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 This paper explored the method of clustering. Two main categories of 

algorithms will be used, namely k-means and Gaussian Mixture Model 

clustering. We will look at algorithms within thesis categories and what types 

of problems they solve, as well as what methods could be used to determine 

the number of clusters. Finally, we will test the algorithms out using sparse 

multidimensional data acquired from the usage of a video games sales all 

around the world, we categories the sales in three main standards of high sales, 

medium sales and low sales, showing that a simple implementation can 

achieve nontrivial results. The result will be presented in the form of an 

evaluation of there is potential for online clustering of video games sales. We 

will also discuss some task specific improvements and which approach is most 

suitable. 
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1. Introduction 

Given a set of data with different properties, say that they have different spatial location, sales, ratings etc., it 

might be the case that there is information about the relationship between data point not obvious on 

inspection. The method of clustering is a way to divide data into groups which have a high similarity to other 

members of the cluster, and low similarity to members in other clusters. This similarity can be expressed in 

the form of a sales function. However, this division is often ambiguous, and relies on the fact that the 

dissimilarities are distinguishable. [11, p. 201] To give an example of this relationship, let’s assume that the 

data in question is produced by random variables X1, .., Xn. In figure 1 we have an example where the 

variables have a uniform distribution, and if an algorithm find structure in the data it would only be a false 

positive. In figure 2 on the other hand, we see example of random distributions over different intervals. Here we 

can by inspection find two clusters, even though internally there are no significant correlation. 

Depending on what kind of data that is used for clustering, as well as the amount of data available, there will 

be a difference in performance given different methods. There is also a question of time complexity, since the 

k-center clustering problem is NP-hard [3] we also have to consider running time as a factor. To prove the 

NP-hardness one can reduce it to the 3-GMM problem. This is omitted her, but in [14] we can see an 
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sales(pi, pj) = ||pi − pj||   

example of a proof. In this report two categories of such methods will be explored, k-means and Gaussian 

Mixture Model clustering. Specifically, we will focus on how they can be applied to solving an online task. 

The task in question is determining how many hands are acting on a video games sale. Each data point 

corresponds to a finger, or digit, being registered on the surface. This generates x and y coordinates, x and y 

sales and rating. The data also contains pre-processed tracking of individual points which will not be used as 

a clustering parameter. 

1.1 K-means 

When referring to k-means, many find it synonymous to Stuart P. Lloyd’s least square algorithm from 1982 

[13]. Since k-means is a NP hard problem, we need some way of reducing the time complexity, which Lloyd’s 

algorithm does. The issue is however that it does not give any guaranties to how close. We can come. In fact, 

this algorithm can produce arbitrarily bad clusters [3]. 

The algorithm is as follows:  Start by creating k empty clusters and for each cluster, choose at random a data 

point making the coordinates of this point the center of the cluster. Proceed by iterating over each data point 

and calculate which cluster it is closes to and adding the point to closest cluster. When this is done, 

recalculate the center of each cluster by taking the mean of the assigned points. Continue this process until the 

centers of the clusters no longer changes. 

 

 

Figure 1: Successful convergence using k-means. Data set Figure 2: Successful convergence using k-means. Data set 

from [9,18] 

1.2 Theory 

We formulate the problem as follows: Define a set P of points p1, p2, ..., pn, p ∈ (Rm, L2), m being the number 

of features or dimensionality. For each pair pi, pj we have a sales given the function di,j = sales(pi, pj).  The 

assumption is all points are in metric space such that si,j = sj,i, si,i = 0, si,j ≥ 0 and si,k ≤ si,j + sj, 
So, denoting features xk, yk, k = 1, .., m from pi, pj respectively, we get the following expression: 
 

           (1) 

The objective is to include each pi in one of k clusters C = c1, c2, ..., ck determined by the sales function. The 

center cθ,i can be calculated as follows. This minimization we can view as a cost function which is 

monotonically decreasing. This way, algorithm always converges. To show this, let c(t) , ..., c(t) , C(t), ..., 

C(t) denote centers. 

