新規なエマルションを創製する スメクタイト化合物の 増粘・乳化特性とその機構解明

資生堂リサーチセンター

関根 知子

- 1章 イントロダクション
 - 1-1. エマルション調製における界面活性剤と増粘剤の役割
 - 1-2. 化粧品に用いられる粘土鉱物
 - 1-3. 粘土鉱物とは
 - 1-4. 増粘剤としての粘土鉱物
 - 1-5. 有機変性粘土鉱物
 - 1-5-1. 有機変性粘土鉱物の構造
 - 1-5-2. 有機変性粘土鉱物によるオイルの増粘
 - 1-6. 乳化剤としての粘土鉱物
 - 1-6-1. ピッカリングエマルション
 - 1-6-2. 粘土鉱物を用いたピッカリングエマルション
 - 1-7. 本研究の目的
 - 1-8. 参考文献
- 2章 スメクタイト-PEG 複合体の流動特性とエージング挙動 …25
 2-1. 緒言
 - 2-2. 実験方法
 - 2-2-1. 原料
 - 2-2-2. サンプルの調製方法
 - 2-2-3. 粘度測定方法
 - 2-2-4. スメクタイト分散液からのイオン溶出量測定方法
 - 2-2-5. 粘土鉱物分散液のレオオプティック測定
 - 2-3. 結果および考察
 - 2-3-1. ラポナイト (LA) のエージング挙動
 - 2-3-2. PEG の添加がエージングに及ぼす影響
 - 2-3-3. pH 調整したスメクタイト分散液のエージング挙動に 及ぼす PEG 添加の影響 ①粘度変化
 - 2-3-4. pH 調整したスメクタイト分散液のエージング挙動に 及ぼす PEG 添加の影響 ②Mg 溶出量
 - 2-3-5. レオオプティックス測定法による粘土鉱物-PEG

複合ゲルの離水抑制効果の解析

...3

...1

2-3-6. 吸着量とスケールに関する考察

- 2-4. 結言
- 2-5. 参考文献
- 3章 塩およびカチオン性ポリマーを含むスメクタイト分散液の粘度変化 と乳化能に関する研究 …51
 - 3-1. 緒言
 - 3-2. 実験方法
 - 3-2-1. 原料
 - 3-2-2. サンプルの調製方法
 - 3-2-3. 粘度測定方法
 - 3-2-4. 顕微鏡観察方法
 - 3-3. 結果および考察
 - 3-3-1. スメクタイト分散液への塩添加と乳化状態
 - 3-3-2. スメクタイト-カチオンポリマー複合体による乳化
 - 3-3-3. カチオンポリマー種の検討
 - 3-4. 結言
 - 3-5. 参考文献
- 4章 イソヘキサデカン中での有機変性粘土鉱物のゲル化メカニズムの解明および、これを用いた W/O 型乳化製剤の化粧品への応用 …72
 - 4-1. 緒言
 - 4-2. 実験方法
 - 4-2-1. 試薬
 - 4-2-2. オイルゲルの調製
 - 4-2-3. オイルゲルの粘度測定
 - 4-2-4. W/O 型乳化製剤の調製
 - 4-2-5. 有機変性粘土鉱物の層間距離の測定
 - 4-2-6. 有機変性粘土鉱物の分散状態の観察
 - 4-2-7. 油中での有機変性粘土鉱物への界面活性剤の吸着量測定
 - 4-2-8. 乳化製剤の塗布時の摩擦力測定
 - 4-2-9. 乳化製剤の官能評価
 - 4-3. 結果および考察
 - 4-4. 結言
 - 4-5. 参考文献

- 5章 O/W/O型マルチプルエマルションの調製とその化粧品への応用…88
 - 5-1. 緒言
 - 5-1-1. マルチプルエマルションとは
 - 5-1-2. 工業的なマルチプルエマルションの応用
 - 5-1-3. 一般的なマルチプルエマルションの調製法
 - 5-1-4. マルチプルエマルションの安定化技術
 - 5-1-4-1. 界面活性剤の選択と配合量
 - 5-1-4-2. 增粘剤
 - 5-1-4-3. 油分
 - 5-1-5. マルチプルエマルションの経時安定性評価法
 - 5-1-6. 本研究の背景
 - 5-2. 非イオン性界面活性剤を用いた安定性に優れた O/W/O 型マルチ プルエマルションの調整法およびビタミン A の安定化研究
 - 5-2-1. 本研究の目的
 - 5-2-2. 実験方法
 - 5-2-2-1. 原料
 - 5-2-2-2. O/W/O型マルチプルエマルションの調製方法
 - 5-2-2-3. 乳化粒子径の測定法
 - 5-2-2-4. エマルションの見かけ粘度および硬度測定法
 - 5-2-2-5. 過酸化值 (Peroxide value (POV)) の測定法
 - 5-2-2-6. ビタミン A の定量法
 - 5-2-2-7. 内包率の測定
 - 5-2-3. 結果および考察
 - 非イオン性界面活性剤を用いた安定性に
 - 優れた O/W/O 型マルチプルエマルションの調整法-
 - 5-2-3-1.1次乳化に用いる親水性界面活性剤の適正量
 - 5-2-3-2.2 次乳化に用いる非イオン性界面活性剤および

有機変性粘土鉱物の適正量

- 5-2-3-3. 内相比がマルチプルエマルション粘度に与える影響
- 5-2-3-4. O/W エマルション比がマルチプルエマルション粘度

に与える影響

5-2-4. 結果および考察 -ビタミン A の安定化-

5-2-4-1. エマルションタイプの影響

5-2-4-2.界面活性剤の過酸化値(POV)の影響

5-2-4-3. エマルション組成の影響

5-2-4-4. 抗酸化剤の影響

- 5-3. 特徴のある使用感触を有するマルチプルエマルション
 - 5-3-1. 本研究の目的
 - 5-3-2. マルチプルエマルションのレオロジー測定に関する研究
 - 5-3-3. 実験方法

5-3-3-1. O/W型エマルションの調製

- 5-3-3-2. 新規レオロジー測定装置による使用感の評価
- 5-3-4. 結果および考察
- 5-4. 結言

5-5. 参考文献

6章	結言	126
7 章	謝辞	128
主論さ	てを構成する論文	129
参考諸	帝 文	130

論文要旨

本論文は、1章から6章までで構成されており、以下のとおりである。 1章では、本論文の背景,意義および目的等について示した。特に、地 球上に豊富に存在する粘土鉱物は千の用途を持つ素材といわれ、利用法も 多岐にわたっている。中でもスメクタイトとよばれる板状の粘土鉱物は、 層状構造を形成しており、水中で剥離し、その個々がネットワークを形成 して増粘する機能があることから、主に土木の分野で増粘剤として用いら れている。さらに、スメクタイトゲルの経時での粘度変化(エージン グ)、および離水はよく知られた現象であるが、土木の分野では大きな問 題とはならないためこれを抑制するという試みはなされていない。本研究 では、新規なエマルションを創製する上において、スメクタイトと高分子 とを複合化することで、エージングと離水を抑制し、スメクタイトを汎用 化できる技術の確立と、その機構解明を試みた。

ポリエチレングリコール(PEG)とスメクタイトを複合化すると、スメク タイト単独のゲルと比較して粘度が減少することがわかっている。本研究 では、PEG がスメクタイト粒子の分散性を向上し、粒子同士のつなぎ(結 着剤)として作用することで離水を抑制することを新たに見出し、本章で 述べた(2章)。

一方、固体粒子を乳化剤として用いたピッカリングエマルション技術 が、1990年ごろからさかんに研究されており、粘土鉱物についても検討が なされている。スメクタイトは親水性が高いため、スメクタイトを乳化剤 として用いる場合には通常界面活性剤等で表面を疎水化する。前述のとお り、高分子 PEG がスメクタイトの複合化におけるつなぎの役割として働く ことで離水が抑制されることが示されたが、次に複合化する高分子として カチオン性高分子を用い、この複合体の増粘・乳化機能と機構を調べた。

