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Abstract. In this paper, we construct a new family of q−Hermite polyno-
mials denoted by Hn(x, s|q). Main properties and relations are established and
proved. In addition, is deduced a sequence of novel polynomials, Ln(·, ·|q), which
appear to be connected with well known (q, n)−exponential functions Eq,n(·)
introduced by Ernst in his work entitled: A New Method for q−calculus, (Up-
psala Dissertations in Mathematics, Vol. 25, 2002). Relevant results spread in
the literature are retrieved as particular cases. Fourier integral transforms are
explicitly computed and discussed. A (q; p)−extension of the Hn(x, s|q) is also
provided.
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§1. Introduction

The classical orthogonal polynomials and the quantum orthogonal polyno-
mials, also called q−orthogonal polynomials, constitute an interesting set of
special functions. Each family of these polynomials occupies different levels
within the so-called Askey-Wilson scheme (Askey and Wilson, 1985; Koekoek
and Swarttouw, 1998; Lesky, 2005; Koekoek et al, 2010). In this scheme,
the Hermite polynomials Hn(x) are the ground level and are characterized
by a set of properties: (i) they are solutions of a hypergeometric second or-
der differential equation, (ii) they are generated by a recursion relation, (iii)
they are orthogonal with respect to a weight function and (iv) they obey the
Rodrigues-type formula. Therefore, there are many ways to construct the
Hermite polynomials. However, they are more commonly deduced from their
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generating function, i.e.,

(1.1)

∞∑
n=0

Hn(x)

n!
tn = e2xt−t2 ,

giving rise to the so-called physicists Hermite polynomials [5]. Another family
of Hermite polynomials, called the probabilists Hermite polynomials, is defined
as [5]

(1.2)

∞∑
n=0

Hn(x)

n!
tn = ext−

t2

2 .

The Hermite polynomials are at the bottom of a large class of hypergeo-
metric polynomials to which most of their properties can be generalized [6],
[11]-[16]. In [5], Cigler introduced another family of Hermite polynomials
Hn(x, s) generalizing the physicists and probabilists Hermite polynomials as

(1.3)
∞∑
n=0

Hn(x, s)

n!
tn = ext−s t2

2

with Hn(x, 1) = Hn(x) and Hn(2x, 2) = Hn(x).
In this work, we deal with a construction of two new families of q and

(q; p)−Hermite polynomials.
The paper is organized as follows. In Section 2, we give a quick overview

on the Hermite polynomials Hn(x, s) introduced in [5]. Section 3 is devoted to
the construction of a new family of q−Hermite polynomials Hn(x, s|q) general-
izing the discrete q−Hermite polynomials. The inversion formula and relevant
properties of these polynomials are computed and discussed. Their Fourier
integral transforms are performed in the Section 4. Doubly indexed Hermite
polynomials and some concluding remarks are introduced in Section 5.

§2. On the Hermite polynomials Hn(x, s)

In [5], Cigler showed that the Hermite polynomials Hn(x, s) satisfy

(2.1) DHn(x, s) = nHn−1(x, s)

and the three term recursion relation

(2.2) Hn+1(x, s) = xHn(x, s)− s nHn−1(x, s), n ≥ 1

with H0(x, s) := 1. D := d/dx is the usual differential operator. Immediatly,
one can see that

(2.3) H2n(0, s) = (−s)n
n∏

k=1

(2k − 1), H2n+1(0, s) = 0.
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The computation of the first fourth polynomials gives:

H1(x, s) = x,
H2(x, s) = x2 − s,
H3(x, s) = x3 − 3 s x,
H4(x, s) = x4 − 6 s x2 + 3 s2.

More generally, the explicit formula of Hn(x, s) is written as [5]

(2.4) Hn(x, s) = n!

⌊n/2 ⌋∑
k=0

(−1)k sk

(2k)!!

xn−2k

(n− 2k)!
= xn 2F0

(
−n

2 ,
1−n
2

−

∣∣∣ − 2s

x2

)
,

where (nk) = n!/k!(n − k)! is a binomial coefficient, n! := n(n − 1) · · · 2 ·
1, (2n)!! := 2n(2n− 2) · · · 2.