 

sales(C(t+1), ..., C(t+1); c(t) , ..., c(t) ) ≤ sales(C(t), ..., C(t); c(t) , ..., c(t) )  (2) 

We then proceed by recalculating the cluster center. 

sales(C(t+1), ..., C(t+1); c(t+1), ..., c(t+1)) ≤ sales(C(t+1), ..., C(t+1); c(t) , ..., c(t) ) (3) 
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1.3 K-Means with GMM 

As we have discussed earlier, the k-means algorithm is a way to tackle the NP-hard nature of the problem of 

clustering, but it generates a new problem, namely accuracy. In [3] the k-means algorithm is presented as a 

way to get some guarantees on the accuracy of the k-means algorithm, through a randomized seeding 

technique. The bound that k-means proposes is as follows [6]: 

   For any set of data points, EM[φ] ≤ 8(link + 2) 

What the k-means adds to the original k-means is the fact that we can choose the initial clusters using a more 

strategic manner than simply choosing at random. The probabilities can be calculated as follows: Where D is 

the squared sales to the closest cluster center already in C. The paper also proves that k- mean is Ø(log(k)-

Competitive, and that the analysis is in fact tight. 

 

1.4 Gaussian Mixture Model 

GMM clustering is an approach to solving the clustering problem which might not be the fastest but is very 

effective in certain cases. The version we have researched is the agglomerative GMM clustering which can 

be described as a bottom up approach to clustering. At initiation each data point is its own cluster. The 

algorithm then iterates over the clusters determining which pair is, for example, closes (single-link) or 

furthest away (complete-link) from each other [5]. These clusters will then be merged and form a new 

cluster. If no stopping criteria is used, the algorithm will eventually have one single cluster containing all 

data points. For the evaluation I have used the complete-link approach since it suited the data best. To support 

why this is relevant to this project, n we find that the complete-link GMM is an Ø(log(k))-approximation to 

the diameter k-clustering problem. 

In figure 1 and 2 we find an example of a data sets from [7] and [8] respectively, where GMM clustering 

might perform better than others algorithm. I.e. when the data is not spherical, or there is a clear link 

between data points that cannot be captured that easily by statistical properties. However, the method is 

highly susceptible to outliers [19-22]. As one can see in the figures the convergence is not perfect and 

omitted are the next few iterations where the clusters become quite deformed. 

 

 

Figure 3: Convergence using single-link AHC. Data set   Figure 4: Convergence using single-link GMM. Data set 

[8,7]. 

 

2. Methodology 

The method is highly susceptible to outliers. As the convergence is not perfect and omitted are the next few 

iterations where the clusters become quite deformed, Lets define a set P of points p1, p2, ..., pn, p ∈ Rm, m 

being the dimensionality. For each pair pi, pj we can calculate a sales given the function di,j = sales(pi, 

pj).The assumption is all points are in metric space such that di,j = dj,i, di,i = 0, di,j ≥ 0 and di,k ≤ di,j + dj,k. 

What we have to work with is a hollow lower triangular matrix M, which is to be search through. The 
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objective is to include each pi in one of k clusters C = c1, c2, ..., ck according to some criteria such as the 

ones discussed above. 

We have employed the single-link clustering. To show the validity of this method we can draw a parallel to 

the problem of finding a minimum spanning tree. In [11, 22] we find an example of this using Kruskal’s 

algorithm, where the analogous version of the algorithm would work as follows: Start with a strongly 

connected graph G where points p1, p2, ..., pn represent a vertices and for each point pi, pj we have an edge 

with the weight equal to di,j. Now, instead of merging, lets remove the heavy's edge in the graph. Do this k-

1 times and the result will be a minimum spanning tree. [12] 

 

