 t λt+1)
a ,

A

l l  
  

 

2 2 2 2

3 2 2 2

2

4 (2 t λt+1) 2 (2 t λt+1)
a ,

[2 u ((2 3λ+1) 2 (2 λ))]

l l

t B

 

 

 
 

   
 

 

2 2

22 2

2 2 2 2

2

(2 u [(2 3λ+1) 2 (2 λ)]) 
A 4 B(2 t λt+1) ,

[4 (4 2λ+2) (2 u [(2 3λ+1) 2 (2 λ)])]

t
l

l t

 


  

     
   

         

      

 

2 2 2

3[(6 3λ+3) u [(2 3λ+1)+3t(2 λ)]].B         
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and     un = ,
t1

t1 n




 n  N. 

 

Proof. 

Let f  C(, l , t).  From (1.2) and (1.3), we have 

 

2 2

2 2

2

2

1 2

(1 t)[zf (z) (2 ) z f (z)]

[4( )(z-tz)+(2 )(f (z) f (tz))

                                +(2 3 1)(f(z) f(tz))]

1 U ( )w(z) U ( )w (z) ,

t

l l

 

   

 

 
 

    
 

    
    

   

  

                                                                                                                            (2.1) 

 

and 

 

2 2

2 2

2

2

1 2

(1 t)[wg (w) (2 ) g (w)]

[4( )(w tw)+(2 ) (g (w) g (tw))

                                +(2 3 1)( (w) (tw))]

1 U ( )v(w) U ( )v (w) ,

w

w t

g g

l l

 

   

 

 
 

    
 

     
    

   

                      

                                                                                                                             (2.2) 

 

for some analytic functions w, v such that w(0) = v(0) = 0 and |w(z)| < 1, |v(z)| < 1 for all z  D. From the 

equalities (2.1) and (2.2), we obtain that 

 

 

2 2

2 2

2

2 2

1 1 1 2 2 1

(1 t)[zf (z) (2 ) z f (z)]

[4( )(z-tz)+(2 )(f (z) f (tz))

                                +(2 3 1)(f(z) f(tz))]

1 U ( )c z [U ( )c U ( )c ]z ,

t

l l l

 

   

 

 
 

    
 

    
    

    

    

                                                                                                                               (2.3) 
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2 2

2 2

2

2 2

1 1 1 2 2 1

(1 t)[wg (w) (2 ) g (w)]

[4( )(w tw)+(2 ) (g (w) g (tw))

                                +(2 3 1)( (w) (tw))]

1 U ( )d w [U ( )d U ( )d ]w .

w

w t

g g

l l l

 

   

 

 
 

    
 

     
    

    

    

                                                                                                                              (2.4) 

 

It is fairly well-known that if |w(z)| = |c1z + c2z
2
 + c3z

3
 + ...| < 1 and  

|v(w)| = |d1w + d2 w
2
 + d3w

3
 + ...| < 1,  z, w  D, then 

|cj|  1,      j  N. 

 

It follows from (2.3) and (2.4) that 

                  

2 2

2
2 1 12

[2 u ((2 3λ+1) 2 (2 λ))]
a U ( )c ,

(2 λt+1)

t
l

t

 



   



                       (2.5) 

 

       

2
23 2

1 2 2 12 2 2

a a
U ( )c U ( )c ,

(2 λt+1) (2 λt+1)

B C
l l

t t 
  

 

                                      

(2.6) 

 

                

2 2

2
2 1 12

[2 u ((2 3λ+1) 2 (2 λ))]
a U ( )d ,

(2 λt+1)

t
l

t

 



   
 


                         (2.7) 

 

     

2 2
22 3 2

1 2 2 12 2 2

(2a a ) a
U ( )d U ( )d ,

(2 λt+1) (2 λt+1)

B C
l l

t t 


  

 

                  

(2.8) 

Where 

  2 2 2 2

2 2 2(2 u [(2 3λ+1) 2 (2 λ)])[2(2 )[1 u ] u (2 3λ+1)] .C t t              

 

From (2.5) and (2.7) we obtain 

 11 dc             (2.9) 

 

and 

    

22 2
2 2 2 22
2 1 1 12 2

2[2 u ((2 3λ+1) 2 (2 λ))]
a U ( )(c d ).

