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§1. Introduction

In [16], the authors have considered the following functional:

(1.1) D (f ;u) :=

∫ b

a
f (x) du (x)− [u (b)− u (a)] · 1

b− a

∫ b

a
f (t) dt,

provided that the Riemann-Stieltjes integral
∫ b
a f (x) du (x) and the Riemann

integral
∫ b
a f (t) dt exist.

It has been shown in [16], that, if f, u : [a, b] → R are such that u is
Lipschitzian on [a, b] , i.e.,

(1.2) |u (x)− u (y)| ≤ L |x− y| for any x, y ∈ [a, b] (L > 0)

and f is Riemann integrable on [a, b] with

(1.3) m ≤ f (x) ≤ M for any x ∈ [a, b] ,

for some m,M ∈ R, then we have the inequality

(1.4) |D (f ;u)| ≤ 1

2
L (M −m) (b− a) .
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The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller

quantity.

We recall that a function u : [a, b] → R is of bounded variation on [a, b]
if for any division d ∈ Div [a, b] with d : a = x0 < x1 < ... < xn = b
we have

∑n−1
i=0 |u (xi+1)− u (xi)| < ∞. For a function of bounded variation

u : [a, b] → R we define the total variation of u on [a, b] by

b∨
a

(u) = sup
d∈Div[a,b]

n−1∑
i=0

|u (xi+1)− u (xi)| < ∞.

In [15], the following result complementing the above has been obtained as
well:

(1.5) |D (f ;u)| ≤ 1

2
L (b− a)

b∨
a

(u) ,

where f, u : [a, b] → R are such that u is of bounded variation on [a, b] and f
is Lipschitzian with the constant L > 0. The constant 1

2 in (1.5) is sharp in
the above sense.

In the case of convex integrators u : [a, b] → R , we have [11]:

(1.6) 0 ≤ D (f ;u) ≤ 2 ·
u′− (b)− u′+ (a)

b− a

∫ b

a

(
t− a+ b

2

)
f (t) dt,

where f : [a, b] → R is a monotonic nondecreasing function on [a, b] . Here 2 is
also best possible.

For other related results for the functional D (·; ·) , see [1]-[5], [7]-[14] and
[18].

In this paper some new lower and upper bounds for D (·; ·) are provided.
Applications for functions of selfadjoint operators on complex Hilbert spaces
are also given.

§2. Some New Bounds

The following lemma may be stated:

Lemma 2.1. Let g : [a, b] → R and l, L ∈ R with L > l. The following
statements are equivalent:

(i) The function g− l+L
2 ·ℓ, where ℓ (t) = t, t ∈ [a, b] is 1

2 (L− l)-Lipschitzian;
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(ii) We have the inequalities

(2.1) l ≤ g (t)− g (s)

t− s
≤ L for each t, s ∈ [a, b] with t ̸= s;

(iii) We have the inequalities
(2.2)
l (t− s) ≤ g (t)− g (s) ≤ L (t− s) for each t, s ∈ [a, b] with t > s.

Following [18], we can introduce the definition of (l, L)-Lipschitzian func-
tions:

Definition 1. The function g : [a, b] → R which satisfies one of the equivalent
conditions (i) – (iii) from Lemma 2.1 is said to be (l, L)-Lipschitzian on [a, b] .

If L > 0 and l = −L, then (−L,L)-Lipschitzian means L-Lipschitzian in
the classical sense.

Utilising Lagrange’s mean value theorem, we can state the following result
that provides examples of (l, L)-Lipschitzian functions.

Proposition 2.2. Let g : [a, b] → R be continuous on [a, b] and differentiable
on (a, b) . If −∞ < l = inft∈(a,b) g

′ (t) and supt∈(a,b) g
′ (t) = L < ∞, then g is

(l, L)-Lipschitzian on [a, b] .

We have the following result:

Theorem 2.3. Let u : [a, b] → R be a convex function on [a, b] and f : [a, b] →
R a (l, L)-Lipschitzian function on [a, b] . Then

(2.3) l

[
u (a) + u (b)

2
(b− a)−

∫ b

a
u (t) dt

]
≤ D (f ;u)

≤ L

[
u (a) + u (b)

2
(b− a)−

∫ b

a
u (t) dt

]
.

The inequalities in (2.3) are sharp.