2.1 Adding peripheral cluster 

One addition to k-means that I have been experimenting with is to add a dummy cluster. The method is quite 

a non-scientific but could be an interesting addition to get a better score in practice. The idea is to add a 

cluster, for this problem we used a cluster positioned at 0 as a reference. Since it does not fit anywhere in the 

clusters that are active it is easily recognized as a cluster containing only this point. What it potentially does 

is that it makes the total variation within the rest of the clusters relatively smaller. Imagine having only one 

hand, a reasonable clustering is just having all fingers as there is own clusters, or maybe one for the thumb 

and one for the rest of the digit. Having two hands means we have a sale between hands that is larger than the 

sales between fingers, making it easier to identify as separate clusters. The idea would be to artificially 

create this sale. 

 

2.2 Dataset Description 

The dataset contains estimated Video games sales in different regions of World i.e; North America sales, 

European Union sales, Asia sales, Japan sales, global sales etc. Its year of release, Genre, critic score, critic 

count, user score, user count, Developer and Rating of video games. Based on these instances the clustering 

is done in three categories of sales in High, Medium and Low-sales clusters around the globe. For data set, 

both algorithms got a fairly good score. This is not very odd since the entire data set is supposed to function 

as a reference of an “easy” clustering task. Looking at the majority of the time we have a uniform sale from 

frame to frame. What we can identify from a purely ocular inspection is that the changes seem to happen 

when in a curve [12]. Data set seem to be the hardest of the data sets to clusters. Both k-means and Gaussian 

Mixture Model clustering returns a score of around 50 % in table 1. Also, in 2 the result is worse than for the 

other data sets. The conclusion that we can draw, is that there is a large alternation between 2 and 3 clusters. 

A large portion of the time two hands have no clear sales record, but instead they are aligned in parallel. In 

data set we find a middle ground of the previous two clusters of high and medium sales. There are no 

obvious causes for not converging, except the one we discussed in Data set. 

 

2.3 Conditioning on previous frames 

Continuing the thought from “Evaluating the algorithms”, one change that could be made to the sales function 

is a measurement of similarity to the clusters in previous frames. Seeing as though the data contains the 

tracking of individual fingers, we could add a punishment when converging to a cluster not in the previous 

frame. For example, let us say that we have continuously found some data points in one cluster, then we get 

closer to another cluster. At some point we could face a situation where the sales between data points are 

very similar through both clusters such that var(Ci) var(Cj) var(Ci + Cj).  At this point we might   also have 

the same sales and it would be reasonable that the convergence would be to find one cluster. However, we 

have this information from previous frames saying that data points belong to different clusters, making it even 

more probable that they should be separated. 

What I do now is to cluster using a cluster function Cf with Pi as input, but in reality we should input Pi, Cf 

(Pi−1), .., Cf (P1) since there is a high correlation between different frames. This is too much data to process, 
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2 

but one could extend the method I have been using to recording sales and limit the input to the previous 

frame. In some sense we could employ a Markov assumption as follows: 

 

Cf (Pi|Pi−1, ..., P1) ≈ Cf (Pi|Pi−1)                               (4) 

To support this lets compare table 1 and 2. We can conclude from table 2 that the clustering is fairly 

consistent. However, if we are constantly converging to the wrong clusters, it’s not really a good measure. 

Looking at table 1 however, speaks to the fact that we actually do find the right clustering number quite 

often. 

 

2.4 Adding constraints to sales function 

One somewhat non algorithmic addition one could make to the sales function is to add the physical 

constraint of the assignment. For example, a cluster in this setting is a hand, which we can assume has no 

more than six digits. Also, spacing between individual digits has a limit. Imagine the sales between your first 

and fifth digit, one could add a max that is around some 99 percentiles of sales found in games. 

