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Abstract. This paper is concerned with consistency properties of some criteria
for selecting row vectors of a k × p design matrix within individuals in the
growth curve model, based on a sample of size n. Recently Enomoto, Sakurai
and Fujikoshi (2013) showed that AIC and its modification have a consistency
property for selecting hierarchical models of the row vectors under a condition
on the order of the noncentrality matrix, assuming a large-(q, n) asymptotic
framework such that q/n → d ∈ [0, 1). We extend the result to a family of log-
likelihood-based information criteria including AIC and BIC, and Cp. Further,
their consistency properties are also obtained under a new condition on the order
of the noncentrality matrix. Our results are checked numerically by conducting
a Mote Carlo simulation.
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§1. Introduction

The growth curve model introduced by Potthoff and Roy (1964) is written as

(1.1) Y = AΘX+ E,

where Y;n × p is an observation matrix, A;n × q is a design matrix across
individuals, X; k × p is a design matrix within individuals, Θ is an unknown
matrix, and each row of E is independent and identically distributed as a
p-dimensional normal distribution with mean 0 and an unknown covariance
matrix Σ. We assume that n−p−k−1 > 0, and rank(X) = k. If we consider
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a polynomial regression of degree k − 1 on the time t with q groups, then

(1.2) A =


1n1 0 · · · 0
0 1n2 · · · 0
...

...
. . .

...
0 0 · · · 1nq

 , X =


1 1 · · · 1
t1 t2 · · · tp
...

...
...

...

tk−1
1 tk−1

2 · · · tk−1
p

 .

It is important to decide the degree in a polynomial growth curve model. In
general, we consider the problem of selecting the row vectors of X. Suppose
that j denotes a subset of ω = {1, . . . , k} containing kj elements, and Xj

denote the kj × p matrix consisting of the rows of X indexed by the elements
of j. Note that Xω = X and kω = k. We will let kA denote the number of
elements of a set A. We then consider the following candidate model Mj with
kj explanatory variables defined by

(1.3) Mj ; Y = AΘjXj + E,

where Θj is a q × kj matrix consisting of the columns of Θ indexed by the
elements of j, and E has the same distribution as in (1.1). Here we note that
the design matrix A may be also an observation matrix of several explanatory
variables. For such an application, see Satoh and Yanagihara (2010). Let Θ̂j

and Σ̂j be the MLE’s of Θj and Σ under Mj , which are given by

Θ̂j = (A′A)−1A′YS−1X′
j(XjS

−1X′
j)

−1,

Σ̂j =
1

n
(Y −AΘ̂jXj)

′(Y −AΘ̂jXj),

where S = (n− q)−1Y′(In −PA)Y, and PA = A(A′A)−1A′.
There are several criteria for selecting a “best” model from a family of

models Mj . The AIC and the BIC in our problem are given by

AIC = n log |Σ̂j |+ np(log 2π + 1) + 2

{
qkj +

1

2
p(p+ 1)

}
,(1.4)

BIC = n log |Σ̂j |+ np(log 2π + 1) + (log n)

{
qkj +

1

2
p(p+ 1)

}
.(1.5)

Here, the last term {qkj+p(p+1)/2} is the number of independent parameters
under Mj . A consistent AIC (CAIC) based on Bozdogan (1987) is given by

(1.6) CAIC = n log |Σ̂j |+ np(log 2π + 1) + (1 + log n)

{
qkj +

1

2
p(p+ 1)

}
.

We also consider the other modifications AICc, MAICL and MAICH which are
given in Section 2. Further, we consider Cp defined by

(1.7) Cp = ntrΣ̂jS
−1 + 2qkj ,
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and its modification MCp, which is given in Section 2.
In this paper, we assume that the true model is included in the full model

Mk. So, without loss of generality, we may assume that the minimum model
including the true model is expressed as Mj0 for some j0. Then, the true
model is expressed as expressed as

(1.8) M0 : Y ∼ Nn×p(AΘ0X0,Σ0 ⊗ In),

where Θ0 = Θj0 , X0 = Xj0 , and Σ0 is a given positive definite matrix. We
write k0 = kj0 . Let a set of candidate models denote by F. The set of all
candidate models involves (2k − 1) candidate models. A candidate model is
called an overspecified model or an underspecified model if it includes or does
not include the true model M0. We denote a set of overspecified models and
a set of underspecified model by F+ and F−, respectively.

In general, it can be seen that the criteria considered in this paper depend
through p, n, k0, k and the characteristic roots of

(1.9) Ωj = Γ′
jΓj ,

which is called a noncentrality matrix, where Γj = (A′A)1/2Θ0X0Σ
−1/2
0 H

(j)
2 ,

H
(j)
1 = (XjΣ

−1/2
0 )′(XjΣ

−1
0 X′

j)
−1/2 ; p×kj and

(
H

(j)
1 ,H

(j)
2

)
is an orthogonal

matrix.
It is known that AIC and Cp have not a consistency, but BIC and CAIC

have a consistency property, under a large-sample framework

(1.10) p, q and k are fixed, n → ∞,

and Ωj = O(n). However, it is recently noted that AIC and Cp have a
consistency property in a high-dimensional framework. Such results can be
found in multivariate regression model, see, Fujikoshi, Sakurai and Yanagihara
(2014), Yanagihara, Wakaki and Fujikoshi (2014). Further, Enomoto, Sakurai
and Fujikoshi (2013) have noted that AIC and its modification MAICH in our
problem have a consistency property for selecting hierarchical models of the
row vectors of X under a large-(q, n) framework such that