表面に負電荷を有するスメクタイトとカチオン性高分子との相互作用に ついてはこれまでにも研究例があるが、これら複合体の増粘・乳化機能に ついては報告例がない。カチオン性高分子は粒子表面を疎水化するだけで なく、粒子同士の静電相互作用を減じ、複合体は乳化・耐塩性増粘剤とし

て機能することを初めて明らかにし、本章で述べた。さらに、複合化する カチオン性高分子を変えて、高分子の分子量とカチオン化度とが増粘・乳 化機能におよぼす影響の関係について検討したことも示した(3章)。

ここまでスメクタイトの水中での挙動について検討してきたが、次にス メクタイトをカチオン性界面活性剤で疎水化した有機変性粘土鉱物の、油 中での挙動について精査した。有機変性粘土鉱物の増粘機構については研 究例が少なく、ノニオン性界面活性剤と有機変性粘土鉱物の比率により粘 度が変化するメカニズムについては分かっていなかった。ノニオン性界面 活性剤の有機変性粘土鉱物への吸着挙動と分散性から、増粘機構について 考察し、少ない界面活性剤の添加量で安定な W/O型エマルションを合成す る新規な方法論を確立し、その詳細について述べた(4章)。

さらに、この有機変性粘土鉱物の増粘・乳化機能を活用し、界面活性剤 では合成が困難な、安定な O/W/O 型マルチプルエマルションの新規合成方 法とその安定化機構について検討した結果について述べた。有機変性粘土 鉱物が界面に吸着することで、内油相と外油相との合一を抑制しているこ とを、内油相中に配合したビタミン A の残存率を調べることで明らかに し、本章で述べた。また、高級アルコールを内油相に配合して O/W 界面を 固化した O/W/O 型マルチプルエマルションは、シェアを加えると段階的に 乳化粒子が崩壊し、特殊なレオロジー挙動を示すことも見出し、本章で述 べた (5章)。

6章では、本論文の総括を行い、結論ならびに今後の展望について述べ た。本論文で着目したスメクタイトは、表面に電荷を有すること、層状構 造における端面と表面の性質が異なること、アスペクト比が高くシェアに より配向しやすいこと等、他の粒子にはない特徴を有する。そのため、 様々な物質と相互作用し易く、それにより多面的な機能を生み出す興味深 い素材である。本論文では、新規なエマルションを創製するスメクタイト 化合物の増粘・乳化特性とその機構解明について研究し、まとめた。今 後、スメクタイトという素材は他の物質との複合化により、これまで以上 の想像を超える高機能物質が生まれると期待されること等を今後の展望と して述べた。

1章 イントロダクション

はじめに、本研究はスメクタイト化合物を化粧品へ応用することに着目して進 めた研究であることを述べておく。

1-1. エマルション調製における界面活性剤と増粘剤の役割

エマルション(乳化物)は様々な日用品において重要な役割を果たしており、 食品や化粧品、医薬品など多岐にわたる分野で、乳化技術が活用されている。エ マルションとは、互いに混じり合わない液体において、片方の液体中にもう片方 の液体が細かく分散された状態を示す。多くの場合片方の液体は水であり、もう 片方の有機液体を通常「油相」とよぶ。エマルションは熱力学的に不安定な系で あるため、合一、すなわち分散相が融合して連続相になり、エマルションが破壊 されることがしばしば起こる(Fig.1)。エマルションを安定化するための最も一 般的な方法は、界面活性剤を添加することであり(Fig.2a)、医薬品や化粧品、食品 など、体内に取り込まれることが多い日用品の場合には、安全性の高い非イオン 性界面活性剤が一般的に用いられる。 また、乳化粒子の浮上(クリーミング) および凝集を防ぐためには、外相(連続相)に増粘剤を添加するのが効果的であ る。

化粧品においては、製剤の乳化安定性が良好であることのみならず、製剤が心 地良い感触を有することは、製品として必要不可欠な要素である。製剤を塗布し た際に、どのような感触をもたらすかは、製剤の様々な物理化学的性質に起因し ているが、特に製剤の粘弾性に影響を及ぼす連続相中の増粘剤と、界面の性質に 影響を及ぼす界面活性剤の選択は、感触を考える上で重要である¹。

1-2. 化粧品に用いられる粘土鉱物

化粧品には様々な粒子(粉末)が使われている。例えば無機粒子の酸化チタン や酸化亜鉛は、紫外線散乱剤として、サンスクリーン等に多く配合されており、 酸化鉄などの顔料は、チークやファンデーション、口紅などのメーキャップ製品 に配合されている。架橋型ポリメタクリル酸樹脂やシリコーン樹脂、球状シリカ などは、滑りの良い感触を与える粒子として、広くスキンケアやメーキャップ製 品に配合されている。粘土鉱物も化粧品に配合される無機粒子の一つである。粘 土鉱物は地球上に豊富に存在することから、「天然・安全」といったイメージが 強く、また合成も比較的容易でありコストも安い、など、化粧品に使用する上で 多くの利点をもつ。また、粘土鉱物はアスペクト比の高い平板状粒子であるため、 皮膚上に塗布する際にはスムースな感触と光沢を与える。例えばカオリンは磁器 などに用いられる粘土鉱物であるが、白くきめ細かな外観から、ファンデーショ ンやピールオフパックに用いられる。また粒子径の大きいタルクやマイカは、つ ややかな光沢となめらかな感触をもつため、仕上げ用の粉おしろいやアイシャド ーなどに配合される。水を増粘する機能を有するスメクタイトは、工業的には土 木の分野で汎用されているが、化粧品においては水相の増粘剤としてはあまり用 いられていない。詳しくは 2 章で述べるが、これはスメクタイト分散液が経時 で、硬くなる、水を離すなどの変化を起こすためである。通常化粧品に用いられ る水溶性高分子増粘剤は、ぬめり、乾き際のべたつきなどが強いが、スメクタイ ト分散液はこれと異なり、塗布シェアですぐに崩れ、乾いた後もさらさらする感 触を有するため、スメクタイトを増粘剤として化粧品に活用することは、非常に 意味のあることだと考えられる。

1-3. 粘土鉱物とは

我々の身近に存在する粘土は、驚くべきことに太陽系の惑星の中で地球にしか 存在しない。地球を代表する鉱物である粘土は千の用途を持つ素材といわれ、身 近な素材であると同時に利用法も多岐にわたっている。古くからセラミック原料 として使われていたが、近年ではポリマーなどの有機物とナノレベルで複合化し たハイブリッド材料が、驚くような性能を発揮してエレクトロニクス,フォトニ クスなどの分野で活躍している。

一般的に、「粘土(clay)」は、シリケート(ケイ酸塩)を含む岩石や堆積物で、 水と混合した際に可塑性を示す、乾燥や焼結により硬くなる、微細な粒子である、 という性質をもつ土を示す。一方、「粘土鉱物(claymineral)」は粘土の主な構成 物質となるケイ酸塩を示す。粘土鉱物には天然品も合成品も存在し、大きく結晶 性鉱物と非結晶性鉱物とに大きく分けられる。結晶性鉱物はすべてフィロシリケ ート(層状シリケート)である。粘土鉱物の結晶構造と分類をTable1および Fig 2に示す²⁻⁴。

粘土鉱物を構成する元素は、地殻の主要構成元素と同じであり、O, Si, Al, Fe, Mg, Ca, Na, K, H, の9つがそのほとんどであるが、合成マイカの中にはFを含むものもある。フィロシリケートは2次元的に連なった四面体シートと八面体シートを含んでいる。四面体は、4つのOと配位したSi⁴⁺, Al³⁺, Fe³⁺からなり、3つの頂点を隣の四面体と共有することで、2次元的に無限につながった六方網目構造を呈している(Fig.3, a-b)。八面体は、6つのOと配位した Al³⁺, Fe³⁺, Mg²⁺, Fe²⁺からなり、八面体の辺を周囲と共有していて (Fig.3, c-d)、六方対象シートを形成する。八面体の中心金属が Mg²⁺などの2価イオンである場合には、すべての陽イオン席に陽イオンが入るが、Al³⁺などの3価の陽イオンの場合には、陽イオン席の 1/3 は空席になる(Fig. 4)。前者を2八面体型、後者を3八面体型とよぶ。2八面体型と3八面体型の化学組成の違いが、様々な結晶化学的な性質の違いをもたらすため、粘土鉱物の分類の一つの基準となっている。