 

2.5 Combinatorial clustering in K-Mean and GMM 

When doing online clustering, speed is a factor. To speed up the method I have used a combinatorial GMM 

(sequential, agglomerative, Gaussian Mixture Model, non-overlapping) clustering method. As suggested by 

[5][12] we can describe the sales as follows: 

 

                         s(h, k) = αis(i, k) + αjs(j, k) + βs(i, j) + γ|s(i, k) − s(j, k)|                      (5) 

   Where h is the new GMM cluster and k being a cluster already defined in our set C. The parameters 

 α, β, γ can be set in the following way: 

 

• Single-linkage: α = 0.5, β = 0 γ = −0.5 

• Complete linkage α = 0.5, β = 0 γ = 0.5 

When analyzing how a AHC clustering algorithm would perform using the description used in the 
introduction, one can conclude that it will be 0(n3). Since n clusters will potentially be reduced to 1, we 
need n iterations.  For each iteration we need to compare each pair i,j which in takes

 
iterations.  The 

combinatorial GMM algorithm does preform a bit better Ø(n
2
log(n)) [5]. It more practical since we do not 

have to recalculate sales in the same sense and uses a dynamic programming technique and save the previous 
sales. 

 

2.6 Determining k-Cutoff in K-Means 

When determining the most likely number of clusters, a common way is to look at a dendrogram [4]. An 

example can be seen in figure 1 where one can clearly see how clusters are merged. The dendrograms also 

shows the dissimilarity between the two clusters. A common approach is to use a cutoff value k, but for this 

assignment finding the largest sales was a fairly accurate way to guess k. In some sense we are allowing 

minor adjustments to the clustering, but when a big adjustment happens, it is interpreting as a “derailing” from 

the true clustering. It turns out as we will see in proceeding sections, that this is a fairly good assumption for 

convergence. In mathematical terms we can describe the selection process as follows:  

∆d,i = si − si−1 i = 2, ..., kmax 
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k = i ∈ max(∆d,i)                   (6) 

Where si is the sales between the two clusters who are to be merged at iteration i.  

2.7 Data Processing for K-Mean 

The code employed comes straight from the k-means theory. The idea of using K-Mean as a way of 

determining k comes from [17]. 

1.   For k = kmin,...,kmax 

2. Select one data point at random to be the initial cluster. Use the selection method from k-means 

3.   Run until convergence: 

4.   For all points, check which cluster is closest 

5.   Update cluster center in accordance to the new data points 

6.  Check sales to clusters previous location, break if below a threshold Calculate K-Means 

7.    Return the result corresponding to the best K-Means 

 

2.8 Data Processing for GMM 

When implementing the algorithm, we have followed the GMM method described in [5] originally from An- 

derberg 1973 [2] and goes as follows: 

1.   Create a priority queue P for iteration 1 , ..., N − 2 

2. Search for the smallest value in dataset using P. Replace Ci, Cj with a new cluster Ch. Update D and 

P to account for changes. 

3. Check for any big changes, chose k corresponding to the clustering that was present before the 

largest change. 

 

3. Results 

The data sets, we have used for the evaluation is provided by Universal Dataset for Clustering. There are 

three recordings from one of their Video-Games Sales. The data points are the registered sales active on the video 

games sales, and the clustering task will be to assign each of these data points to a cluster representing one 

sales point. Each sale is generating a x and y coordinate, a x and y sales as well as rating per frame. The Data 

also contains pre-processed tracking of individual points. The games have been sampled at rate of 150 per 

sales record. 

At this stage the question is focused on if there is a good way to make a correct clustering, but when 

formulating the problem one should note that there is a need for fast processing time due to the fact that any 

practical application will be online. The idea behind the three different recordings is that they should differ in 

how hard it is to distinguish between the clusters. To start-of, both algorithms, we have used for this 

evaluation are in some sense very simple. The result produced are good because of the data used is generated 

by the authors and used in the right context. In the discussion, we have proposed extensions to the algorithms 

as to better suit this specific problem. 