Proof. Consider the auxiliary function fL : [a, b] → R, fL = Lℓ − f, where
ℓ is the identity function ℓ (t) = t, t ∈ [a, b] . Since f : [a, b] → R a (l, L)-
Lipschitzian function on [a, b] then f (t)−f (s) ≤ L (t− s) for each t, s ∈ [a, b]
with t > s which shows that fL is monotonic nondecreasing on [a, b] .

Utilizing the first inequality in (1.6) we have

0 ≤ D (Lℓ− f, u) = LD (ℓ, u)−D (f, u)
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showing that

(2.4) D (f, u) ≤ LD (ℓ, u) .

A similar argument applied for the auxiliary function fl : [a, b] → R, fL = f−lℓ
produces the reverse inequality

(2.5) lD (ℓ, u) ≤ D (f, u) .

On the other hand, integrating by parts in the Riemann-Stieltjes integral
we have

D (ℓ, u) =

∫ b

a
tdu (t)− 1

b− a
[u (b)− u (a)]

∫ b

a
tdt

= bu (b)− au (a)−
∫ b

a
u (t) dt− a+ b

2
[u (b)− u (a)]

=
u (a) + u (b)

2
(b− a)−

∫ b

a
u (t) dt,

which together with (2.4) and (2.5) produce the desired result (2.3).
If we take f0 (t) = t, and ε ∈ (0, 1) then for each t, s ∈ [a, b] with t > s we

have
(1− ε) (t− s) ≤ f0 (t)− f0 (s) = t− s ≤ (1 + ε) (t− s) ,

which shows that f is a (1− ε, 1 + ε)-Lipschitzian function on [a, b] .
Assume that there exists A,B > 0 such that

(2.6) lAD (ℓ, u) ≤ D (f, u) ≤ LBD (ℓ, u)

for u : [a, b] → R a convex function on [a, b] and f : [a, b] → R a (l, L)-
Lipschitzian function on [a, b] .

If we write the inequality (2.6) for f0 and u strictly convex, we get

(1− ε)AD (ℓ, u) ≤ D (ℓ, u) ≤ (1 + ε)BD (ℓ, u)

and dividing by D (ℓ, u) > 0 we get

(2.7) (1− ε)A ≤ 1 ≤ (1 + ε)B.

Letting ε → 0+ in (2.7) we get A ≤ 1 ≤ B, which proves the sharpness of the
inequality (2.3).

Remark 1. The double inequality in (2.3) is equivalent to∣∣∣∣D (f ;u)− l + L

2

(
u (a) + u (b)

2
(b− a)−

∫ b

a
u (t) dt

)∣∣∣∣(2.8)

≤ 1

2
(L− l)

[
u (a) + u (b)

2
(b− a)−

∫ b

a
u (t) dt

]
.

The constant 1
2 is best possible.
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Corollary 2.4. Let f : [a, b] → R be continuous on [a, b] and differentiable on
(a, b) . If −∞ < l = inft∈(a,b) f

′ (t) and supt∈(a,b) f
′ (t) = L < ∞. If u : [a, b] →

R is a convex function on [a, b] , then the inequality (2.8) holds true.
If ∥f ′∥∞ = supt∈(a,b) |f ′ (t)| < ∞, then

(2.9) |D (f ;u)| ≤
∥∥f ′∥∥

∞

[
u (a) + u (b)

2
(b− a)−

∫ b

a
u (t) dt

]
.

The inequality is sharp.

The proof follows from (2.8) by taking L = ∥f ′∥∞ and l = −∥f ′∥∞ .
For two Lebesgue integrable functions f and g we can define the Čebyšev

functional:

C (f, g) :=
1

b− a

∫ b

a
f (t) g (t) dt− 1

b− a

∫ b

a
f (t) dt · 1

b− a

∫ b

a
g (t) dt.

Corollary 2.5. Let w : [a, b] → R be a monotonic nondecreasing function on
[a, b] and f : [a, b] → R a (l, L)-Lipschitzian function on [a, b] . Then
(2.10)

l

b− a

∫ b

a

(
t− a+ b

2

)
w (t) dt ≤ C (f, w) ≤ L

b− a

∫ b

a

(
t− a+ b

2

)
w (t) dt.

The inequalities in (2.10) are sharp.