(2 λt+1)

t
l

t

 



   
 


                           (2.10) 
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By adding (2.6) and (2.8),we get 

2 2
2 22 2

1 2 2 2 1 12 2 2

2 a 2 a
U ( )(c d ) U ( )(c d ),

(2 λt+1) (2 λt+1)

B C
l l

t t 
    

 
                   (2.11) 

 

By using (2.10) inequality (2.11), we have 

2 2 2 2 2 2

2 2 2 2
1 2 22 2 2 2 2

1

2[B(2 λt+1) ]a 2U ( )[2 u ((2 3λ+1) 2 (2 λ))] a
U ( )(c d ).

(2 λt+1) U ( )(2 λt+1)

C l t
l

t l t

  

 

     
  

 
 

                                                                                        (2.12) 

 

From (1.4)  and (2.12)  we get 

2

2

2 2 (2 t λt+1)
a ,

A

l l  
  

 

Next, in order find the bound on |a3|, by subtracting (2.8) from (2.6), we obtain 

2
2 23 2

1 2 2 2 1 12

2 (a a )
U ( )(c d ) U ( )(c d ).

(2 λt+1)

B
l l

t


   


 

                                                                                 (2.13) 

 

Then, in view of (2.9) and (2.10), we have from (2.13) 

2 2 2 2 2 2

1 1 1 1 2 2
3 2 2 2

2

U ( )(c d )(2 λt+1) U ( )(c d )(2 λt+1)
a .

2[2 u ((2 3λ+1) 2 (2 λ))] 2B

l t l t

t

 

 

   
 

   
 

 

Notice that (1.4), we get 

2 2 2 2

3 2 2 2

2

4 (2 t λt+1) 2 (2 t λt+1)
a .

[2 u ((2 3λ+1) 2 (2 λ))]

l l

t B

 

 

 
 

   
 

□ 

 

 

3. Fekete-Szegö inequalities for the function class C(, l , t) 

 

Theorem 2 

Let f given by (1.1) be in the class C(, l , t)  and   R.  Then 
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2

2
2

3 2 3 2

2

2 (2 t λt+1) A
;       for μ 1

4
a μa

8 1 μ (2 t λt+1) A
;       for μ 1 .

A 4

l

B l B

l

l B





 
 


  

   


 

 

 

Proof. 

From (2.12) and (2.13)

3 2 2
2 1 2 2

3 2 2 2 2 2 2

1 2 2

2

1 2 2

2

1 2 2

U ( )(2 t λt+1) (c d )
a μa (1 μ)

2U ( )[B(2 λt+1) ] 2 ( )[2 u ((2 3λ+1) 2 (2 λ))]

U ( )(c d )(2 λt+1)

2B

1 1
U ( )(2 t λt+1) h(μ) c h(μ) d

2 2

l

l C U l t

l

l
B B



  





 
  

      

 


    
        

    

 

 

where  

2 2

1

2 2 2 2 2

1 2 2

(1 μ)U ( )(2 t λt+1)
h(μ) .

2U ( )[B(2 λt+1) ] 2 ( )[2 u ((2 3λ+1) 2 (2 λ))]

l

l C U l t



  

 


      
 

 

 

Then , in view of (1.4), we conclude that 

 

2

2

3 2

2 (2 t λt+1) 1
0 h(μ)

2Ba μa
1

4 h(μ) h(μ) .
2B

l

B

l

 
 

  
 
  

 

 

4. Conclusions 

A modest attempt has been made in this report to study certain class of analytic functions and  

Sakaguchi type functions on the open unit disk . Introduced new Subclasses of analytic univalent functions in 

the class C(, l , t) and by selecting the values(l  (
2

1
, 1],  0     1 and |t|1, t≠1), we used the Chebyshev 

polynomial expansions to provided estimates for the initial coefficients of bi-univalent Sakaguchi type 

functions in C(, l , t). 
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