フィロケイ酸では、四面体シートと八面体シートの頂点の酸素を共有すること によって、それぞれのシートが結合している。基本的な結晶構造を変えずに、中 心の陽イオンが他の陽イオンに置き換わる現象を同形置換というが、例えば四面 体シートの Si⁴⁺を Al³⁺や Fe³⁺が置換すると、正電荷が不足し層全体の電荷は負 となる。たまた八面体シートの Al³⁺や Fe³⁺を Mg²⁺や Fe²⁺に置換しても同様に層 全体の電荷は負となる。このように、層全体が帯びた電荷を層電荷(Layer Charge) とよぶ。四面体の 4 つの Si⁴⁺のうちの 1 つが Al³⁺に置換されると、層電荷は 1 と なる。層電荷は粘土鉱物の構造と性質を決める基本的な因子であるため、層電荷 によっても粘土鉱物は分類される。

1-4. 増粘剤としての粘土鉱物

粘土鉱物の水の増粘剤としての機能は、工業的には掘削流体や塗料の増粘剤、 窯業製品の添加剤などに活用されている。増粘剤として、主に用いられる粘土鉱 物はスメクタイトである。スメクタイトは層電荷が 0.2~0.6 であり、負電荷を補 うため、層間に Na⁺や Ca²⁺などの陽イオンが入っている。この陽イオンは簡単に 他の陽イオンと置換されるため、交換性陽イオンと呼ばれる。層に含まれる陽イ オンの種類や、負電荷の存在場所(四面体シートの同形置換によるのか、八面体 シートの同形置換によるのか)で、スメクタイトはさらに細かく、ヘクトライト、 モンモリロナイト、サポナイト、バイデライド等に分類されている(Table 2)。 Fig.2 に示すように、スメクタイトの交換性陽イオンは粘土鉱物の層間で水分子 を配位しており、水中では陽イオンの浸透圧により層間に多量の水を取り込み、 層は剥離する。

スメクタイト分散液の相状態については理論的にも興味深く、約一世紀に渡り 数多くの研究がなされている(2 章参照)。増粘メカニズムに関する最初の報告 は、Freundlichによるモンモリロナイトを主成分とする通称ベントナイトを水に 分散した際に得られる、チキソトロピー性を示すゲルについての研究であった⁵。 ゲルの構造とゲル化メカニズムについては、1930年代から議論されており、大 きく二つの説が提唱されている。カードハウス構造(house of cards)とよばれる 三次元的なネットワーク形成は、板状の粘土鉱物粒子どうしの静電的な引力によ るとされる説⁶と、配向したネットワーク構造は電気二重層の斥力により安定化 されるとされる説⁷である。これに関する近年の報告は、主に合成ヘクトライ トであるラポナイト⁸(BYK Additives & Instruments 社製、粒度分布は比較的 広く、平均 28nmの直径をもつ楕円状粒子)が用いられている。

このように数多くの報告があるにも関わらず、スメクタイトの増粘メカニズム と相状態については結論が出ておらず、ラポナイトに関する全ての実験データを 説明できるモデルはまだ存在しない。また、スメクタイトゲルは経時で構造や粘 度が変化する「エージング」と呼ばれる現象が見られる。エージングはゆっくり と進行し、年単位で変化する場合もあるが、このメカニズムについても実ははっ きりとは分かっていない。

スメクタイトの交換性陽イオンを4級アンモニウム型カチオン性界面活性剤と 交換した物質を有機変性粘土鉱物という。有機変性粘土鉱物は、疎水基を外側に 向けて吸着した界面活性剤のおかげで疎水的であり、有機溶媒中で層間に溶媒を 取り込むことで剥離、分散し、ある種の有機溶剤を増粘することが可能となる。 スメクタイトの水の増粘に関する研究と比較して、有機変性スメクタイトのオイ ル増粘機能や構造に関する報告は圧倒的に少ない^{9,10}。増粘のメカニズムに関し

ても不明な点が多いが、有機溶媒中で剥離分散した有機スメクタイトの結晶端面 に存在する水酸基同士が、水やメタノールを介在して水素結合し,結晶端面-結 晶端面同士による会合構造を形成すると考えられている¹¹⁻¹²。これについては 1-5 で詳しく述べる。

1-5. 有機変性粘土鉱物

1-5-1. 有機変性粘土鉱物の構造

有機変性粘土鉱物は、そのオイル増粘機能を利用し、塗料,インキにおける垂 れ落ち防止剤,顔料沈降防止剤として,また印刷インキにおける増粘剤¹³,ミス チング防止剤として,グリースや化粧品,接着剤などのレオロジー調整剤として 広く利用されている。ゲル化能のみならず、層間への油溶性物質の包摂力を利用 し、有機汚染物質などの吸着剤¹⁴⁻¹⁷として,また層間に光や電子的物質を固定化 することで、様々な機能を発揮する材料としても注目を浴びている^{18,19}。20世紀 の終わりごろからは、ポリマーを層間に取り込み複合化させて、プラスチックの 機械的強度を各段に向上させたナノコンポジットとよばれる材料がさかんに研 究されるようになった²⁰⁻²⁴。

スメクタイトの層間に陽イオンや分子が取り込まれることを、インターカレー ションという。アルキルアンモニウムカチオン(AAC)のスメクタイト層間への インターカレーション挙動については古くから研究されている^{25,26}。一般的に、 スメクタイトの有機変性に用いられる AAC を Fig.5 に示す。一定の粘土鉱物量 に対して交換される陽イオンの量を、陽イオン交換容量(Cation Exchange Capacity; CEC)というが(粘土鉱物 100g あたりのミリ等量;meq/100g で示され る)、AAC は CEC と同量まで静電的相互作用により粘土鉱物に吸着し、さらに 疎水基どうしのファンデルワールス力により CEC を超えて吸着する。粘土鉱物 の層間は、インターカレートした分子の長さに依存して、吸着とともに距離が広 がっていき²⁷、分子は層間で整列、構造が変化していく²⁸⁻³⁰。例えばセチルピリ ジウニウム、セチルトリメチルアンモニウムイオンを用いた研究では、AAC イ オンの濃度が上昇するにつれ、monomolecular、bimolecular、pseudotrimolecular 層 と、スメクタイト層間における配列構造が変わることが分かっている^{31,32}。モン モリロナイトに吸着した AAC のイメージ図を Fig.6 に示す。

微小空間である粘土鉱物層間と、バルクの環境とは大きく異なるが、、特に層間 の環境は AAC の充填密度に大きく左右される。例えば、ヘキサデシルトリメチ ルアンモニウムイオン(HDTMA+)は、充填密度が低い場合には、分子同士が離 れて吸着しており、アルキル基の相転移温度はバルク中でのそれと大きく変わら ないが、paraffin-type(Fig.6-d)と呼ばれる密な充填状態³⁴では、アルキル基ど うしの相互作用が強く、相転移温度は上昇することが知られている³⁵。またイン ターカレートした AAC は、酸^{36,37}や中鎖アルコールの添加³⁸により、層間から 脱離するという報告もある。

1-5-2. 有機変性粘土鉱物によるオイルの増粘

前述したように、オイルの増粘メカニズムに関する研究は非常に少ないが、 Kieke と Cody らによる検討が最初の報告で、その後の研究の指針となっている。 彼らは、オイルを増粘させるには、オイル中で①有機変性粘土鉱物を完全に剥離 させること、②有機変性粘土鉱物のネットワークを形成させることが必要である とした。①に関しては、例えばアセトンのような極性物質を添加することで、有 機変性粘土鉱物どうしの層間が広がり、剥離を容易にすると報告している。また ②に関しては、水素結合形成能のある分子(例えば水)が粘土鉱物粒子の端面を 水素結合により架橋し、バルク中でネットワークを形成しているとした (Fig.7)^{11,12}。山口らは、ある種の非イオン性界面活性剤を添加すると、流動パラ フィン中で有機変性粘土鉱物の層間が広がり、オイルゲルを形成し、特に HLB8 程度の非イオン性界面活性剤の添加により、高粘度のオイルゲルが形成されたと 報告している³⁹。この報告は、前述の Cody らによる極性物質の添加による剥離 の促進と類似した結果といえる。