(1.11) p and k are fixed, q → ∞, n → ∞, q/n → d ∈ [0, 1),

and Ωj = O(n). In this paper we extend such properties to various criteria
including AIC, AICc, BIC, CAIC, MAICL, MAICH, Cp and MCp under Ωj =
O(nq) as well as Ωj = O(n). When Ωj = O(nq), it is noted that these
criteria have a consistency property, though some condition on the value of d
is imposed for AIC. When Ωj = O(n), it is shown that BIC and CAIC have no
consistency property, but the other criteria have a consistency property under
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some additional conditions. More precisely, we note that the probability of
selecting the true model by BIC or CAIC tends to zero. Our results are also
examined through a simulation experiment.

The present paper is organized as follows. In Section 2, we summarize
modifications of AIC and Cp. Consistency properties of a log-likelihood-based
information criterion are given in Section 3. In Section 4 we give consistency
properties of Cp and MCp. Numerical experiments are given in Section 5. In
Section 6, we summarize our conclusions. The proofs of our results are given
in Appendix.

§2. Modifications of AIC and Cp

In this section we summarize modifications of AIC and Cp, and review their
bias properties as estimators of the risks. As is well known, the AIC was
proposed as an approximately unbiased estimator of the risk defined by the
expected −2×log-predictive likelihood. Let f(Y;Θj ,Σj) be the density func-
tion of Y under Mj . Then the expected −2×log-predictive likelihood under
Mj is defined by

(2.1) RA = E∗
YE

∗
YF

{
−2 log f(YF ; Θ̂j , Σ̂j)

}
,

where Σ̂j and Θ̂j are the maximum likelihood estimators of Σ and Θ under
Mj , respectively. Here YF ;n× p may be regarded as a future random matrix
that has the same distribution as Y and is independent of Y, and E∗ denotes
the expectation with respect to the true model. The risk is expressed as

(2.2) RA = E∗
YE

∗
YF

{
−2 log f(Y; Θ̂j , Σ̂j)

}
+ bA,

where

(2.3) bA = E∗
YE

∗
YF

{
−2 log f(YF ; Θ̂j , Σ̂j) + 2 log f(Y; Θ̂j , Σ̂j)

}
.

The AIC and its modifications have been proposed by regarding the term
“− bA” as the bias term when we estimate RA by

−2 log f(Y; Θ̂j , Σ̂j) = n log |Σ̂j |+ np(log 2π + 1).

and considering an asymptotic approximation of bA. A bias-corrected AIC is
defined by

(2.4) AICc = n log |Σ̂j |+ np(log 2π + 1) + bA1,
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where

bA1 =− np+
n2(p− kj)

n− p+ kj − 1

+
n(n+ q)(n− q − 1)kj

(n− q − p− 1)(n− q − p+ kj − 1)
.(2.5)

Note that AICc is an exact unbiased estimator of RA when Mj is an overspec-
ified model, i.e.

E(AICc) = RA, j ∈ F+.

The term bA1 can be expressed as

bA1 = 2

{
qkj +

1

2
p(p+ 1)

}
+

(p− kj)(p− kj + 1)2

n− p+ kj − 1

+
kj(2p+ q − kj + 1)(2q + p+ 1)

n− q − p− 1
(2.6)

+
(n+ q)kj(q + p− kj + 1)(p− kj)

(n− q − p− 1)(n− q − p+ kj − 1)
.

Therefore, we can easily see that under a large-sample framework

AICc = AIC +O(n−1).

It is important that a modification has a small bias under underspecified mod-
els as well as overspecified models. Let bA = bA1+bA2. It is known (Enomoto,
Sakurai and Fujikoshi (2013)) that

bA2 = −n(p− kj)(p− kj + 1)

n− p+ kj − 1
+ 2(p− kj + 1)ξ1 − ξ2 +Og(n

−1),

where Og(n
i) denotes the term of i-th order with respect to n under (1.11),

ξ1 = tr

(
Ip−kj +

1

n
Ωj

)−1

, ξ2 = ξ21 + tr

(
Ip−kj +

1

n
Ωj

)−2

.(2.7)

A modification under a large-sample framework (1.10) is given by

(2.8) MAICL = n log |Σ̂j |+ np(log 2π + 1) + bAL,

where

(2.9) bAL = bA1 + b̃A2, b̃A2 = (p− kj + 1){2ξ̃1 − (p− kj)} − ξ̃2,
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and

ξ̃1 =
n

n− q

{
tr(nΣ̂j)

−1(n− q)S− kj

}
,

ξ̃2 = (ξ̃1)
2 +

(
n

n− q

)2 [
tr{(nΣ̂j)

−1(n− q)S}2 − kj

]
.

Then, it is known (Satoh, Kobayashi and Fujikoshi (1997)) that under a large-
sample framework (1.10)

E (bAL) =

{
bA +O(n−2), j ∈ F+,

bA +O(n−1), j ∈ F−.