 

When running the algorithm, we assign a weight k to the parameters where k1 being spatial coordinates, k2 
being sales and k3 being rating. In table 2 we have presented the result of a simple test. We chose the frames 
containing four hands and looked at how many times the algorithm guessed right. In the table we can see 
average percentage (10 iterations), what method was used, what data set was used as well as the values of 
k. 
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Table 1:  Result from cluster number guess. 

% correct Method Data set 

0.5580227982782385 GMM Video Game Sales 

0.5728032024750462 GMM Video Game Sales 

 0.5143995189260154 GMM Video Game Sales 

0.5359751037344395 k-Mean Video Game Sales 

0.18595132743362813 k-Mean Video Game Sales 

0.1048153618906944 k-Mean Video Game Sales 
 

To analyze this data there is a need for tracking. As we have mentioned previously, there is already a 

pre-processed tracking of individual data points across frames. What we want is a way to check how the 

current frame Fi relates to the previous frame Fi−1. Define the function Cf to be a function that given a set of 

data points from a frame Pi returns a number of clusters. To analyze how well the algorithms tracks between 

frames we have used the following test: For every iteration, we converge to a number of clusters ki. We then 

proceed to go through the previous and current clusters and match the best clusters to each other. I then 

calculate the cut between the points in the current and previous cluster and count them up, dividing by the 

total amount of data points. If ki = ki−1 we find the best fitting matches and ignore the rest of the clusters. 

The method I use for comparing clusters between frames is the mean value of the points in the clusters. 

We deem the sales large to be the same cluster at some cut off threshold which is the same for both 

algorithms. We would say that it’s quite noticeable when the clusters are not sequential since the sales is 

very small when two consecutive frames are converged correctly, and a factor of 10 larger when it does not. 

Since the sampling time is constant, there is upper bound on how far a point can change position 

between frames. 

 

Length of Cluster 1:  458 

Centroid Cluster 1: [0.5359751037344395, 6.848132780082986] 

Length of Cluster2:  782 

Centroid Cluster2:  [0.18595132743362813, 2.1085066371681456] 

Length of Cluster 3:  1395 

Centroid Cluster 3: [0.1048153618906944, 1.1106942392909938] 

 

Final Mean of Gaussian1:  [-0.2529028734625937, 0.018147916362775733] 

Final Amplitude of Gaussian1:  0.5580227982782385 

Covariance Matrix:  [4.43918853 2.34465405] 

 [2.34465405 3.96456541] 

Final Mean of Gaussian 2:  [2.5938744098777353, 1.3009754577208656] 

Final Amplitude of Gaussian 2:  0.5728032024750462 

Covariance Matrix:  [8.16237026 5.49537361] 

 [5.49537361 6.32953227] 

 

Final Mean of Gaussian 3:  [4.560270472056536, 4.269452906123397] 

Final Amplitude of Gaussian 3:  0.5143995189260154 

Covariance Matrix:  [5.76946192 3.26290271] 
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 [3.26290271 5.13100977] 

The result of the test is shown in table 2, were we have an averaged percentage (10 iterations) of correct 

transfers between frames, the method used, what data set was used as well as the values of k. 

 

Table 2: Result from the data points tracking 

% correct Method Data set k 

0.834865227719 GMM Video Game Sales 1 

0.754034713764 GMM Video Game Sales 2 

0.768226840163 GMM Video Game Sales 3 

0.911985983716 k-Mean Video Game Sales 1 

0.712328247172 k-Mean Video Game Sales 2 

0.841447317338 k-Mean Video Game Sales 3 

 

A further application of the test used in table 2 is the method of recording sales [7-9]. In the following 

sections we can see the result of these recording sales. The sales recording algorithm works as follows: For 

each cluster in Fi we check if there is a matching cluster in the previous frame Fi−1. If there is, we use the sales 

from the previous frame, otherwise we pick a new sales record. This means that every  time  we  find  ki  ƒ=  ki−1 or  

|Cf (Pi)||+Cf (Pi−1)| we change sales. There is however a limited amount of sales, which means that they may 

reoccur. The images are supposed to work as a complement to table 1 and 2. The sequence is also long enough 

to produce sales complex to make sense of, so we have mainly used the first frames needed to show the 

problem areas. 