皆瀬らは、トリメチルドコシルアンモニウム塩を用い、有機変性率(CEC に対 する添加 AAC 量)を変えて調製した有機変性モンモリロナイトの、トルエンに 対する増粘機能について調べている。有機変性率 0.25~3 で調製した粘土鉱物の うち、もっとも高い増粘機能を示したのは有機変性 1 および 1.25 倍の粘土鉱物 であった。IR による解析から、これらの粘土鉱物表面に吸着した AAC は、秩序 性が乱れており溶媒と混合しやすかったためではないかと考察している。有機変

性率が低いと溶媒中での分散性が十分でなく、高いと AAC のアルキル基どうしの相互作用が強く、溶媒和しないためとしている⁴⁰。

1-6. 乳化剤としての粘土鉱物

1-6-1. ピッカリングエマルション

ピッカリングエマルション(Pickering Emulsion)とは、固体粒子が油水など の液-液、あるいは気-液界面に吸着し、安定化されたエマルションである。金 属酸化物や粘土鉱物などの微細粒子を用いてエマルションを安定化するこの技 術は、20世紀初頭に初めて報告されている^{40,41}。近年、界面活性剤が人体や自然 環境に悪影響を及ぼすというイメージから、界面活性剤を含まない化粧品を選ぶ 消費者も多く、低分子の界面活性剤を含まない乳化技術を開発することは、化粧 品業界においても必須である。界面活性剤フリー製剤としては、疎水基を側鎖に 有するカルボキシビニルポリマーなどの両親媒性高分子を用いて乳化する例⁴³ がほとんどであるが、近年ではピッカリングエマルション技術を用いて安定な化 粧品製剤を調製する試みがなされている⁴⁴。

ピッカリングエマルションの安定化機構については、実験的に以下のことがわ かっている⁴⁵。① 粉末の親疎水性バランスが乳化の安定性に大きく影響を及ぼ すこと、②Fig.8 に示すように⁴⁶、界面活性剤系と同様、一般的によく濡れる溶 媒相が通常外相となるが、どちらが外相になるかは相比によっても変わりえるこ と、③ 乳化粒子径は粉末径よりも小さくならないこと、④乳化の安定化には粉 末同士の相互作用が重要で、粉末がやや凝集した状態のほうが安定であること⁴⁷、 である。①の、界面活性剤の HLB にあたる固体粒子の親疎水性は、粒子の界面 での接触角により見積もることができ、界面への吸着エネルギー(=固体粒子を 界面からひきはがすためのエネルギー) E は以下の式により算出される⁴⁸。

$$\pi a^2 \cos\theta \gamma_{OW} (1-\cos)^2 \theta$$

ここで、R は粒子の半径、 γ OW は油水界面張力、 θ は粒子がより親和性のある 溶媒に対する接触角を示す(Fig.9)。粒子の親水性、または親油性が高く、 θ が 0°に近い場合は、1-cosθ項がほぼ 0 となり、粒子は界面からはがれて溶媒層 へ分散する⁴⁹。粒子径が大きいほど、油水界面張力が大きいほど、吸着エネルギ ーは高いことがわかる。式1にしたがって、半径 R=1x10-8m の粒子が界面張力 γow =36×10-3Nm-1 の油水界面に、接触角θで吸着した際の吸着エネルギー を計算した結果を Fig.10に示す⁴⁸。この結果からもわかるように、適度なθを有 する粒子の油水界面への吸着エネルギーはkTと比較して非常に大きく、いった ん界面に吸着した粉末はほとんどはがれることがない。

Levine らは、親疎水性を有する粉末で安定な乳化物調製のためには(すなわち 粉末を油水界面に吸着させるには)、以下の点が重要であると報告している⁵⁰。 第1 に乳化粒子の合一速度よりも粉末が油水界面に吸着する速度の方が速いこ と、第2 に乳化時のせんだん力が乳化粒子の最小粒径を壊すほど強くないこと (最小粒径は粉末量に応じて決まる)である。

ピッカリングエマルションにおいて、乳化剤である粒子の油水界面への吸着挙 動はほとんど不可逆であるうえ、乳化粒子の界面膜は密な固体膜であるため、乳 化粒子は合一に対して熱力学的に安定である^{51,52}。しかし、シェアなどで乳化粒 子が変形し界面積が増加した場合、界面活性剤であれば、バルク中に溶解した分 子がすぐさま面積の増加分を補うべく界面に吸着することが可能であるが、固体 粒子はそれができない。従って、乳化粒子同士が接近した際に、粉末で覆われて いない界面の「穴」を介して瞬時に合一が起きる。このように、ピッカリングエ マルションは静置した状態では合一安定性に優れる一方で、乳化粒子が変形する 環境では合一が容易に起こる。乳化粒子径が小さいほどラプラス圧の増加による 乳化粒子の変形が抑制され、変形に対する合一安定性は高まる。

1-6-2. 粘土鉱物を用いたピッカリングエマルション

粘土鉱物粒子を用いてピッカリングエマルションを調製した場合、粒子は乳化 剤として界面に吸着し固体膜を形成すると同時に、粒子同士がネットワークを形 成し、増粘剤としても機能する。界面活性剤を用いたエマルション、相互作用の 少ない球状粒子を用いたピッカリングエマルション、粘土鉱物を用いたピッカリ ングエマルションのイメージ図を Fig.11 に示した ⁵³。1-5-2 でも言及した山口ら は、有機変性粘土鉱物を乳化剤および増粘剤として用いた安定な W/O 型エマル

ションに関して報告している³⁹。ベントナイトやモンモリロナイトなどの粘土鉱物を用いたピッカリングエマルションの調製は古くから検討されているが、これらの報告は、非イオン性界面活性剤^{54,55}や高分子⁵⁶、また正に帯電した粘土鉱物(LDH, layered double hydroxides)⁵⁷と併用することで安定な乳化物を調製しており、粘土鉱物単独では乳化粒子の合一を完全に抑制することは困難である。これは、粘土鉱物の親水性が非常に高く、水に分散しやすいためである。

1-7. 本研究の目的

上記のように、粘土鉱物のもつゲル化能、乳化能について多くの研究が行われ、 工業的にも活用されているにもかかわらず、化粧品においてはそれらの機能が十 分に利用されているとはいえない。この理由は、第一に 1-4 で述べたように粘土 鉱物のゲルが「エージング」とよばれる構造変化をゆっくりと起こし、調製直後 は粘度の高いゲルを形成しても、3か月後あるいは1年後に水を離す現象がしば しば見られること、さらにこのメカニズムが不明であるためこれを防ぐ手段がな いこと、第二に 1-5 で述べたように粘土鉱物単独を乳化剤として用いたピッカリ ングエマルションの調製が困難であり、常に界面活性剤や高分子などと併用する 必要があるため、粘土鉱物の心地よい感触を活かせないことがある。第一の問題 を解決するために、スメクタイトのエージング現象を考察し、高分子 PEG によ りこれを抑制する検討を行った。その研究内容を第2章に述べる。第二の問題を 解決するために、ぬめりのある高分子や乾燥間際のべたつきが強い界面活性剤の 併用をできるだけ抑えて、安定なエマルションを調製する検討を行った。これを 第3章および4章に述べる。特に4章では、有機変性粘土鉱物によるオイルのゲ ル化メカニズムの一端を解明した結果について述べる。そして、有機変性粘土鉱 物を用いた乳化ならではの特徴をいかし、安定化が困難であるとされているマル チプルエマルションの調製を検討し、化粧品へ応用した結果について、第5章に 述べる。

1-8. 参考文献

1) A. Nakamura, A. Sogabe., A. Machida, I Kaneda, Nihon Reoroji Gakkaishi, 41,

(2013) 209.