The other modification based on a large-(n, q) framework (1.11) is given by

(2.10) MAICH = n log |Σ̂j |+ np(log 2π + 1) + bAH ,

where

(2.11) bAH = bA1 + b̂A2, b̂A2 = (p− kj + 1){2ξ̂1 − (p− kj)} − ξ̂2,

and ξ̂1 = ξ̃1, ξ̂2 = f ξ̃2,

f =
3(n− q)(p− kj + 1)(n− 2p+ 2kj − 2)

n(n− p+ kj − 1)

×
{
2(n− q + 2)(p− kj + 2)

n+ 2
+

(n− q − 1)(p− kj − 1)

n− 1

}−1

.

Then, it is known (Enomoto, Sakurai and Fujikoshi (2013)) that under a large-
(n, q) framework (1.11)

E
(
b̂A

)
=

{
bA, j ∈ F+,

bA +Og(n
−1), j ∈ F−.

The Cp in regression model was proposed by Mallows (1973) for the uni-
variate case. Sparks, Coutsourides and Troskie (1983) extended Mallows’ ap-
proach to the multivariate case. Fujikoshi and Satoh (1997) gave a more gen-
eral approach to Cp in the multivariate case. The criterion in the growth curve
model may be essentially considered as an approximately unbiased estimator
of the risk of Mj defined by

(2.12) RC = E∗
YE

∗
YF

{
trΣ−1

0 (YF − Ŷj)
′(YF − Ŷj)

}
,
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where Ŷj is a predictor of Y under Mj given by Ŷj = XjΘ̂j = PjY, and YF

is the same random matrix as in (2.1). The risk is expressed as

(2.13) RC = E∗
Y

{
(n− kj)trΣ̂

−1
ω Σ̂j

}
+ bC,

where

(2.14) bC = E∗
YE

∗
YF

{
trΣ−1

0 (YF − Ŷj)
′(YF − Ŷj)− (n− kj)trΣ̂

−1
ω Σ̂j

}
.

Similarly the Cp and its modification have been proposed by regarding “−bC”
as the bias term when we estimate RC by a minimum values of standardized
residuals sum of squares as

(n− kj)trΣ̂
−1
ω Σ̂j ,

and by evaluating the bias term bC. Satoh, Kobayashi and Fujikoshi (1997)
proposed the following Cp and its modification MCp:

Cp = ntrΣ̂jS
−1 + 2qkj ,(2.15)

MCp = ntrΣ̂jS
−1 + q(p+ kj)

− q(p− kj)(n− q − kj)

n− q − p+ kj − 1
+

(
2kj − p− 1

n− q − p+ kj − 1

)
(2.16)

×
{
n(n− q − p+ kj − 1)

n− q
trΣ̂jS

−1 − (n− p+ kj − 1)p+ qkj

}
.

The MCp satisfies
E(MCp) = RC.

Further we can write MCp as

MCp =

{
1 +

2kj − p+ 1

n− q

}
ntrΣ̂jS

−1 + 2qkj + p(p− 2kj + 1)

= Cp + (2kj − p+ 1)
n

n− q
trΣ̂jS

−1 + p(p− 2kj + 1).(2.17)

§3. Consistency of a log-likelihood-based information criterion

We treat AIC and its modifications as a unified criterion

(3.1) ICj = n log det(Σ̂j) + np(log 2π + 1) +mj ,

which is called a log-likelihood-based information criterion, where mj is a
positive constant expressing a penalty for the complexity of the model (1.3).
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A specific criterion is given by specifying the individual penalty term mj . It
contains AIC, BIC, CAIC, AICc, MAICL and MAICH as a special case, as
follows.

(3.2) mj =



2{qkj + p(p+ 1)/2} (AIC)
{qkj + p(p+ 1)/2} log n (BIC)
{qkj + p(p+ 1)/2}(1 + log n) (CAIC)
bA1,j (AICc)
bAL,j (MAICL)
bAH,j (MAICH)

.

Here the quantities bA1,j , bAL,j and bAH,j are the same ones as in (2.6), (2.9)
and (2.11), respectively.

In this section we show that the asymptotic probability of selecting the
true model by AIC and its modifications goes to 1 when the number q and
the sample size n are approaching to ∞ as in (1.11), under some additional
assumptions. We denote the AIC for Mj by AICj . The best model chosen by
minimizing the AIC is written as

ĵAIC = argmin
j∈F

AICj ,

which denotes the suffix j minimizing AICj with respect to j ∈ F. Similar
notations are used for the other criteria. The consistency property of IC is
examined by using a key result (see, e.g., Fujikoshi, Enomoto and Sakurai
(2013))

(3.3)
|(n− q)S|
|nΣ̂j |

=
|W(j)|

|W(j) + B(j)|
,

whereW(j) are independently distributed as a Wishart distribution Wp−kj (n−
q, Ip−kj ) and a noncentral distribution Wp−kj (q, Ip−kj ;Ωj), respectively. The
matrix Ωj is defined by (1.9).

Our main assumptions are summarized as follows:

A1 (The true model M0): j0 ∈ F.

A2 (The asymptotic framework): q → ∞, n → ∞, q/n → d ∈ [0, 1).

A3 (The order assumption (i) of Ωj): For j ∈ F−,

Ωj = n∆j = Og(n) and lim
q/n→d

∆j = ∆∗
j .