 

4. Discussion 

One of the main issues with the GMM plots is that it could be challenging to find the maximum, given that the 

function is not monotonously decreasing before we get close to our local maximum. When looking at the 

GMM for the Video Games Sales data, it’s an even more subtle change, as can be seen in figure. To help this 

search along, making it possible to look for a global maximum of the data set, we have used linear de-

trending. This can be seen in figure. This example comes from data set, but a similar improvement can be 

seen in all data set. Both plots are created by taking the average of all plots produced when running the 

algorithm. The idea behind adding dimensions is that it could help when there are ambiguities. Say that 

spatial coordinates would return one cluster, but they have sales with different sign, or different rating. 

Adding these features could potentially help to separate the clusters. In reality, a reasonable use of these 

values was: k = {1, 2, 3} this is of course a rough estimation, but serves as a benchmark. This was the values 

used to produce the table 1 and 2. As one can see, we have not used k3, rating, since it gave a worse score 

regardless of the values we tried. Running the algorithm using only this parameter gave no indication of the 

true clusters. All cases benefited from having k2, sales, but in reality, the score could be improved by adjusting 

the value. A further exploration could add additional parameters, making it even more unambiguous. One 

thing to address about the sales in “Data set” is that there seems to be a problem when changing countries. 

Our initial theory was that it had to do with the sales changing sign, but there was no noticeable effect when 

excluding sales as a parameter. Further analysis could focus on this since it seems to create a big decrease 

in performance. 

 

5. Conclusion 

The K-means output presents fixed clusters depicting hard membership of a data point to a cluster. Gaussian 

mixture model (GMM) determines these clusters without associating each sample with a cluster. It brings out 

a probabilistic approach of soft membership of each data-points to the dataset. The first thing we can 

conclude is that none of the algorithms produced a result that was sufficient for the task. That is, there would 

be little use of a clustering with as low as 50% success rate in any real-life scenario. What we can see is 
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however that these rather primitive algorithms do produce a non-trivial result. Even this low score does 

indicate that there is potential, and maybe given a non-ambiguous initiation something like conditioning on 

previous frames, adding peripheral clusters, or extending the dimensionality might improve the score as to 

make if relevant. The real time or online use of the algorithm is also something that needs to be explored 

more. K-means is faster than Gaussian Mixture Model clustering. But there is a chance that since the 

maximum number of clusters are so low, both might be relevant. Since tracking for individual digit is 

already in place, the clustering might not need to be done at every frame, but at a given interval or when 

changes happen. To comment on the scores in table 1 and 2, we were expecting an even better performance 

from the Gaussian Mixture Model clustering. As to my knowledge Gaussian Mixture Model clustering 

should perform better on these types of data sets. We might however have underestimated the spherical 

nature of data. One explanation for the lack of performance is we did not find a way of determining k that 

could rival approximation. That is, the clustering might be better if k was given. If one would to venture 

outside of algorithms who are easy to implement, more modern algorithm is available. One example would 

be Gaussian mixture model, which is a density-based algorithm who can process clusters of arbitrary shaped, 

does not need a supplied k and is deterministic [6,16]. Another is the GMM method which is based in 

randomized search [17-22]. Both are focused on large data set but are also more sophisticated. Another 

noticeable feature is that both are also faster than k-means. Another algorithm which we have considered is 

the k-means algorithm [23-25] which works by starting with kmin clusters and alternating between converging 

using k-means and then splitting clusters into two or more. Each iteration they use approximation to evaluate 

k. This way there is no need to redo the whole algorithm when trying out different k, but, they have sales 

with different sign, or different rating. Adding these features could potentially help to separate the clusters. 
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