The symbol ⌊x ⌋ denotes the greatest integer in x and 2F0 is called the hyper-
geometric series [2]. From (2.1) and (2.2), we have

(2.5) Hn(x, s) = (x− sD)Hn−1(x, s),

where the operator x− sD can be expressed as [5]

(2.6) x− sD = e
x2

2s (−sD) e−
x2

2s .

The Rodrigues formula takes the form

(2.7) e−
x2

2s Hn(x, s) = (−sD)n e−
x2

2s

while the second order differential equation satisfied by Hn(x, s) is

(2.8)
(
sD2 − xD + n

)
Hn(x, s) = 0.

Furthermore, from the relation (2.4) we derive the result

(2.9) Hn(x+ sD, s) · (1) = xn,

and the inverse formula for Hn(x, s)

(2.10) xn = n!

⌊n/2 ⌋∑
k=0

sk

(2k)!!

Hn−2k(x, s)

(n− 2k)!
.

We then obtain

(2.11)
∑

k, n (even)

1

(n− k)! k!
=

∑
k, n (odd)

1

(n− k)! k!
, 0 ≤ k ≤ n, n ≥ 0.
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From (2.4), it is also straighforward to note that the polynomials Hn(x, s)
have an alternative expression given by

(2.12) Hn(x, s) = exp

(
−s

D2

2

)
· (xn).

For any integer k = 0, 1, ..., ⌊n/2 ⌋, we have the following result

(2.13) D2k Hn(x, s) =
n!

(n− 2k)!
Hn−2k(x, s).

Corollary 1. The Hermite polynomials Hn(x, s) obey

(2.14) Tn(s,D)Hn(x, s) = xn,

where the polynomial

(2.15) Tn(α, β) =
⌊n/2 ⌋∑
k=0

1

(2k)!!
αkβ2k.

We are now in a position to formulate and prove the following.

Lemma 2.

(2.16) T2n(α, β) =
(αβ2)n

(2n)!!
2F0

(
−n, 1
−

∣∣∣− 2

αβ2

)

and

(2.17) T∞(α, β) = e
αβ2

2 .

Proof. From (2.15), we have

T2n(α, β) =
n∑

k=0

1

(2k)!!
(αβ2)k

=
(αβ2)n

(2n)!!

∞∑
k=n

(2n)!!

(2k)!!
(αβ2)k−n.(2.18)

By substituting m = n−k in the latter expression and using various identities,
we arrive at

(2.19) T2n(α, β) =
(αβ2)n

(2n)!!

∞∑
m=0

(−n)m

(
−2

αβ2

)m

,



NEW FAMILIES OF Q AND (Q;P )−HERMITE POLYNOMIALS 15

where (a)j := a(a+1) · · · (a+ j− 1), j ≥ 1 and (a)0 := 1. When n goes to ∞,
the polynomial (2.15) takes the form

(2.20) T∞(α, β) =
∞∑
k=0

αkβ2k

(2k)!!
=

∞∑
k=0

1

k!

(
αβ2

2

)k

where (2k)!! = 2k k! is used. □

To end this section, let us investigate the Fourier transform of the function
e−x2/2sHn(x, s). In [5], Cigler has proven that

(2.21)
1√
2πs

∫
R
eixy−

x2

2s dx = e−s y2

2 .

Hence,

(2.22)
1√
2π s

∫
R
eixy+i(n−2k)κx−x2

2s dx = e−s y2

2
−(n−2k)s y κ,

where e−2sκ2
= 1. By differentiating the relation (2.21) 2n − 2k times with

respect to y, one obtains

(2.23)
1√
2π s

∫
R
(−1)n−kx2n−2keixy−

x2

2s dx = D2n−2ke−s y2

2 .