A4 (The order assumption (ii) of Ωj): For j ∈ F−,

Ωj = nqΞj = Og(nq) and lim
q/n→d

Ξj = Ξ∗
j .
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Our consistency properties of a log-likelihood-based information criterion are
given in two theorems, depending on the assumptions A3 and A4 on the order
of the noncentrality matrix Ωj as follows.

Theorem 3.1. Suppose that the assumptions A1, A2 and A3 are satisfied.

(1) Let da (≈ 0.797) be the constant satisfying log(1−da)+2da = 0. Further,
assume that d ∈ [0, da), and

A5: For any j ∈ F−,

log |Ip−kj +∆∗
j | > (k0 − kj){2d+ log(1− d)}.

Then, the model selection criterion AIC is consistent, i.e., the asymptotic
probability of selecting the true model j0 by the AIC tends to 1, which may be
stated as

lim
q/n→d

P (ĵAIC = j0) = 1.

(2) Suppose that

A6: For any j ∈ F−,

log |Ip−kj +∆∗
j | > (k0 − kj)

{
2d

1− d
+ log(1− d)

}
.

Then, the model selection criteria AICc, MAICL and MAICH are consistent.

(3) The model selection criteria BIC and CAIC are not consistent. More
precisely, the probability of selecting the true model by BIC or CAIC tends to
zero.

Theorem 3.1 is an extension of Enomoto, Sakurai and Fujikoshi (2013)
which proves consistency of AIC and MAICH in the case of selection of hier-
arichical models on the row vectors of X.

Theorem 3.2. Suppose that the assumptions A1, A2 and A4 are satisfied.

(1) If d ∈ [0, da), then, the model selection criterion AIC is consistent. Here
da is given Theorem 3.1.

(2) Suppose that for any j ∈ F−, |Ξj | > 0. Then, the model selection
criteria AICc, BIC, CAIC, MAICL and MAICH are consistent.

§4. Consistency of Cp and MCp

In this section we give consistency properties of Cp and MCp. The derivation
is done in a way similar to one for a log-likelihood-based information criterion,
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with the help of

n

n− q
trΣ̂jS

−1 = tr(nΣ̂j){(n− q)S}−1

= p+ trB(j)W
−1
(j),(4.1)

where W(j) and B(j) are the same random matrices as in (3.3).

Theorem 4.3. Suppose that the assumptions A1, A2 and A3 are satisfied.
Further, assume that

A7: For any j ∈ F−,

tr∆∗
j > d(k0 − kj).

Then, the model selection criteria Cp and MCp are consistent.

Theorem 4.4. Suppose that the assumptions A1, A2 and A4 are satisfied.
Further, suppose that for any j ∈ F−, trΞ

∗
j > 0. Then, the model selection

criteria Cp and MCp are consistent.

These results will be worthy of note, since Cp and MCp are known to be
inconsistent under a large-sample framework.

§5. Simulation study

In this section, we numerically examine the validity of our claims and the speed
of the convergences of the criteria. Monte Carlo simulations were considered
for several different values of n and q = dn, where p = 5, n = 50, 100, 200,
n1 = · · · = nq = n/q and d = 0.1, 0.2. We constructed a 5 × 5 matrix X
as in (1.2) of explanatory variables with ti = 1 + (i − 1)(p − 1)−1. The true
covariance matrix Σ0 was determined such that its (i, j)th element is ρ|i−j|,
where ρ = 0.2, 0.8. We consider the five candidate models M1, . . . ,M5, where
Mj denotes the model with the first j rows of X. So, in this section a subset
j means j = {1, . . . , j}. We assume that M2 is the minimum model including
the true model. The true model are included in M2,M3,M4,M5, but it is not
included in M1. Therefore, Ωj = 0 when M2,M3,M4,M5, and Ωj ̸= 0 when
M1.
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5.1. The case of order assumption (i)

As a realization of Ωj = Og(n) we assume that Θ0 = 1q1
′
2. Then, the non-

centrality matrix Ωj is expressed as

Ωj = H
(j)
2

′
Σ

−1/2
0

′
X′

0Θ
′
0A

′AΘ0X0Σ
−1/2
0 H

(j)
2

= H
(j)
2

′
Σ

−1/2
0

′
X′

0121
′
q


n1 0 · · · 0
0 n2 · · · 0
...

...
. . .

...
0 0 · · · nq

1q1
′
2X0Σ

−1/2
0 H

(j)
2

= H
(j)
2

′
Σ

−1/2
0

′
X′

0

(
n n
n n

)
X0Σ

−1/2
0 H

(j)
2 .

Further, X0, Σ
−1/2
0 and H

(j)
2 do not depend on n and q. Therefore, Ωj =

Og(n). Moreover, the convergent values in A5, A6 and A7 for consistency are
calculated as follows:

ρ d log |Ip−kj +∆∗
j | 2d+ log(1− d) 2d/(1− d) + log(1− d) tr∆∗

j

0.2 0.1 0.440 0.095 0.117 0.552
0.2 0.440 0.177 0.277 0.552

0.8 0.1 0.614 0.095 0.117 0.847
0.2 0.614 0.177 0.277 0.847

Here, F− contains a subset {1} only. Therefore, we can see that in our setting the
assumptions A5, A6 and A7 are satisfied.

The selection probabilities (%) based on Monte Carlo simulations with 104 itera-
tions are summarized in Tables 1 ∼ 4. From these tables we can point the following
tendencies.