Proof. Choose u (t) :=
∫ t
a w (s) ds, t ∈ [a, b] . Since w : [a, b] → R is a mono-

tonic nondecreasing function on [a, b] , then u is convex on [a, b] .
We also have

u (a) + u (b)

2
(b− a)−

∫ b

a
u (t) dt(2.11)

=
1

2
(b− a)

∫ b

a
w (s) ds−

[
t

∫ t

a
w (s) ds

∣∣∣∣b
a

−
∫ b

a
sw (s) ds

]

=

∫ b

a

(
s− a+ b

2

)
w (s) ds.

Writing the inequalities (2.3) for these functions we deduce the desired
result (2.10).

Remark 2. The inequalities (2.10) are equivalent to∣∣∣∣C (f, w)− l + L

2

1

b− a

∫ b

a

(
t− a+ b

2

)
w (t) dt

∣∣∣∣(2.12)

≤ 1

2
(L− l)

1

b− a

∫ b

a

(
t− a+ b

2

)
w (t) dt.
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The constant 1
2 is best possible.

If ∥f ′∥∞ = supt∈(a,b) |f ′ (t)| < ∞, then

(2.13) |C (f, w)| ≤
∥∥f ′∥∥

∞
1

b− a

∫ b

a

(
t− a+ b

2

)
w (t) dt.

The inequality is sharp.

Definition 2. For two constants δ,∆ with δ < ∆, we say that the function
g : [a, b] → R is (δ,∆)-convex (see also [6] for more general concepts) if g− 1

2δℓ
2

and 1
2∆ℓ2 − g are convex functions on [a, b] .

It is easy to see that, if g is twice differentiable on (a, b) and the second
derivative satisfies the condition

δ ≤ g′′ (t) ≤ ∆ for any t ∈ (a, b) ,

then g is (δ,∆)-convex.

The following result also holds:

Theorem 2.6. Let f : [a, b] → R be a monotonic nondecreasing function on
[a, b] and for δ,∆ with δ < ∆, a (δ,∆)-convex function u : [a, b] → R. Then
we have the double inequality

(2.14) δ

∫ b

a

(
t− a+ b

2

)
f (t) dt ≤ D (f ;u) ≤ ∆

∫ b

a

(
t− a+ b

2

)
f (t) dt.

The inequalities are sharp.

Proof. Since the function f is monotonic nondecreasing and u− 1
2δℓ

2 is convex,
then from the first inequality in (1.6) we have

D

(
f ;u− 1

2
δℓ2
)

≥ 0,

which is equivalent with

1

2
δD
(
f ; ℓ2

)
≤ D (f ;u) .

From the convexity of 1
2∆ℓ2 − g we also have

D (f ;u) ≤ 1

2
∆D

(
f ; ℓ2

)
.
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However

D
(
f ; ℓ2

)
=

∫ b

a
f (t) dℓ2 (t)− ℓ2 (b)− ℓ2 (a)

b− a

∫ b

a
f (t) dt

= 2

∫ b

a
f (t) dt− (b+ a)

∫ b

a
f (t) dt

= 2

∫ b

a

(
t− a+ b

2

)
f (t) dt.

If we take u0 (t) :=
1
2 t

2, and ε ∈ (0, 1) , then for δ = 1 − ε and ∆ = 1 + ε we
have that u0 is (1− ε, 1 + ε)-convex on [a, b] .

Assume that there exists the constants P,Q > 0 such that

(2.15) δP

∫ b

a

(
t− a+ b

2

)
f (t) dt ≤ D (f ;u) ≤ ∆Q

∫ b

a

(
t− a+ b

2

)
f (t) dt,

for f : [a, b] → R a monotonic nondecreasing function on [a, b] and (δ,∆)-
convex function u : [a, b] → R.

Since

D (f ;u0) =

∫ b

a

(
t− a+ b

2

)
f (t) dt

then by replacing u0, δ = 1− ε and ∆ = 1 + ε in (2.15) we get

(1− ε)P

∫ b

a

(
t− a+ b

2

)
f (t) dt ≤

∫ b

a

(
t− a+ b

2

)
f (t) d(2.16)

≤ (1 + ε)Q

∫ b

a

(
t− a+ b

2

)
f (t) dt,

and by division with
∫ b
a

(
t− a+b

2

)
f (t) dt that is positive for many functions f

(for instance f (t) = t− a+b
2 ), we obtain

(1− ε)P ≤ 1 ≤ (1 + ε)Q.