Evaluating the latter expression at y = 0 and by making use of (2.7), one gets

(−1)n−k

√
2π s

∫
R
x2n−2ke−

x2

2s dx = D2n−2ke−s y2

2 ∣∣y=0

= (−s)2n−2kH2n−2k(y, s
−1)e−s y2

2 ∣∣y=0
.(2.24)

Theorem 3. The Fourier transform of the function e−x2/2sHn(x, s) is given
by

(2.25)
1√
2π s

∫
R
Hn(a e

iκx, s)eixy−
x2

2s dx = Hn(a e
−s κ y, s)e−s y2

2

where a is an arbitrary constant factor. For y = 0, we have

(2.26)
1√
2π s

∫
R
Hn(x, s)e

−x2

2s dx = 0.

Proof. Using (2.4) and (2.22), we obtain

1√
2π s

∫
R
Hn(a e

iκx, s)eixy−
x2

2 sdx
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=

⌊n/2⌋∑
k=0

(−1)kn! sk an−2k

(n− 2k)! (2k)!!

1√
2π s

∫
R
eixy+i(n−2k)κx−x2

2s dx

=

⌊n/2 ⌋∑
k=0

(−1)k n! sk an−2k

(n− 2k)! (2k)!!
e−

s
2
[κ(n−2k)+y]2

= e−s y2

2 Hn(a e
−s κ y, s).

Combining (2.4) and (2.24) for n = 2n, we have

1√
2π s

∫
R
H2n(x, s)e

−x2

2 sdx

=

n∑
k=0

(−1)k (2n)! sk

(2n− 2k)! (2k)!!

1√
2π s

∫
R
x2n−2k eixy−

x2

2 sdx∣∣y=0

= (−1)n
n∑

k=0

(2n)! sk

(2n− 2k)! (2k)!!
D2n−2ke−s y2

2 ∣∣y=0

= (−1)n s2n e−s y2

2

n∑
k=0

(2n)! s−k

(2n− 2k)! (2k)!!
H2n−2k(y, s

−1)∣∣y=0

= s2n (2n)!
n∑

k=0

(−1)k

(2n− 2k)!! (2k)!!

= 0

where (2.11) is used. □

§3. New q−Hermite polynomials Hn(x, s|q)

In this section, we construct through the q−chain rule a new family of
q−Hermite polynomials denoted by Hn(x, s|q). We first introduce some stan-
dard q−notations. For n ≥ 1, q ∈ C, we denote the q−deformed number [10]
by

(3.1) {n}q :=
n−1∑
k=0

qk.

In the same way, we define the q−factorials

(3.2) {n}q! :=
n∏

k=1

{k}q, {2n}q!! :=
n∏

k=1

{2k}q, {2n− 1}q!! :=
n∏

k=1

{2k − 1}q

and, by convention,

(3.3) {0}q! := 1 =: {0}q!! and {−1}q!! = 1.



NEW FAMILIES OF Q AND (Q;P )−HERMITE POLYNOMIALS 17

For any positive number c, the q−Pochhammer symbol {c}n,q is defined as
follows:

(3.4) {c}n,q :=
n−1∏
k=0

{c+ k}q,

while the q−binomial coefficients are defined by{
n

k

}
q

:=
{n}q!

{n− k}q!{k}q!
=

(q; q)n
(q; q)n−k(q; q)k

, for 0 ≤ k ≤ n,(3.5)

and zero otherwise, where (a; q)n :=
∏n−1

k=0(1− a qk), (a; q)0 := 1.

Definition 4. [7, 8] The Hahn q−addition ⊕q is the function: C3 → C2 given
by:

(3.6) (x, y, q) 7→ (x, y) ≡ x⊕q y,

where

(x⊕q y)
n : = (x+ y)(x+ q y) . . . (x+ qn−1 y)

=
n∑

k=0

{
n

k

}
q

q(
k
2) xn−k yk, n ≥ 1, (x⊕q y)

0 := 1,(3.7)

while the q−subtraction ⊖q is defined as follows:

(3.8) x⊖q y := x⊕q (−y).