• We can see that CAIC and BIC have no consistency property. In general, they
chose M1 with high probabilities, though they have a tendency of choosing M2

for d = 0.1 and ρ = 0.8.

• MAICH chooses M2 more frequently than MAICL. Similarly, MCp chooses M2

more frequently than Cp.

• As q increases under n being fixed, AIC, Cp and MCp choose M2 more fre-
quently, but the other criteria choose M2 more fewer.

• For the speed of convergences to 1, the case ρ = 0.8 is faster than the case
ρ = 0.2.

• AIC, Cp and MCp have a tendency of choosing overspecified models than AICc,
MAICL and MAICH.

• AICc, MAICL and MAICH have a tendency of choosing underspecified modes
than AIC, Cp and MCp.
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• When d = 0.2 and n and q are small, AIC chooses the true model more fre-
quently than AICc, MAICL and MAICH.

• MCp chooses the true model more frequently than Cp in all the cases except
the case; d = 0.2, n = 50 and q = 10.
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Table 1. Selection probabilities (%) for d = 0.1 and ρ = 0.2.

(n, q) AIC AICc MAICL MAICH CAIC BIC Cp MCp
(50, 5) M1 0.8 4.8 7.1 5.2 17.2 37.9 0.6 1.2

M2 85.4 91.4 90.2 91.4 82.5 62.1 83.5 86.5
M3 9.9 3.1 2.3 2.9 0.3 0.0 10.8 8.4
M4 2.8 0.5 0.3 0.5 0.0 0.0 3.6 2.6
M5 1.1 0.1 0.1 0.1 0.0 0.0 1.5 1.3

(100, 10) M1 0.0 0.3 0.3 0.3 24.1 56.6 0.0 0.1
M2 94.7 98.5 98.5 98.5 75.9 43.5 94.0 95.3
M3 4.6 1.2 1.1 1.2 0.0 0.0 5.0 4.0
M4 0.6 0.0 0.0 0.0 0.0 0.0 0.8 0.6
M5 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1

(200, 20) M1 0.0 0.0 0.0 0.0 43.1 83.7 0.0 0.0
M2 98.8 99.9 99.9 99.9 56.9 16.3 98.8 99.0
M3 1.2 0.1 0.1 0.1 0.0 0.0 1.2 1.0
M4 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2. Selection probabilities (%) for d = 0.2 and ρ = 0.2.

(n, q) AIC AICc MAICL MAICH CAIC BIC Cp MCp
(50, 10) M1 5.5 49.4 55.5 52.0 70.1 92.0 4.2 9.6

M2 85.6 50.4 44.4 47.9 29.9 8.0 85.0 83.4
M3 7.2 0.2 0.1 0.2 0.0 0.0 8.4 5.5
M4 1.4 0.0 0.0 0.0 0.0 0.0 1.9 1.2
M5 0.4 0.0 0.0 0.0 0.0 0.0 0.6 0.4

(100, 20) M1 0.9 22.9 24.9 23.8 95.9 99.9 0.8 1.7
M2 96.6 77.1 75.1 76.2 4.1 0.1 96.6 96.5
M3 2.4 0.0 0.0 0.0 0.0 0.0 2.5 1.7
M4 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.1
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(200, 40) M1 0.0 7.0 7.4 7.1 100.0 100.0 0.0 0.1
M2 99.7 93.0 92.7 92.9 0.0 0.0 99.7 99.7
M3 0.3 0.0 0.0 0.0 0.0 0.0 0.3 0.2
M4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 3. Selection probabilities (%) for d = 0.1 and ρ = 0.8.

(n, q) AIC AICc MAICL MAICH CAIC BIC Cp MCp
(50, 5) M1 0.0 0.3 0.5 0.3 2.2 9.1 0.0 0.0

M2 85.9 96.2 96.8 96.4 97.4 90.9 83.8 87.6
M3 10.1 3.0 2.3 2.8 0.3 0.0 11.1 8.5
M4 3.0 0.5 0.3 0.5 0.0 0.0 3.7 2.7
M5 1.0 0.1 0.1 0.1 0.0 0.0 1.4 1.2

(100, 10) M1 0.0 0.0 0.0 0.0 1.5 10.3 0.0 0.0
M2 94.9 98.6 98.7 98.7 98.5 89.7 94.4 95.5
M3 4.4 1.3 1.2 1.3 0.0 0.0 4.8 3.8
M4 0.6 0.1 0.0 0.1 0.0 0.0 0.7 0.5
M5 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.1

(200, 20) M1 0.0 0.0 0.0 0.0 1.5 15.7 0.0 0.0
M2 98.9 99.9 99.9 99.9 98.6 84.3 98.7 99.0
M3 1.1 0.1 0.1 0.1 0.0 0.0 1.2 1.0
M4 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4. Selection probabilities (%) for d = 0.2 and ρ = 0.8.