Letting ε → 0+ we deduce P ≤ 1 ≤ Q, and the sharpness of the inequalities
are proved.
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Remark 3. Integrating by parts in the Riemann-Stieltjes integral we have

D (f ;u)

(2.17)

= f (b)u (b)− f (a)u (a)−
∫ b

a
u (t) df (t)

− u (b)− u (a)

b− a

∫ b

a
f (t) dt

= u (b)

(
f (b)− 1

b− a

∫ b

a
f (t) dt

)
+ u (a)

(
1

b− a

∫ b

a
f (t) dt− f (a)

)
−
∫ b

a
u (t) df (t) .

The inequality (2.3) is then equivalent with

l

[
u (a) + u (b)

2
(b− a)−

∫ b

a
u (t) dt

](2.18)

≤ u (b)

(
f (b)− 1

b− a

∫ b

a
f (t) dt

)
+ u (a)

(
1

b− a

∫ b

a
f (t) dt− f (a)

)
−
∫ b

a
u (t) df (t)

≤ L

[
u (a) + u (b)

2
(b− a)−

∫ b

a
u (t) dt

]

while (2.14) is equivalent with

δ

∫ b

a

(
t− a+ b

2

)
f (t) dt

(2.19)

≤ u (b)

(
f (b)− 1

b− a

∫ b

a
f (t) dt

)
+ u (a)

(
1

b− a

∫ b

a
f (t) dt− f (a)

)
−
∫ b

a
u (t) df (t)

≤ ∆

∫ b

a

(
t− a+ b

2

)
f (t) dt.



BOUNDS FOR A ČEBYŠEV TYPE FUNCTIONAL 137

§3. Applications for Selfadjoint Operators

Let A ∈ B (H) be selfadjoint and let φλ defined for all λ ∈ R as follows

φλ (s) :=


1, for −∞ < s ≤ λ,

0, for λ < s < +∞.

Then for every λ ∈ R the operator

(3.1) Eλ := φλ (A)

is a projection which reduces A.
The properties of these projections are summed up in the following fun-

damental result concerning the spectral decomposition of bounded selfadjoint
operators in Hilbert spaces, see for instance [17, p. 256]

Theorem 3.1 (Spectral Representation Theorem). Let A be a bounded self-
adjoint operator on the Hilbert space H and let m := min {λ |λ ∈ Sp (A)} =
minSp (A) and M := max {λ |λ ∈ Sp (A)} = maxSp (A) . Then there exists a
family of projections {Eλ}λ∈R, called the spectral family of A, with the follow-
ing properties

a) Eλ ≤ Eλ′ for λ ≤ λ′;

b) Em−0 = 0, EM = 1H and Eλ+0 = Eλ for all λ ∈ R;

c) We have the representation

(3.2) A =

∫ M

m−0
λdEλ.

More generally, for every continuous complex-valued function φ defined on
R and for every ε > 0 there exists a δ > 0 such that

(3.3)

∥∥∥∥∥φ (A)−
n∑

k=1

φ
(
λ′
k

) [
Eλk

− Eλk−1

]∥∥∥∥∥ ≤ ε

whenever

(3.4)


λ0 < m = λ1 < ... < λn−1 < λn = M,

λk − λk−1 ≤ δ for 1 ≤ k ≤ n,

λ′
k ∈ [λk−1, λk] for 1 ≤ k ≤ n
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this means that

(3.5) φ (A) =

∫ M

m−0
φ (λ) dEλ,

where the integral is of Riemann-Stieltjes type.

Corollary 3.2. With the assumptions of Theorem 3.1 for A,Eλ and φ we
have the representations

(3.6) φ (A)x =

∫ M

m−0
φ (λ) dEλx for all x ∈ H

and

(3.7) ⟨φ (A)x, y⟩ =
∫ M

m−0
φ (λ) d ⟨Eλx, y ⟩ for all x, y ∈ H.

In particular,

(3.8) ⟨φ (A)x, x⟩ =
∫ M

m−0
φ (λ) d ⟨Eλx, x ⟩ for all x ∈ H.

Moreover, we have the equality

(3.9) ∥φ (A)x∥2 =
∫ M

m−0
|φ (λ)|2 d ∥Eλx∥2 for all x ∈ H.