Consider a function F

F : DR −→ C, z 7−→
∞∑
n=0

cn z
n,(3.9)

where DR is a disc of radius R. We define F (x⊕q y) to mean the formal series

∞∑
n=0

cn(x⊕q y)
n ≡

∞∑
n=0

n∑
k=0

cn

{
n

k

}
q

q(
k
2) xn−k yk.(3.10)

Let eq, Eq, cosq and sinq be the fonctions defined as follows:

eq(x) : =

∞∑
n=0

1

{n}q!
xn(3.11)

Eq(x) : =

∞∑
n=0

qn(n−1)/2

{n}q!
xn
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cosq(x) : =
eq(i x) + eq(−i x)

2
=

∞∑
n=0

(−1)n

{2n}q!
x2n,(3.12)

sinq(x) : =
eq(i x)− eq(−i x)

2 i
=

∞∑
n=0

(−1)n

{2n+ 1}q!
x2n+1.(3.13)

We immediately obtain the following rules for the product of two exponential
functions

(3.14) eq(x)Eq(y) = eq(x⊕q y).

The new family of q−Hermite polynomials Hn(x, s|q) can be determined by
the generating function
(3.15)

eq
(
tx⊖q,q2 st

2/{2}q
)
= eq(tx)Eq2(−st2/{2}q) :=

∞∑
n=0

Hn(x, s|q)
{n}q!

tn, |t| < 1,

where [8]
(3.16)

(a⊖q,q2 b)
n :=

n∑
k=0

{n}q!
{n− k}q! {k}q2 !

(−1)kqk(k−1)an−k bk, (a⊖q,q2 b)
0 := 1

and

(3.17) Eq2(x) :=
∞∑
n=0

qn(n−1)

{n}q2 !
xn.

Performing the q−derivative Dq
x of both sides of (3.15) with respect to x,

one obtains

Dq
xHn(x, s|q) = {n}q Hn−1(x, s|q),(3.18)

where

(3.19) Dq
x f(x) =

f(x)− f(qx)

(1− q)x

satisfying

Dq
x(a x⊕q b)

n = a{n}q (a x⊕q b)
n−1.(3.20)

Recall [9] that the Al-Salam-Chihara polynomials Pn(x; a, b, c) satisfy the
following recursion relation:
(3.21)
Pn+1(x; a, b, c) = (x− a qn)Pn(x; a, b, c)− (c+ b qn−1) {n}q Pn−1(x; a, b, c)
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with P−1(x; a, b, c) = 0 and P0(x; a, b, c) = 1.
Performing the q−derivative of both sides of (3.15) with respect to t, we have

Hn+1(x, s|q) = xHn(x, s|q)− s {n}q qn−1Hn−1(x, s|q), n ≥ 1(3.22)

with H0(x, s|q) := 1.
By setting a = 0 = c and b = s in (3.21), one obtains the recursion relation
(3.22). From the latter equation, one can see that

(3.23) H2n(0, s|q) = (−s)n qn(n−1) {2n− 1}q!!, H2n+1(0, s|q) = 0.

The first fourth new polynomials are given by

H1(x, s|q) = x,(3.24)

H2(x, s|q) = x2 − s,(3.25)

H3(x, s|q) = x3 − {3}qsx,(3.26)

H4(x, s|q) = x4 − (1 + q2){3}qsx2 + q2 {3}qs2.(3.27)

More generally, we have the following.

Theorem 5. The explicit formula for the new Hermite polynomials Hn(x, s|q)
is given by

Hn(x, s|q) =

⌊n/2 ⌋∑
k=0

(−1)kqk(k−1){n}q!
{n− 2k}q! {2k}q!!

skxn−2k(3.28)

= xn 2ϕ0

(
q−n, q1−n

−

∣∣∣ q2; sq2n−1

(1− q)x2

)
,(3.29)

where 2ϕ0 is the q−hypergeometric series [2].

Proof. Expanding the generation function given in (3.15) in Maclaurin series,
we have

eq(t x)Eq2(−s t2/{2}q) =

∞∑
k=0

(x t)k

{k}q!

∞∑
m=0

(−1)mqm(m−1)

{m}q2 !

(
s t2

{2}q

)m

=

∞∑
k=0

∞∑
m=0

(−1)mqm(m−1)xk

{k}q! {m}q2 !