- 2) 粘土科学への招待、須藤談話会編、(2000) 三共出版.
- 3) 上原誠一郎、粘土科学、第40卷、100.
- 4) F. Bergaya, B. K. G. Theng, G. Lagaly (Eds.), Handbook of Clay Science, Elsevier, UK, 2006.
- 5) H. Freundlich, (1928) Kolloid-Z, <u>46</u>, 289.
- 6) H. V. Olphen, (1951) Discuss. Faraday Soc. <u>11</u>, 82.
- 7) K. Nrrish, (1954) ibid, <u>18</u>, 120.
- 8) B. Ruzicka E. Zaccarelli, (2011) Soft Matter, 7, 1268.
- 9) 皆瀬慎、(2014) オレオサイエンス、<u>14</u>、205.
- 10) A. Charfield, (1998) Chem. Mater, 10, 2801.
- 11) M, Kieke, C. Kyriakopouls, J. Maas, (1988) NLGI Spokesman (Natl. Lubr. Grease Inst.), <u>52 (3)</u>, 93.
- 12) C. A. Cody, W.W. Reichert, (1986) ibid, <u>49 (10)</u>, 437
- 13) Jhones, T, R., (1983) Clay Miner., <u>18</u>, 399.
- 14) 小川誠, 岡田友彦, (2010) 機能性粘土素材の最新動向,シーエムシー出版、 P.193.
- L. Groisman, C. Rav-Acha, Z. Gerstl, U. Mingelgrin, (2004) Appl. Clay Sci., <u>24</u>, 159.
- 16) L. P. Meier, R. Nueesch, F. T. Madsen, (2001) J. Colloid Interface Sci., 238, 24.
- 17) L. J. Michot, T. J. Pinnavaia, (1991) Clays Clay Mineral, <u>39</u>, 634.
- 18) Theng, B, K. G., The chemistry of Clay-Organic Reactions., Adam Hilge: London, 1974.
- 19) Ogawa, M., Kuroda, K., (1997) Bull. Chem. Soc. Japan, <u>70</u>, 2593.
- 20) 鬼形正伸,(2000)機能性フィラー総覧,テクノネット社、P.165.
- 21) 中條澄,ポリマー系ナノコンポジット 基礎から最新展開まで,工業調査 会 (2003)

22) T. J. Pinnabaia, G. W. Beall (Eds.), Polymer-Clay Nanocomposites. Wiley, Chichester, UK, 2000.

23) Giannelis, E. P., Krishnamoorti, R., Manias, E., (1998) Adv. Polym. Sci., <u>138</u>, 108.

- 24) D. L. Ho, R. M. Briber, C. J. Glinka, (2003) Chem. Mater., 15, 1309.
- 25) Theng B. K.G., Greenland, D. J., Quirk J. P., (1967) Clay Minerals, 7, 1.
- 26) Mortland, M. M., (1970) Advances in Agronomy, <u>22</u>, 75.
- 27) G. F. Walker, (1967) Clay Minerals, <u>7</u>, 129.
- 28) J. L., Bonczek, W. G. Harris, P. N-Kizza, (2002) Clay. Clay Minerals, 50 (1), 11.
- 29) M. Ogawa, T. Wada, K. Kuroda, (1995) Langmuir, <u>11</u>, 4598.
- 30) R. A. Vaia, R. K. Teukolsky. E. P. Giannelis, (1994) Chem. Mater., 6, 1017.
- 31) Lagaly, G., Clays and (1982) Clay Miner., <u>30</u>, 215.
- 32) D. J. Greenland, J. P. Quirk, (1962) Clays Clay Miner., 9, 484.
- 33) Li. Y. Q., Ishida, I., (2002) Chem. Mater., <u>14</u>, 1398.
- 34) Li. Y. Q., Ishida, I., (2003) Langmuir, <u>19</u>, 2479.
- 35) H. He, Z. Ding, J. Zhu, P. Yuan, Y. Xi, D. Yang, R. L. Frost, (2005) Clay and Clay Miner., <u>53 (3)</u>, 287.
- 36) P. Capkova, M. Pospisil, M. Valaskova, D. Merinska, M. Trchova, Z. Sedlakova,

Z. Weiss, J. Simonik, (2006) Colloid Int. Sci., <u>300</u>, 264.

- 37) D. Lee, K. Char, (2002) Langmuir, <u>18,</u> 6445.
- 38) N. H. Tran, (2006) J. Colloid and Int. Sci., <u>297 (2)</u>, 541.
- 39) 山口道廣、(1999) 油化学, 39, 95.
- 40) M. Minase, M. Kondo, M. Onikata, K. Kawamura, (2008) Clays and Clay Miner., <u>56 (1)</u>, 49.
- 41) W. Ramsden, (1903) Proc. Roy. Soc., <u>72</u>, 156.
- 42) S.U. Pickering, (1907) J. Chem. Soc., <u>91</u>, 2001.
- 43) 特許第 3434864 号
- 44) 特許第 2656226 号
- 45) R. Aveyard, B. P. Binks , J. H. Clint, (2003) Advances in Colloid and Interface Science, 503, 100.
- 46) B. P. Binks, (2002) Colloid and Interface Science, 7, 21.

- 47) H. Hassander, B. Jhoansson, B. Tornell, (1989) Colloids and Surfaces, <u>40</u>, 93.
- 48) B. P. Binks, S. O. Lumsdon, (2000) Langmuir, <u>16</u>, 8622.
- 49) B. P. Binks B. P., S.O. Lumsdon, (2000) Phys. Chem. Chem. Phys., 2, 2959
- 50) S. Levine, B. D. Bowen, S. J. Partridge, (1989) Colloids and Surfaces, <u>389</u>, 7.
- 51) S. Arditty, C. P. Whitby, B. P. Binks, V. Schmitt, F. L-Calderon, (2003) Eur. Phys.
 J. E. <u>11</u>, 273.
- 52) T. H. Whitesides, D. S. Ross, (1995) J. Colloid Interface Sci., 169, 48.
- 53) S. Abend, G. Lagaly, (2001) Clay Minerals, 36, 557.
- 54) A,Tsujita, S. Takemoto, K. Mori, T. Yoneya, Y. Otani, (1983) J. Colloid Int. Sci., <u>95</u>, 551.
- 55) G. Lagaly, M. Reese, S. Abend, (1999) Appl. Clay Sci., <u>14</u>, 83.
- 56) P. A. Ciullo, D. B Braun, (1991) Cosmetics and Toiletries, <u>106</u>, 89.
- 57) S. Abend, G. Lagaly, (2001) Clay Miner., <u>36</u>, 557.
- 58) 上原誠一郎、(2000) 粘土科学、第40巻、100.