Utilising the Spectral Representation Theorem we can prove the following
inequalities for functions of selfadjoint operators:

Theorem 3.3. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m =: min {λ |λ ∈ Sp (A)} = minSp (A) and M := max {λ |λ ∈ Sp (A)}
= maxSp (A) . Assume that the function f : I → R is differentiable on the in-
terior of I denoted I̊ and [m,M ] ⊂ I̊ . If the derivative f ′ is (δ,∆)-Lipschitzian
with δ < ∆, then

1

2
δ (M1H −A) (A−m1H)(3.10)

≤ 1

M −m
[f (M) (A−m1H) + f (m) (M1H −A]− f (A)

≤ 1

2
∆ (M1H −A) (A−m1H)

in the operator order of B (H) .
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Proof. Let {Eλ}λ∈R the spectral family of A and x ∈ H. Utilising the inequal-
ity (2.10) for the (δ,∆)-Lipschitzian function f ′ and the monotonic nonde-
creasing function w (t) = ⟨Etx, x⟩ , t ∈ [m− ε,M ] for a small positive ε, we
have

δ

M −m+ ε

∫ M

m−ε

(
t− m− ε+M

2

)
⟨Etx, x⟩ dt(3.11)

≤ 1

M −m+ ε

∫ M

m−ε
f ′ (t) ⟨Etx, x⟩ dt

− 1

M −m+ ε

∫ M

m−ε
f ′ (t) dt · 1

M −m+ ε

∫ M

m−ε
⟨Etx, x⟩ dt

≤ ∆

M −m+ ε

∫ M

m−ε

(
t− a+ b

2

)
w (t) dt.

Letting ε → 0+ in (3.11) we get

δ

∫ M

m−0

(
t− m+M

2

)
⟨Etx, x⟩ dt(3.12)

≤
∫ M

m−0
f ′ (t) ⟨Etx, x⟩ dt−

1

M −m

∫ M

m−0
f ′ (t) dt ·

∫ M

m−0
⟨Etx, x⟩ dt

≤ ∆

∫ M

m−0

(
t− a+ b

2

)
w (t) dt

for any x ∈ H.

Utilising the integration by parts formula for the Riemann-Stieltjes integral,
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we have

∫ M

m−0

(
t− m+M

2

)
⟨Etx, x⟩ dt

(3.13)

=
1

2

∫ M

m−0
⟨Etx, x⟩ d

((
t− m+M

2

)2
)

=
1

2

⟨Etx, x⟩
(
t− m+M

2

)2
∣∣∣∣∣
M

m−0

−
∫ M

m−0

(
t− m+M

2

)2

d (⟨Etx, x⟩)


=

1

2

[
∥x∥2

(
M −m

2

)2

−
∫ M

m−0

(
t− m+M

2

)2

d (⟨Etx, x⟩)

]

=
1

2

[∫ M

m−0

[(
M −m

2

)2

−
(
t− m+M

2

)2
]
d (⟨Etx, x⟩)

]

=
1

2

∫ M

m−0
(M − t) (t−m) d (⟨Etx, x⟩) =

1

2
⟨(M1H −A) (A−m1H)x, x⟩

for any x ∈ H.

We also have

∫ M

m−0
f ′ (t) ⟨Etx, x⟩ dt = f (t) ⟨Etx, x⟩|Mm−0 −

∫ M

m−0
f (t) d (⟨Etx, x⟩)(3.14)

= f (M) ∥x∥2 −
∫ M

m−0
f (t) d (⟨Etx, x⟩)

=

∫ M

m−0
[f (M)− f (t)] d (⟨Etx, x⟩)

= ⟨[f (M) 1H − f (A)]x, x⟩

and, similarly

(3.15)

∫ M

m−0
⟨Etx, x⟩ dt = ⟨(M1H −A)x, x⟩

for any x ∈ H.

Utilising (3.14) and (3.15) we have
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∫ M

m−0
f ′ (t) ⟨Etx, x⟩ dt−

1

M −m

∫ M

m−0
f ′ (t) dt ·

∫ M

m−0
⟨Etx, x⟩ dt

(3.16)

= ⟨[f (M) 1H − f (A)]x, x⟩ − f (M)− f (m)

M −m
⟨(M1H −A)x, x⟩

=

⟨[
(M −m) f (M) 1H − [f (M)− f (m)] (M1H −A)

M −m
− f (A)

]
x, x

⟩
=

⟨[
f (m) (M1H −A) + f (M) (A−m1H)

M −m
− f (A)

]
x, x

⟩
for any x ∈ H.