(
s

{2}q

)m

tk+2m.(3.30)

By substituting

(3.31) k + 2m = n ⇒ m ≤ ⌊n/2 ⌋,

and

(3.32) {2}q {m}q2 = {2m}q
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in (3.30), we have

(3.33) eq(t x)Eq2(−s t2/{2}q) =
∞∑
n=0

⌊n/2 ⌋∑
m=0

(−1)mqm(m−1)sm xn−2m

{n− 2m}q! {2m}q!!

 tn,

which achieves the proof. □

In the limit case when x → {2}q x, s → (1 − q) {2}q, the polynomials
Hn(x, s|q) are reduced to Hq

n(x) investigated by Chung et al [8]. When s →
1− q, they are reduced to the discrete q−Hermite I polynomials [2].
The relation (3.22) allows us to write

(3.34) Hn(x, s|q) = (x− sqN ◦Dq
x)Hn−1(x, s|q),

where the operator N acts on the polynomials Hn(x, s|q) as follows:

(3.35) NHn(x, s|q) := nHn(x, s|q), qN ◦Dq
x = Dq

x ◦ qN−1.

It is straightforward to show that the polynomials (3.28) satisfy the following
q−difference equation

(3.36)
(
s (Dq

x)
2 − x q2−nDq

x + q2−n {n}q
)
Hn(x, s|q) = 0.

In the limit case when q goes to 1, the q−difference equation (3.36) reduces to
the well-known differential equation (2.8). For n even or odd, the polynomials
Hn(x, s|q) obey the following generating functions

(3.37)
∞∑
n=0

H2n(x, s|q)
{2n}q!

(−t)n = cosq(x
√
t)Eq2(s t/{2}q), |t| < 1

or

(3.38)
∞∑
n=0

H2n+1(x, s|q)
{2n+ 1}q!

(−t)n =
1√
t
sinq(x

√
t)Eq2(s t/{2}q), |t| < 1,

respectively.

Theorem 6. The polynomials Hn(x, s|q) can be expressed as

(3.39) Hn(x, s|q) =
n∏

k=1

(
x− s qn−1−k Dq

x

)
· (1)

and (3.34) takes the form

Hn

(
x+ sqN ◦Dq

x, s|q
)
· (1) = xn.(3.40)
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Proof. Since (3.18) and (3.22) are satisfied, we have

Hn(x, s|q) = x Hn−1(x, s|q)− s qn−2 {n− 1}q Hn−2(x, s|q)
= xHn−1(x, s|q)− sqn−2Dq

xHn−1(x, s|q).(3.41)

The rest holds by induction on n.
To prove the relation (3.40) we replace xn−2k in (3.28) by (x+ sqN ◦Dq

x)n−2k

and apply the corresponding linear operator to 1. The relation (3.40) is true
for n = 0 and n = 1. For n = 2, we have

H2

(
x+ sqN ◦Dq

x, s|q
)
· (1) =

(
x+ sqN ◦Dq

x

)2 · (1)− s

=
(
x+ sqN ◦Dq

x

)
· (x)− s

= x2.(3.42)

Assume that (3.40) is true for n− 1, n ≥ 3. Then we must prove that

(3.43) Hn

(
x+ sqN ◦Dq

x, s|q
)
· (1) = xn.

From (3.22), we have

Hn

(
x+ sqN ◦Dq

x, s|q
)
· 1 =

(
x+ sqN ◦Dq

x

)
Hn−1

(
x+ sqN ◦Dq

x, s|q
)
· (1)

− s{n− 1}q qn−2Hn−2

(
x+ sqN ◦Dq

x, s|q
)
· (1)

=
(
x+ sqN ◦Dq

x

)
· xn−1 − s{n− 1}q qn−2xn−2

= xn(3.44)

which achieves the proof. □

From the Theorem 6, we obtain the following.

Corollary 7. The polynomials (3.28) have the following inversion formula

(3.45) xn = {n}q!
⌊n/2 ⌋∑
k=0

qk(k−1) sk

{2k}q!!
Hn−2k(x, s|q)
{n− 2k}q!

.

Proof. Let hqn(x, s) be the polynomial defined by

(3.46) hqn(x, s) =
(
x+ sqN ◦Dq

x

)n · (1).