Fig.1 Destabilization process of emulsion

Type of layer	Group (x=layer charge)	Octahedral character	Species
1.1	Serpentine- Kaolin	Tri	Mesite, lizardite, cronsyedite
1.1	(x~0)	Di	Kaolinite, dickite, halloysite
	Talc- pyrophyllite (x~0)	Tri	Talc,
		Di	Pyrophylite
	Smectite (x~0.2-0.6)	Tri	Saponite, hectorite, stevensite
		Di	Montmollironite, beidellite
	Vermiculite (x~0.6-09)	Tri	Trioctahedral vermiculite
		Di	Dioctahedral vermiculite
2:1	True Mica	Tri	Biotite, phlogopite, lepidolite
	(x~0.6-01.0)	Di	Illite, muscoite, paragonite
	Brittle Mica	Tri	Clintonite, anandite
	(x~1.8 - 2.0)	Di	Margarite
	Chlorite (x variable)	Tri	Clinochhlore, chamosite,
		Tri-Di	Sudoite
		Di	

Table 1 Classification of Hydrous phyllosilicates

Fig.2 Models of phyllosilicates

Fig.3 Structure of (a) SiO_4 tetrahedron; (b) tetrahedral sheet; (d) $Al(OH)_6$ octahedron and (e) octahedral sheet

Fig.4 Ideal (a) Di-octahedral and (b) Tri- octahedral sheet

	name	Japanese name	chemical structure
tri-octahedral	saponite	サポナイト	(Ca/2,Na) _{0.3} (Mg,Fe ²⁺) ₃ (Si,Al) ₄ O ₁₀ (OH) ₂ •4H ₂ O
	hectorite	ヘクトライト	Na _{0.3} (Mg,Li) ₃ Si ₄ O ₁₀ (F,OH) ₂ •4H ₂ O
	sauconite	ソーコナイト	Na _{0.3} Zn ₃ (Si,Al) ₄ O ₁₀ (OH) ₂ •4H ₂ O
	stevensite	スチブンサイト	$(Ca/2)_{0.3}Mg_3Si_4O_{10}(OH)_2 \cdot 4H_2O$
	swinefordite	スインホルダイト	(Ca/2,Na) _{0.3} (Li,Mg) ₂ (Si,Al) ₄ O ₁₀ (OH,F) ₂ •2H ₂ O?
di-octahedral	montmorillonite	モンモリロナイト	$(Ca/2,Na)((Al,Mg)_2(Si_4)O_{10}(OH)_2 \cdot nH_2O)$
	beidellite	バイデライト	$(Ca/2,Na)_{0.3}Al_2(Si,Al)_4O_{10}(OH)_2 \cdot nH_2O$
	nontronite	ノントロナイト	Na _{0.3} Fe3 ³⁺ (Si,Al) ₄ O ₁₀ (OH) ₂ •nH ₂ O
	volkonskoite	ボルコンスコアイト	$Ca_{0.3}(Cr^{3+},Mg,Fe^{3+})_3(Si,Al)_4O_{10}(OH)_2 \cdot nH_2O$

Table 2 Classification of smectites (after Uehara, 2000)

a) Cetyl Pyridinia (CP+)
b) Cetyl trimethylammonia(CTA)
c) Tetramethylammonia(TMA)
d) Trymethylphenylammonia(TMPA)
e) Hexadecyltrimethylammonia(HDTMA)

Fig.5 Alkylammonium cations

Fig.6 Conformations of interlayer cations (after Lagaly, 1982): (a) monolayer (1.37nm), (b) bilayer (1.77nm), (c) pseudotrimolecular layer (2.17nm), (d) paraffin complex (>2.2nm)

Fig.7 Gelling mechanism of organoclay in oil (afer Kieke, 1988)

Fig.8 Position of a small spherical particle at a planar fluid-water interface for a contact angle (measured though the aqueous phase) and the corresponding probable positioning of particles at a curved fluid-water interface. For $\theta < 90^{\circ}$, solid stabilized aqueous foams or O/W emulsions may form (left), for $\theta > 90^{\circ}$, solid stabilized earosols or W/O emulsions may form (right). (after Binks, 2002)

Fig.9 Position of a small spherical particle at planar oil-water interface; (a) lipophilic particle, (b) hydrophilic particle

Fig.10 Variation of the energy of attachment, E(relative to kT), of a spherical particle of radius R=1x10⁻⁸m at a planar oil-water interface of interfacial tension $\gamma ow = 36x10^{-3}Nm^{-1}$ with the contact angle θ the particle makes with the interface at 298K, calculated using eq.1 (after Binks, 2000).

Fig.11 Stabilization of emulsions by (a) surfactants; (b) solid particles (Pickering emulsions); an envelopoe around the droplets and a threedimensional network of particles spanning the coherent phase between the droplets (after Abend, 2001).

2章 スメクタイト-PEG 複合体の流動特性とエージング挙動

2-1. 緒言

粘土鉱物は地球上に豊富に存在し安価であること、人体に対して安全であり、 艶やかな外観と滑らかな感触を有することから、メーキャップ化粧品に多く使わ れている。粘土鉱物の中でもスメクタイトは水中で剥離しゲルを形成するために、 工業的にはゲル化剤として用いられることが多い。化粧品の観点からは、スメク タイトによる水性ゲルは、肌に塗布した際にぬめりや乾いた後のべたつきがなく、 キサンタンガムやカルボキシビニルポリマーなどの水溶性高分子による水性ゲ ルにはない心地よい感触を発現する点で大きなアドバンテージを有する。しかし 一方で、中性付近では経時で相分離して水を離すこと、経時でゲルの粘度が変化 することから、スキンケアなどの水系化粧品において主たるゲル化剤として用い られることはほとんどなく、多くは多糖など増粘効果のある高分子と併用するた め¹、粘土鉱物の心地よい感触を十分に発揮できていない。

スメクタイト分散液中の粘土鉱物粒子集合体の構造に関しては、特に合成ヘク トライトであるラポナイトについて古くから研究されている。粘土鉱物粒子の表 面-エッジ間の反対電荷引力に起因するカードハウス構造をとるとする説²が 広く知られているが、希薄分散液では電荷反発に起因する Wigner Glass 構造³、 ネマチック相構造をとるとする説など、いまだに論議が続いている⁴。スメクタ イトの水中での分散・凝集状態は、塩濃度^{5,6}、pH⁷、温度⁸によっても異なる。 また上でも述べたように、経時でスメクタイトのヒドロゲル構造が徐々に変化し、 ゲル粘度が上昇することをエージングというが、特にラポナイトに関してしばし ば研究されており、エージング現象が非常に広い濃度範囲(希薄分散液中から濃 厚分散液中)、塩濃度で、かつ年単位などの長い時間スケールで起こることが分 かっている^{9,10}。このように、スメクタイトゲルの構造が、調製してから経過し た時間や塩濃度、また調製方法によっても異なることが、スメクタイトゲルの相 構造に関する説を定める妨げになっていると考えられる。

経時で物性が変化するエージング現象を抑制するためには、粒子の分散状態 を安定に保つことが必要である。コロイド粒子の分散安定性を上げる方法の一つ

として、粒子の表面に高分子を吸着させて、立体反発を利用する方法がある。ポ リエチレングリコールやポリエチレングリコール-ポリプロピレングリコールブ ロックコポリマーなどの非イオン性ポリマーとの混合で、粘土鉱物粒子の凝集お よび凝集による相分離が抑制されるという報告がある^{11,12}。粘土鉱物とポリマー との相互作用を研究する上でのモデル物質としてポリエチレングリコール (PEG) を用いた研究例は散見され、PEG の粘土鉱物への吸着状態、すなわち粘土鉱物へ 吸着した PEG 分子のコンフォーメーションや運動性についての研究報告は少な くない¹³⁻¹⁶ が、それがエージングに与える影響についての報告はほとんど見受 けられない。

一方、ラポナイト分散液中で、ラポナイト骨格から Na⁺や Mg²⁺などのイオン が溶出し、特に低 pH 付近でその傾向が大きいことが報告されている^{17,18}。上記 で述べたように、スメクタイト分散液の構造は、塩濃度により異なると考えられ ているため、粘土鉱物の水中での経時構造変化を考える際には、スメクタイトか らのイオンの溶出を考慮に入れる必要がある。また塩の配合により、スメクタイ トゲルは経時で相分離し、水を離す(離水する)。

化粧品にスメクタイトをゲル化剤として用いるには、中性付近での相分離(離水)を抑制すること(通常化粧品は、肌のpHに近いpH6~7に調整される)、経時での構造変化を抑制するか、もしくは早く平衡状態に到達させることが必要である。先に述べたように、粘土鉱物の凝集を抑制する効果が報告されていること、また保湿剤としても用いられ、安全な原料であり感触も悪くないことから、PEGと粘土鉱物の複合体について検討を行うこととし、分子量の異なるPEGを数種のスメクタイト分散液に加え、分散液の粘度測定と複屈折性の観察により、PEGがスメクタイト分散液のエージングに与える影響について考察した。さらに、中性付近にpH 調整したスメクタイト分散液のエージングに対する PEG の添加効果について、陽イオンの溶出とレオロジーの観点から考察した結果について報告する。