From (3.12) we deduce the desired result (3.10).

From (1.6), we have for h : [a, b] → R a convex function on [a, b] and
g : [a, b] → R a monotonic nondecreasing function on [a, b] ,

0 ≤ D (g;h)(3.17)

≤ 2 ·
h′− (b)− h′+ (a)

b− a

∫ b

a

(
t− a+ b

2

)
g (t) dt.

Since, by (2.17) we have

0 ≤ D (g;h)

(3.18)

= h (b)

(
g (b)− 1

b− a

∫ b

a
g (t) dt

)
+ h (a)

(
1

b− a

∫ b

a
g (t) dt− g (a)

)
−
∫ b

a
h (t) df (t)

and, as in (3.13), we also have

(3.19)

∫ b

a

(
t− a+ b

2

)
g (t) dt =

1

2

∫ b

a
(b− t) (t− a) dg (t) ,

then by (3.17) we have

0 ≤ h (b)

(
g (b)− 1

b− a

∫ b

a
g (t) dt

)
+ h (a)

(
1

b− a

∫ b

a
g (t) dt− g (a)

)(3.20)

−
∫ b

a
h (t) df (t)

≤
h′− (b)− h′+ (a)

b− a

∫ b

a
(b− t) (t− a) dg (t) .
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We can state the following result as well:

Theorem 3.4. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m := min {λ |λ ∈ Sp (A)} = minSp (A) and M := max {λ |λ ∈ Sp (A)}
= maxSp (A) . Assume that the function f : I → R is convex on the interior
of I denoted I̊ and [m,M ] ⊂ I̊ . Then

0 ≤ 1

M −m
[f (M) (A−m1H) + f (m) (M1H −A]− f (A)(3.21)

≤
f ′
− (M)− f ′

+ (m)

M −m
(M1H −A) (A−m1H) .

The proof follows by (3.20) by choosing h = f and g = ⟨Etx, x⟩ , t ∈ R,
where {Eλ}λ∈R is the spectral family of A.

Consider the exponential function f : R → R, then by (3.10) we have:

Theorem 3.5. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m := min {λ |λ ∈ Sp (A)} and M := max {λ |λ ∈ Sp (A)}. Then we
have

1

2
exp (m) (M1H −A) (A−m1H)(3.22)

≤ 1

M −m
[exp (M) (A−m1H) + exp (m) (M1H −A]− exp (A)

≤ 1

2
exp (M) (M1H −A) (A−m1H) .

Consider the function f : [m,M ]→ R, f (t) = − ln t and [m,M ] ⊂ (0,∞) .
Then by (3.10) we have:

Theorem 3.6. Let A be a bonded selfadjoint operator on the Hilbert space
H and let m := min {λ |λ ∈ Sp (A)} and M := max {λ |λ ∈ Sp (A)} with
[m,M ] ⊂ (0,∞) , then

1

2M2
(M1H −A) (A−m1H)(3.23)

≤ ln (A)− 1

M −m
[ln (M) (A−m1H) + ln (m) (M1H −A]

≤ 1

2m2
(M1H −A) (A−m1H) .

If we take the power function f : [m,M ]→ R, f (t) = tp, p ≥ 2 and
[m,M ] ⊂ [0,∞) then by (3.10) we also have:
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Theorem 3.7. Let A be a bonded selfadjoint operator on the Hilbert space
H and let m := min {λ |λ ∈ Sp (A)} and M := max {λ |λ ∈ Sp (A)} with
[m,M ] ⊂ [0,∞), then

1

2
p (p− 1)mp−2 (M1H −A) (A−m1H)(3.24)

≤ 1

M −m
[Mp (A−m1H) +mp(M1H −A]−Ap

≤ 1

2
p (p− 1)Mp−2 (M1H −A) (A−m1H) .

Finally, consider the convex function f : R → R, f (t) =
∣∣t− m+M

2

∣∣ . Uti-
lizing the inequality (3.21) we have:

Theorem 3.8. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m := min {λ |λ ∈ Sp (A)} and M := max {λ |λ ∈ Sp (A)} , then

(3.25) 0 ≤ M −m

2
−
∣∣∣∣A− m+M

2

∣∣∣∣ ≤ 2

M −m
(M1H −A) (A−m1H) .
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