Note that hqn(x,−s) = Hn(x, s|q). From (3.40), we have

xn =

⌊n/2 ⌋∑
k=0

(−1)kqk(k−1){n}q!
{n− 2k}q!{2k}q!!

sk
(
x+ sqN ◦Dq

x

)n−2k · (1)

=

⌊n/2 ⌋∑
k=0

qk(k−1){n}q! sk

{n− 2k}q!{2k}q!!
hqn−2k(x,−s)(3.47)

which achives the proof. □
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From (3.18), one readily deduces that, for integer powers k = 0, 1, ..., ⌊n/2 ⌋
of the operator Dq

x,

(3.48) (Dq
x)

2kHn(x, s|q) = γn,k(q)Hn−2k(x, s|q), γn,k(q) =
{n}q!

{n− 2k}q!
.

Therefore, we have the following decomposition of unity

(3.49)

⌊n/2 ⌋∑
k=0

(−1)kqk(k−1)sk

{2k}q!!
(Dq

x)
2k

⌊n/2⌋∑
m=0

qm(m−1)sm

{2m}q!!
(Dq

x)
2m = 1

and the new q−Hermite polynomials Hn(x, s|q) obey

Ln(s,D
q
x|q)Hn(x, s|q) = xn(3.50)

where the polynomial Ln(α, β|q) is defined as follows:

(3.51) Ln(α, β|q) =
⌊n/2 ⌋∑
k=0

qk(k−1)

{2k}q!!
αkβ2k.

This polynomial is essentially the (q, n)−exponential function Eq,n(x) investi-
gated by Ernst [10], i.e., Ln−1(α, β|q) = Eq−2,⌊n/2 ⌋(αβ

2/{2}q). We are now in
a position to formulate and prove the following.

Lemma 8. From the polynomial (3.51) we have

(3.52) L2n(α, β|q) =
(αβ2)nqn(n−1)

{2n}q!!
3ϕ2

(
q−n,−q−n, q

0, 0

∣∣∣q;− q2

(1− q)αβ2

)

and

(3.53) L∞(α, β|q) = Eq2(αβ
2/{2}q).

Proof. As it is defined in (3.51), we have

L2n(α, β|q) =

n∑
k=0

qk(k−1)

{2k}q!!
(αβ2)k

=
(αβ2)n

{2n}q!!

∞∑
k=n

qk(k−1){2n}q!!
{2k}q!!

(αβ2)k−n.(3.54)

By substituting m = n− k in the latter expression, we arrive at

L2n(α, β|q) =
(αβ2)n

{2n}q!!

∞∑
m=0

q(n−m)(n−m−1){2n}q!!
{2n− 2m}q!!

(αβ2)−m
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=
(αβ2)nqn(n−1)

{2n}q!!

∞∑
m=0

(q−2n; q2)m

(
− q2

(1− q)αβ2

)m

.(3.55)

When n → ∞, (3.51) takes the form

(3.56) L∞(α, β|q) =
∞∑
k=0

qk(k−1)

{2n}q!!
(αβ2)k =

∞∑
k=0

qk(k−1)

{k}q2 !

(
αβ2

{2}q

)k

which achieves the proof. □

In the limit, when q → 1, the polynomial Ln(α, β|q) is reduced to the
classical one’s Tn(α, β), i.e., limq→1 Ln(α, β|q) = Tn(α, β), ∀n.

§4. Fourier transforms of the new q−Hermite polynomials
Hn(x, s|q)

In this section, we compute the Fourier integral transforms associated to the
new q−Hermite polynomials Hn(x, s|q).

4.1. q−1−Hermite polynomials Hn(x, s|q−1)

Let us rewrite the new q−Hermite polynomials (3.28) in the following form

(4.1) Hn(x, s|q) =
⌊n/2 ⌋∑
k=0

cn,k(q) s
kxn−2k,

where the associated coefficients cn, k(q) are given by

(4.2) cn, k(q) :=
(−1)kqk(k−1) {n}q!
{n− 2k}q! {2k}q!!

.