(n, q) AIC AICc MAICL MAICH CAIC BIC Cp MCp
(50, 10) M1 0.5 18.3 23.0 20.4 36.7 73.7 0.3 1.1

M2 89.9 81.4 76.7 79.3 63.2 26.3 88.4 91.0
M3 8.0 0.4 0.3 0.3 0.1 0.0 9.0 6.3
M4 1.3 0.0 0.0 0.0 0.0 0.0 1.9 1.2
M5 0.3 0.0 0.0 0.0 0.0 0.0 0.5 0.4

(100, 20) M1 0.0 2.0 2.4 2.1 70.6 97.0 0.0 0.0
M2 97.7 98.0 97.6 97.9 29.4 3.0 97.5 98.2
M3 2.2 0.0 0.0 0.0 0.0 0.0 2.3 1.7
M4 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.1
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(200, 40) M1 0.0 0.1 0.1 0.1 98.3 100.0 0.0 0.0
M2 99.8 99.9 99.9 99.9 1.7 0.0 99.8 99.9
M3 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.1
M4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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5.2. The case of order assumption (ii)

As a realization of Ωj = Og(nq) we assume that Θ0 =
√
q1q1

′
2. Then, the noncen-

trality matrix Ωj is expressed as

Ωj = H
(j)
2

′
Σ

−1/2
0

′
X′

0Θ
′
0A

′AΘ0X0Σ
−1/2
0 H

(j)
2

= qH
(j)
2

′
Σ

−1/2
0

′
X′

0121
′
q


n1 0 · · · 0
0 n2 · · · 0
...

...
. . .

...
0 0 · · · nq

1q1
′
2X0Σ

−1/2
0 H

(j)
2

= H
(j)
2

′
Σ

−1/2
0

′
X′

0

(
nq nq
nq nq

)
X0Σ

−1/2
0 H

(j)
2 .

Therefore, Ωj = Og(nq). The selection probabilities (%) are summarized in Tables 5
∼ 8. From these tables we can point the following tendencies.

• We can see that all the eight criteria have consistency property.

• MAICH and MCp choose the true model more frequently than MAICL and Cp,
respectively.

• As q increases under n being fixed, all the criteria choose the true model more
frequently.

• In general, AIC, Cp and MCp have a tendency of choosing larger models when
n and q are small.

• It seems that all the criteria doe not choose underspecified models.

• For the speed of convergence to the true model, BIC and CAIC are more faster
than the other criteria.



74 R. ENOMOTO, T. SAKURAI AND Y. FUJIKOSHI

Table 5. Selection probabilities (%) for d = 0.1 and ρ = 0.2.

(n, q) AIC AICc MAICL MAICH CAIC BIC Cp MCp
(50, 5) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

M2 86.1 96.0 96.9 96.3 99.6 99.9 84.2 87.5
M3 9.9 3.3 2.6 3.1 0.4 0.1 10.8 8.6
M4 3.0 0.5 0.4 0.5 0.0 0.0 3.6 2.6
M5 1.0 0.1 0.1 0.1 0.0 0.0 1.5 1.2

(100, 10) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 95.2 98.7 98.8 98.8 100.0 100.0 94.6 95.7
M3 4.2 1.2 1.1 1.2 0.0 0.0 4.6 3.6
M4 0.6 0.1 0.1 0.1 0.0 0.0 0.8 0.6
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

(200, 20) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 98.8 99.8 99.8 99.8 100.0 100.0 98.8 99.0
M3 1.1 0.2 0.2 0.2 0.0 0.0 1.2 1.0
M4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6. Selection probabilities (%) for d = 0.2 and ρ = 0.2.

(n, q) AIC AICc MAICL MAICH CAIC BIC Cp MCp
(50, 10) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

M2 90.4 99.5 99.6 99.6 99.9 100.0 88.8 92.2
M3 7.7 0.5 0.4 0.4 0.1 0.0 8.7 6.0
M4 1.5 0.0 0.0 0.0 0.0 0.0 1.9 1.3
M5 0.4 0.0 0.0 0.0 0.0 0.0 0.6 0.5

(100, 20) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 97.4 100.0 100.0 100.0 100.0 100.0 97.3 98.1
M3 2.4 0.0 0.0 0.0 0.0 0.0 2.5 1.7
M4 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.2
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(200, 40) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 99.9 100.0 100.0 100.0 100.0 100.0 99.9 99.9
M3 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.1
M4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0



CONSISTENCY PROPERTIES 75

Table 7. Selection probabilities (%) for d = 0.1 and ρ = 0.8.

(n, q) AIC AICc MAICL MAICH CAIC BIC Cp MCp
(50, 5) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

M2 86.9 96.5 97.3 96.7 99.7 100.0 84.6 88.3
M3 9.3 2.9 2.3 2.8 0.3 0.0 10.6 8.1
M4 2.8 0.4 0.3 0.4 0.0 0.0 3.5 2.6
M5 1.0 0.1 0.1 0.1 0.0 0.0 1.3 1.1

(100, 10) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 94.3 98.6 98.9 98.7 100.0 100.0 93.4 94.8
M3 4.9 1.3 1.1 1.3 0.0 0.0 5.5 4.4
M4 0.8 0.1 0.1 0.1 0.0 0.0 1.0 0.7
M5 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1

(200, 20) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 98.9 99.8 99.8 99.8 100.0 100.0 98.9 99.1
M3 1.0 0.2 0.2 0.2 0.0 0.0 1.1 0.8
M4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 8. Selection probabilities (%) for d = 0.2 and ρ = 0.8.