2-2. 実験方法

2-2-1. 原料

スメクタイトとしては、天然のモンモリロナイトであるクニピアF(クニミネ 工業、以下 KU と記載)、合成サポナイトであるスメクトン SA(クニミネ工業、 以下 SA と記載)、合成ヘクトライトであるラポナイト XLG (BYK Additives & Instruments、以下 LA と記載)および、ラポナイト XLG 端面の OH の一部がフッ 素に置き換わった構造をもつラポナイト XL21 (BYK Additives & Instruments、以 下 LAX と記載)を用いた。用いたスメクタイトの特性値を Table 1 に示す。これ らのスメクタイトの中で、SA は四面体シートに負電荷を有し、それ以外の KU、 LA、LAX は八面体シートに負電荷を有しているが、本研究ではその違いについ ては考察していない。用いた PEG の分子量を Table 2 に示した。PEG23 以外の原 料は化粧品原料としての市販品であり、全ての原料は洗浄、精製などの工程を経 ず、そのまま用いた。

2-2-2 サンプルの調製方法

スメクタイト分散液は、680gのイオン交換水をホモミキサー(TK ホモミキサ ー、特殊機化)で低速撹拌しながら 20gのスメクタイトを徐々に添加し、全量を 添加後 6000rpm10 分間撹拌したのち、50ml スクリュー管内で所定の濃度となる ようにイオン交換水を加え、ホモミキサー(ポリトロン、KINEMATICA)で 10000rpm1 分間撹拌して調製した。撹拌時間を変えたサンプルの調製法について は、結果の章に詳しく記載した。スメクタイトと PEG との混合液は、上記の方 法で 680gのイオン交換水に 20g 添加し撹拌混合し、室温にて 1 週間経過したス メクタイト分散液と、調製して 1 昼夜静置したポリマー20wt%水溶液を所定の濃 度となるよう、50ml スクリュー管内でポリトロンで均一になるまで撹拌して調 製した。

2-2-3 粘度測定方法

粘度測定はブルックフィールド型(B型)粘度計(ビスメトロン、芝浦システム)を用い、ローターNo.3、回転数 12rpm で行い、各温度に保存したサンプルを25℃にて測定した。粘弾性測定はレオメーター(MR300、アントンパール)により、直径 5 cmのパラレルプレートを用い、gap1 mmで実施した。Amplitude Sweep 測定は、10rad/s にて行った。測定は全て 25℃にて行った。

2-2-4 スメクタイト分散液からのイオン溶出量測定方法

pH 約3、4、6、7、8、9 なるように total0.1 または 0.2mol/L で調整したクエン 酸、クエン酸ナトリウム緩衝液をガラス容器に調製し、これに 1 または 2wt%と なるようスメクタイトを加えた。これを 1 時間超音波処理した後にポリトロンで 10000rpm で 1 分間撹拌し、pH を測定した後に 0℃、25℃、37℃、50℃の各温度 に保存した。pH の値は 2 サンプルの平均値を示した。

上記の方法にて調製したサンプルのうち、25℃に保存したサンプルを用い、経時での経時でのイオン溶出量を測定した。

イオン溶出測定法は以下のとおり行った。保存したサンプルを均一に振り混ぜて 30gを遠心管にとり、ここに 7.5gの食塩を加えて溶解させた。その後 10000rpm で 20 分間遠心分離を行い、上澄みを 20 µ m のフィルターでろ過してサンプルを 得た。保存サンプルに食塩を加えるのは、微細なスメクタイト粒子を凝集させて、 フィルターで完全に取り除くためである。得られたサンプルの ICP 分析を行い、 金属溶出量を測定した。しかしながら、多量に Na 塩を加えて測定する方法は装 置に負担をかけるため、PEG とスメクタイトとの混合分散液からの Mg 溶出量 は、エリオクロムブラック T を用いた滴定法 ¹⁹ により滴定測定した。

2-2-5 スメクタイト分散液のレオオプティック測定

サンプルのレオロジー特性と同時に複屈折性を検出するための装置の概要を Fig.1 に示した。ストレス制御式レオメーター(Anton Paar 社、MCR301)を動力 として用い、二枚のガラス(BK-7)製パラレルプレートの間にサンプルをはさみ、 測定を行った。He-Neレーザー光源はレオメーターの下部にあり、回転半波長板 型偏光変調器を通して流路に垂直に照射する.サンプルを通過した光強度は偏光 解析器である円偏光板を通しフォトダイオードで検出した。装置の詳細は文献を 参照されたい^{20,21}。

2-3. 結果および考察

2-3-1. ラポナイト (LA) のエージング挙動

LA および SA2wt%分散液は、ホモミキサーで高撹拌して調製した直後の外観 はほとんど粘度のない青白い液体(青く見えるのは粘土粒子による散乱)である が、時間が経つにつれ徐々に粘度が上昇し、3日ほどで流動性のないゲルを形成 する。LA 2wt%分散液を、撹拌時間を変えて調製し、25℃および 50℃にて保存し たサンプルの粘度を B 型粘度計で経時測定した結果を Fig.2 に示す。調製方法は Scheme 1 に示した。撹拌時間が長い方が、また保存温度が高い方が分散液の粘 度上昇が速いことが示された。スメクタイトの高温での分散安定性が高まること は DLVO 理論にも矛盾しない現象であり⁸、スメクタイトの粒子がよく分散され ている方がエージング現象が速く進行することが示された。粘土鉱物分散液の複 屈折性については、塩濃度および粘土鉱物粒子の粒径を変えた際のゾル-ゲル転 移を偏光板を用いて観察した報告があるが²²、この報告と同様に LA および SA 分散液を 2 枚の偏光板の間に置き経時観察した。状態変化が顕著であった SA 2wt%分散液の写真を Fig.3 に示した(サンプルは倒して撮影)。調製直後は等方 性であった分散液中で徐々に粘土鉱物粒子が配向して複屈折性を示し、ゲル化す る様子がよく分かる。SA 2wt%分散液でゲル化したサンプルはいずれも相分離に よる離水が見られ、B 型粘度計により粘度を測定することはできなかった。

2-3-2 PEGの添加がエージングに及ぼす影響

Scheme 1 に示す方法にて調製した LA と PEG9 および PEG90 との混合分散液 を B 型粘度計を用いて経時で測定した結果を Fig.4 および 5 に示す。いずれの混 合分散液も LA 2wt%単独分散液と同様に、撹拌時間が長い方が、また保存温度が 高い方が分散液の粘度上昇が速かったが、 PEG90 との混合分散液のほうが粘度 上昇に時間を要し、同じ工程・保存温度で比較するとプラトーに達する粘度も低 い傾向にあった。特に PEG90 混合分散液の 25℃保存品は、調製 30 日後におい ても粘度上昇がみられず、40 日後から徐々に粘度上昇した。これらの結果から、 より高分子量の PEG を共存させた場合には、エージングによる粘度上昇が抑制 される傾向にあることが示された。

Fig.6 に、工程 A で調製した LA 単独分散液および PEG9、PEG90 混合分散液 を、調製後 25℃にて 40 日保管した後に測定した Amplitude Sweep 曲線を示す。 LA 単独分散液と PEG 9 混合液の挙動はほぼ同じであるが、PEG90 混合分散液で は高ひずみ時の G'値減少がなだらかである。これは、LA 単独または LA+PEG 9 混合分散液が、高ひずみによりネットワークが急激に破壊されるのと比較して、 LA+PEG 90 混合分散液は、ネットワーク破壊がゆるやかに進行することを示し

ている。Fig.7 に SA 単独分散液と PEG90 混合分散液の Amplitude Sweep 曲線を 比較して示した。SA 単独分散液においても PEG90 混合分散液では高ひずみでの 構造破壊がゆるやかであるが、より高いひずみで構造破壊が開始していることが わかる。PEG を添加した系では、PEG 分子がスメクタイト粒子どうしの"つな ぎ"としてはたらき、急激な変化を緩和しているのではないかと考えられる。