By a direct computation, one can easily check that these coefficients satisfy
the following recursion relation

(4.3) cn+1, k(q) = cn, k(q)− qn−1{n}q cn−1, k−1(q),

with c0, k(q) = δ0,k, cn, 0(q) = 1.
From the definition of the q−binomial coefficients in (3.5), it is not hard to
derive an inversion formula{

n

2k

}
q−1

= q2k(2k−n)

{
n

2k

}
q

, 0 ≤ k ≤ ⌊n/2⌋.(4.4)
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Then, one readily deduces that

(4.5) cn, k(q
−1) = qk(k+3−2n)cn, k(q),

allowing to define the q−1−Hermite polynomials Hn(x, s|q−1) in the following
form

(4.6) Hn(x, s|q−1) :=

⌊n/2 ⌋∑
k=0

cn, k(q
−1) skxn−2k.

The recursion relation

(4.7) cn+1, k(q
−1) = q−2k cn, k(q

−1)− q3−n−2k {n}q cn−1, k−1(q
−1), n ≥ 1

is valid for the coefficients (4.5) with c0, k(q
−1) = qk(k+3) δ0,k, cn, 0(q

−1) = 1.
Since (4.7) is satisfied, the q−1−Hermite polynomials Hn(x, s|q−1) obey the
relation

Hn+1(x, s|q−1) = xHn(x, sq
−2|q−1)

− sq1−n{n}q Hn−1(x, sq
−2|q−1), n ≥ 1,(4.8)

with H0(x, sq
−2|q−1) := 1.

The action of the operator Dq
x on the polynomials (4.6) is given by

Dq
xHn(x, s|q−1) = {n}q Hn−1(x, sq

−2|q−1).(4.9)

Let ϵ denote the operator which maps f(s) to f(qs). Then, from (4.8) and
(4.9) one can establish that

(4.10) Hn(x, s|q−1) =

n∏
k=1

(
x ϵ−2 − sqk+1−nDq

x

)
· (1).

4.2. Fourier transforms of the new q−Hermite polynomials Hn(x, s|q)

Considering the well-known Fourier transforms (2.21) for the Gauss expo-
nential function e−x2/2s, the Fourier integral transforms for the exponential
function exp(i(n− 2k)κx− x2/2s) is computed as follows:

(4.11)
1√
2πs

∫
R
eixy+i(n−2k)κx−x2

2s dx = q
n2

4
+k(k−n)e−s y2

2
−(n−2k)syκ,

where q = e−2sκ2 ≤ 1 and 0 ≤ κ < ∞.
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Theorem 9. The new q−Hermite polynomials Hn(x, s|q) and Hn(x, s|q−1)
defined in (4.1) and (4.6), respectively, are connected by the integral Fourier
transform of the following form

(4.12)
1√
2πs

∫
R
Hn(be

iκx, s|q)eixy−
x2

2s dx = q
n2

4 Hn(be
−sκy, qn−3s|q−1) e−s y2

2

where b is an arbitrary constant factor.

Proof. To prove this theorem, let us make use of (4.1) and evaluate the left
hand side of (4.12). Then,

1√
2πs

∫
R
Hn(be

iκx, s|q)eixy−
x2

2s dx

=

⌊n/2⌋∑
k=0

cn,k(q)s
kbn−2k 1√

2πs

∫
R
eixy+i(n−2k)κx−x2

2s dx

=

⌊n/2 ⌋∑
k=0

cn,k(q)s
kbn−2ke−

s
2
[κ(n−2k)+y]2

= q
n2

4

⌊n/2 ⌋∑
k=0

cn,k(q)q
−k(n−k)skbn−2ke−s y2

2
−(n−2k)syκ

= q
n2

4

⌊n/2 ⌋∑
k=0

cn,k(q
−1)(qn−3s)k(be−syκ)n−2ke−s y2

2

= q
n2

4 Hn(be
−sκy, qn−3s|q−1) e−s y2

2 .