(n, q) AIC AICc MAICL MAICH CAIC BIC Cp MCp
(50, 10) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

M2 90.6 99.6 99.7 99.6 100.0 100.0 88.9 92.6
M3 7.5 0.4 0.3 0.4 0.0 0.0 8.5 5.7
M4 1.5 0.0 0.0 0.0 0.0 0.0 2.0 1.3
M5 0.4 0.0 0.0 0.0 0.0 0.0 0.6 0.4

(100, 20) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 97.5 99.9 99.9 99.9 100.0 100.0 97.3 98.1
M3 2.3 0.1 0.1 0.1 0.0 0.0 2.5 1.8
M4 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.1
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

(200, 40) M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 99.9 100.0 100.0 100.0 100.0 100.0 99.9 99.9
M3 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1
M4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

§6. Concluding remarks

This paper discusses with consistency properties of a log-likelihood criterion including
AIC and its modifications, Cp and its modification MCp for selecting the row vectors
of a design matrix X within individuals in the growth curve model (1.1) under a
large-(q, n) framework (1.11). The log-likelihood criterion includes AIC, AICc, BIC,
CAIC, MAICL and MAICH as a special case. The consistency properties depend
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on the order of the noncentrality matrix Ωj of model Mj . When Ωj = Og(n), it
is noted that AIC, AICc, MAICL and MAICH, Cp and MCp are consistent under
some additional assumptions on Ωj . However, BIC and CAIC are not consistent, and
more precisely, the probability of selecting the true model by BIC or CAIC tends to
zero. When Ωj = Og(nq), it is noted that these criteria have a consistency property,
though some condition on the value of d is imposed for AIC.

In a traditional growth curve model it is assumed that the dimension p is not
large or moderate. However, it is also important to analyze the data such that p is
large. Further, the number k of explanatory variables within individuals will be large.
This suggests to study asymptotic properties of these model selection criteria under
a high-dimensional framework such that

k → ∞, p → ∞, q → ∞, n → ∞,

k/n → b ∈ [0, 1), p/n → c ∈ [0, 1), q/n → d ∈ [0, 1),(6.1)

where 1 > c ≥ d ≥ 0. Modifications of AIC and Cp and their consistency properties
under (6.1) should be also studied. These works are left as a future subject.

§7. Appendix: Proofs of Theorems

First we explain an outline of our proof. In general, let F be a finite set of candidate
models j (orMj). Assume that j0 is the minimum model including the true model and
j0 ∈ F. Let Tj(n) be a general criterion for model j, which depends on a parameter n.

The best model chosen by minimizing Tj(n) is written as ĵT(n) = argminj∈F Tj(n).

Suppose that we are interested in asymptotic behavior of ĵT(n) when n tends to ∞.
In order to show a consistency of Tj(n), we may check a sufficient condition such that
for any j ̸= j0 ∈ F, there exists a sequence {an} with an > 0,

an {Tj(n)− Tj0(n)}
p→ bj > 0.

In fact, the condition implies that for any j ̸= j0 ∈ F,

P (ĵT(n) = j) ≤ P (Tj(n) < Tj0(n)) → 0,

and
P (ĵT(n) = j0) = 1−

∑
j ̸=j0∈F

P (ĵT(n) = j) → 1.

On the other hand, relating to showing an inconsistency of ĵT(n), assume that for
some j ̸= j0 ∈ F and for a sequence {an} with an > 0,

an {Tj(n)− Tj0}
p→ dj < 0.

Then we have
P (Tj(n) < Tj0(n)) → 1.

Further, we have

P (ĵT(n) = j0) ≤ P (Tj0(n) < Tj(n)) = 1− P (Tj(n) < Tj0(n)) → 0.
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This means that ĵT(n) is inconsistent, and further the probability of selecting the
true model tends to zero.

Proof of Theorem 3.1
The consistency properties of AIC and MAICH have been essentially proved by

Enomoto, Sakurai and Fujikoshi (2013) who proved for the case of selecting hierar-
chical models of the row vectors of X. The following result was used there:

log |Σ̂j | − log |Σ̂j0 | = log |nΣ̂j | − log |nΣ̂j0 |

= − log
|(n− q)S|
|nΣ̂j |

+ log
|(n− q)S|
|nΣ̂j0 |

= − log
|W(j)|

|W(j) + B(j)|
+ log

|W(j0)|
|W(j0) + B(j0)|

.

Further, noting that

1

n
W(j)

p→ (1− d)Ip−kj , and
1

n
B(j)

p→ dIp−kj +∆∗
j ,

the following result was used:

− log
|W(j)|

|W(j) + B(j)|
p→ log |Ip−kj +∆∗

j | − (p− kj) log(1− d).

These imply that

1

n
(ICj − ICj0)−

1

n
(mj −mj0)

p→ log |Ip−kj +∆∗
j |+ (kj − k0) log(1− d),(7.1)

since ∆j0 = 0. For the penalty terms, it is easily seen that

(7.2)
1

n
(mj −mj0)

p→
{

2d(kj − k0) (AIC)
2d(1− d)−1(kj − k0) (AICc)

,

and

(7.3)
1

n log n
(mj −mj0)

p→ (kj − k0)d (BIC,CAIC).