□

§5. Doubly indexed Hermite polynomials Hn,p(x, s|q)

In this section, we construct a novel family of Hermite polynomials called
doubly indexed Hermite polynomials, Hn,p(x, s|q). First, let us defined the
(q; p)−shifted factorials (a; q)pk and the (q; p)−number as follows:

(5.1) (a; q)0 := 1, (a; q)pk := (a, aq, · · · , aqp−1; qp)k, p ≥ 1, k = 1, 2, 3, · · ·

and

(5.2) {pk}q :=
1− qpk

1− q
, {pk}q!! :=

k∏
l=1

{pl}q, {0}q!! := 1,

respectively.
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Definition 10. For a positive integer p, a class of doubly indexed Hermite
polynomials

{
Hn,p

}
n,p

is defined such that

(5.3) Hn,p(x, s|q) := Eqp

(
−s

(Dq
x)p

{p}q

)
· (xn).

If p = 2, a subclass of the polynomials (5.3) is reduced to the class of
polynomials (3.28). More generally, their explicit formula is given by

Hn,p(x, s|q) = {n}q!
⌊n/p ⌋∑
k=0

(−1)kqp(
k
2) sk

{pk}q!!
xn−pk

{n− pk}q!

= xnpϕ0

(
q−n, q−n+1, · · · , q−n+p−1

−

∣∣∣ qp; sqp(n+
1−p
2

)

(1− q)p−1xp

)
,(5.4)

where pϕ0 is the q−hypergeometric series [2].
Since Dq

xeq(ω x) = ω eq(ω x), we derive the generating function of the poly-
nomials (5.3) as

(5.5) fq(x, s; p) := eq(tx)Eqp(−stp/{p}q) =
∞∑
n=0

Hn,p(x, s|q)
{n}q!

tn, |t| < 1.

These polynomials are the solutions of the q−analogue of the generalized heat
equation [11]

(5.6) (Dq
x)

pfq(x, s; p) = −{p}qDq
sfq(x, s; p), fq(x, 0; p) = xn.

For any real number c and a positive integer p, |q| < 1, we have

∞∑
n=0

{c}n,qHn,p(x, s|q)
{n}q!

tn =

1

(xt; q)c
pϕp

(
qc, qc+1, · · · , qc+p−1

xtqc, xtqc+1, · · · , xtqc+p−1

∣∣∣ qp; s tp

(1− q)p−1

)
, |xt| < 1.(5.7)

Performing the q−derivative of both sides of (5.5) with respect to x and t, one
obtains

(5.8) Dq
xHn,p(x, s|q) = {n}q Hn−1,p(x, s|q)

and

Hn+1,p(x, s|q) = xHn,p(x, s|q)
− sqn−p+1{n}q{n− 1}q · · · {n− p+ 2}qHn−p+1(x, s|q), n ≥ 1,(5.9)

with H0,p(x, s|q) := 1. The polynomials (5.3) obey the following p−th order
difference equation

(5.10)
(
s (Dq

x)
p − qp−n xDq

x + qp−n {n}q
)
Hn,p(x, s|q) = 0.
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§6. Concluding remarks

In this paper, we have constructed a family of new q−Hermite polynomials
Hn(x, s|q). Several properties related to these polynomials have been com-
puted and discussed. Finally, we have constructed a novel family of Hermite
polynomials Hn,p(x, s|q) called doubly indexed Hermite polynomials.

In the limit cases, when q goes to 1 and s goes to −py, the polynomials
Hn,p(x, s|q) are reduced to the higher-order Hermite polynomials, sometimes
called the Kampé de Fériet or the Gould Hopper polynomials [11]-[15], i.e.,

(6.1) Hn,p(x,−py|1) ≡ gpn(x, y) := n!

⌊n/p ⌋∑
k=0

ykxn−pk

k! (n− pk)!
.

When q goes to 1, x → px and s → p, the polynomials Hn,p(x, s|q) become
the Hermite polynomials investigated by Habibullah and Shakoor [16], i.e.,

(6.2) Hn,p(px, p|1) ≡ Sp,n(x) := n!

⌊n/p ⌋∑
k=0

(−1)k(px)n−pk

k! (n− pk)!
.

For p = 2, the doubly indexed polynomials Hn,p(x, s|q) are reduced to the new
q−Hermite polynomials Hn(x, s|q), i.e., Hn,2(x, s|q) ≡ Hn(x, s|q).
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