Now we shall prove the case of AICc. From (7.1) and (7.2) we have

1

n
(AICcj −AICcj0)

p→ log |Ip−kj +∆∗
j |

+ (kj − k0)

{
2d

1− d
+ log(1− d)

}
.(7.4)

Therefore, when j ∈ F+, log |Ip−kj +∆∗
j | = 0, and hence

AICcj −AICcj0 > 0,



78 R. ENOMOTO, T. SAKURAI AND Y. FUJIKOSHI

since (2d)/(1 − d) + log(1 − d) is always positive. When j ∈ F−, we have AICcj −
AICcj0 > 0 from (7.4) and the assumption A6. These imply the consistency of AICc.
For the case d = 0, we need to modify the above proof slightly. For example, we can
prove by considering the limit of (1/q)(AICcj − AICcj0) in stead of (1/n)(AICcj −
AICcj0). In the following, we give a proof for 0 < d < 1, and the proof of d = 0 is
omitted.

For the case of BIC, from (7.1) and (7.3) we have

1

n log n
(BICj − BICj0)

p→ (kj − k0)d.

This implies that for some j such that j ∈ F− and kj − k0 < 0, BICj < BICj0 for
large n. These show an inconsistency of BIC and

P (ĵBIC = j0) → 0.

The case of CAIC is proved similarly as the one of BIC.
In order to prove the case of MAICL, it needs to examine asymptotic behavior of

b̃A2 as in Enomoto, Sakurai and Fujikoshi (2013), which gives an asymptotic behavior

of b̂A2. We can express

tr(nΣ̂j)
−1(n− q)S = j + trQj , tr

{
(nΣ̂j)

−1(n− q)S
}2

= j + trQ2
j ,

where Qj = W(j)(W(j) + B(j))
−1. Using Qj

p→ (1− d)
(
Ip−kj +∆∗

j

)−1
, we have

ξ̃1
p→ ξ10 = tr(I+∆∗

j )
−1,

ξ̃2
p→ ξ20 =

{
tr(I+∆∗

j )
−1

}2
+ tr(I+∆∗

j )
−2.

From these results we have (1/n)b̃A2 → 0. Therefore, we get that the consistency of
MAICL is the same as the one of AICc.

Proof of Theorem 3.2
First we note that when j ∈ F+, from (7.1) we have

(7.5)
1

n
(ICj − ICj0)−

1

n
(mj −mj0)

p→ (kj − k0) log(1− d), j ∈ F+.

On the other hand, when j ∈ F−,

1

n
W(j)

p→ (1− d)Ip−kj ,
1

nq
B(j)

p→ Ξj ,

and hence

log |Σ̂j | − log |Σ̂j0 | = − log
|W(j)|

|W(j) + B(j)|
+ log

|W(j0)|
|W(j0) + B(j0)|

= − log
| 1nW(j)|

| 1
nq (W(j) + B(j))|qp−kj

+ log
|W(j0)|

|W(j0) + B(j0)|
.
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These imply that

(7.6)
1

n log q
(ICj − ICj0)−

1

n log q
(mj −mj0)

p→ p− kj , j ∈ F−.

Using (7.5) and (7.6) we can prove Theorem 3.2 by the same line as in Theorem 3.1.
Its detail is omitted.

Proofs of Theorems 4.3 and 4.4
Noting that

n

n− q
trΣ̂jS

−1 = tr(nΣ̂j){(n− q)S}−1

= p+ trB(j)W
−1
(j),

we have

1

n− q
(Cpj − Cpj0) = trB(j)W

−1
(j) − trB(j0)W

−1
(j0)

+
2q

n− q
(kj − k0).

First consider the case Ωj = Og(n) = n∆j . In this case

trB(j)W
−1
(j)

p→ 1

1− d

(
dIp−kj +∆∗

j

)
.

When j ∈ F+, ∆j = 0, and hence

1

n− q

(
Cpj − Cpj0

) p→ d

1− d
(p− kj)−

d

1− d
(p− k0) +

2d

1− d
(kj − k0)

= (kj − k0) ·
d

1− d
.

When j ∈ F−,

1

n− q

(
Cpj − Cpj0

) p→(kj − k0) ·
d

1− d
+

1

1− d
tr∆∗

j

=
1

1− d
{tr∆∗

j + d(kj − k0)}.

Therefore, if tr∆∗
j > d(k0 − kj), j ∈ F−, then Cp is consistent.

Next we consider the case Ωj = Og(nq) = nqΞj . When j ∈ F+, the result in the
case Ωj = Og(n), we have that {1/(n− q)}

(
Cpj − Cpj0

)
> 0. When j ∈ F−, we can

see that for j ∈ F−
1

q(n− q)
{Cpj − Cpj0}

p→ 1

1− d
trΞ∗

j .

This implies Theorem 4.4 in the case Cp.
Finally we show that the above consistency properties of Cp hold for MCp. We

have seen that when Ωj = Og(n),

n

n− q

(
trΣ̂jS

−1 − trΣ̂j0S
−1

)
= trB(j)W

−1
(j) − trB(j0)W

−1
(j0)

p→ 1

1− d
{tr∆∗

j − d(kj − k0)}.
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When Ωj = Og(nq), we have seen that

n

q(n− q)

(
trΣ̂jS

−1 − trΣ̂j0S
−1

)
=

1

q

(
trB(j)W

−1
(j) − trB(j0)W

−1
(j0)

)
p→ 1

1− d
trΞ∗

j .

Using these results and a relationship between Cp and MCp given in (2.17), we have
that MCp has the same consistency properties as the ones of Cp.
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