2-3-3 pH 調整したスメクタイト分散液のエージング挙動に及ぼす PEG 添加の 影響 ①粘度変化

次に、クエン酸、クエン酸ナトリウム Buffer を用いて各 pH に調整した PEG4wt%+LA 1wt%および PEG 5wt%+SA 2wt%混合分散液の、B型粘度計で測 定した粘度の経時変化を Fig.8、9 に、調製直後と 1 か月後の pH を Table3 に示 す。サンプルは、クエン酸 0.3wt%、クエン酸ナトリウム 0.7wt%の混合水溶液を、 所定の濃度となるように調製後 1 週間以上経過したスメクタト分散液に加え、 50ml スクリュー管中でポリトロンで 1000rpm1 分間撹拌して調製した。各サンプ ルは 2 個ずつ調製し、pH を測定した後に 0℃、37℃、50℃の各恒温槽に保存し た。pH の値は 2 サンプルの平均値を示した。

PEG およびクエン酸緩衝液と混合時、スメクタイト分散液は調製後 1 週間を 経過しているため、粒子の分散状態は良好でほぼ完全に剥離状態にあると考えら れる。LA 単独分散液は、それ単独では pH10 前後であり粘度約 2000mPa・s であ るが、pH7 付近になるようクエン酸緩衝液を混合すると、混合直後に粘度が急激 に上昇し、翌日には流動性のないゲル状態で離水が見られ、B 型粘度計のロータ 一表面で離水した水による上滑りが起こり粘度測定できなかった。PEG 混合液 では、PEG9 混合液で調製 3 日後に離水が見られ、特に SA 分散液で顕著であり 粘度測定ができなかった^{脚注}。PEG9 より高分子量の PEG との混合液では調製 45 日後も離水が見られず、いずれも流動性のあるゾル状態であった。Fig.10 にクエ ン酸緩衝液を加えた LA2tw%分散液および PEG 混合液の調製 1 日後の外観を示 す。LA 単独分散液では流動性のない不透明なゲルで、PEG 混合液では青白い透 明なゾル状態であることがわかる。Fig.11 にクエン酸緩衝液を加えた SA 分散液 と PEG90 を加えた分散液の調整 1 日後の外観と、これらを直行させた偏光板の 間にはさんだ状態での外観を示す。スメクタイトの単純分散液と比較して PEG90

混合液の複屈折性が弱いことがわかる。このことより、中性付近でのスメクタイ ト粒子の配向性が PEG 添加により弱まったこと、その効果が PEG の分子量が高 い方が顕著であることが示された。

2-3-4. pH 調整したスメクタイト分散液のエージング挙動に及ぼす PEG 添加の 影響 ②Mg 溶出量

2-3 に示した方法で各種スメクタイト 1wt%分散液にリン酸緩衝液を加えて pH4~9に調製し、25℃に保存して3日後と2週間後に水中に溶出した金属イオ ンを ICP により測定した結果を Table 4 に示す。低 pH において Mg イオンが多 く検出されているサンプルでも Fe および Al イオンが検出されていないことか ら、遠心分離と濾過とでほぼ全てのスメクタイト粒子が取り除かれていることが 示されている。組成中に MgO の含有量が少ない KU 分散液からの Mg 溶出量は 少なかったが、SA および LA 分散液からは Mg イオンが多く溶出しており、低 pH サンプルほど溶出する Mg イオンの量が多かった。特に、pH3 に調整し、50℃ に保存した KU 分散液から溶出した Mg 量は、KU 粒子全組成の約 10%に相当し た。pH3、6、8 に調製し、0℃および 50℃に保存したサンプルの pH 変化を Fig.12 に示した。Mg イオン溶出量の少なかった KU 分散液はいずれのサンプルでも pH 変化が少なかったのに対し、溶出量の多かった SA および LA 分散液は、pH8 以 上では変化が少なかったものの、pH3、6 調製液は、pH を測定した調製1時間後 には pH 6 程度まで上昇し、その後はほとんど変化がなかった。温度による差も ほとんど見られなかった。

PEG を添加したスメクタイト分散液 Mg イオンの溶出量変化をエリオクロム ブラック T を用いた方法で測定した結果、PEG 添加により Mg イオン溶出量が 若干低減されていることが示された(Fig.13)。高分子 PEG 吸着相により、スメ クタイト粒子近傍のイオン濃度が高まり、溶出が抑制されているのではないかと 考えている。塩の溶出が抑制された結果、スメクタイト粒子どうしの凝集が弱ま り、離水も抑制されているのではないかと考えているが、pH 変化の抑制には PEG 添加は効果がなかった(Fig.14)。

2-3-5. レオオプティックス測定法によるスメクタイト-PEG 複合ゲルの離水 抑制効果の解析
緩衝液を加えたスメクタイト分散液を、Fig.1 に示した装置を用いてレオオプ ティック測定を行い、PEG9 と PEG90 が分散液の流動性に与える影響について比 較した。LAX は、端面 OH の一部がフッ素に置き換わった構造をもち、同じ濃度 の LA 分散液と比較すると低粘度である。PEG9 を含む SA や LA 分散液(2wt%) を中性付近に調整すると、流動性のないゲルを形成し、いったんシェアを加える と構造が破壊され元に戻らないため、レオメーターで測定することができない。 一方 LAX 分散液は、単独分散液(2wt%)ではゲルになるが、PEG9 以上の分子 量の PEG を添加すると流動性のある高粘度分散液となる。スメクタイト分散液 への PEG9 と PEG90 の添加効果を比較するため、これらの流動性および複屈折 性をレオオプティック測定により解析した。サンプルの処方を Table 5 に示す。 pH 調製剤としてはグリシルグリシンを用いた。

時間とともに徐々に与えるせん断応力 τを大きくしながら^{脚注 2} サンプルの粘 度と複屈折性とを同時に測定した結果を Fig.15 に示す。 グラフの横軸は時間、縦 軸にサンプルのせん断粘度(Pa・s)と複屈折性(Δn、無次元)を表している。 また, Fig.15 では印加したせん断応力の時間による変化も重ねて表示した. 複屈 折性の発現はスメクタイト粒子の配向を示しており、値が低いほど(グラフで下 方へいくほど)LAX 粒子の配向状態が高くなることを示す。Fig.15(a)に示す PEG9 を添加した LAX 分散液は約 50 秒で急激な粘度低下(=ゲルの崩壊)が発生す る。ゲルの崩壊前に複屈折がほとんど変化ないことから粒子のネットワークは剛 直でほとんど変形しないことがわかる。ゲルの崩壊は滑り面の発生からはじまり, そこから大きなゲルの塊になり、流動が進むことで微細化して低粘度となる。複 屈折はゲルが塊として転がるような流動を示す際には比較的長周期で大きく変 動し、微細化とともにランダムな変動となる。流動停止(105秒)後も複屈折は 流動中と同じ値を維持し、崩壊した構造が急には回復しないことがわかる。一方、 離水抑制効果の高かった PEG90 を添加した LAX 分散液では、Fig.15(b)に示すよ うに粘度低下が70秒で発生するのに対して40秒ころから複屈折性が上昇する。 これは、せん断応力の増加に対して LAX 粒子のネットワークが壊れることなく 弾性的に変形し、これに伴って粒子が配向することを示している。70 秒を超え ると粘度は減少するが PEG9 を添加したもののような急激な低下は生じない. こ

32

のとき複屈折性は長周期で大きく上下にふれており、LAX はゲルの大きな塊と して運動する。流動が進むと粘度が低下し,同時に複屈折性も徐々に増加する. すなわち,PEG が流動配向し吸着している粒子の配向が促進されたと考えられ る。せん断応力を停止する(105秒)と複屈折は急激にゼロに近づく。流動によ り配向していた PEG が緩和して粒子をランダムな状態に急回復させたことを示 す。これらのことから、高分子 PEG が Fig.16 に示すように粒子同士を架橋し、 柔らかいネットワークを形成することで、シェアによる急激な構造破壊を緩和し、 また構造を瞬時に回復する役割を果たすことで、結果として離水を抑制している と考えられた。

2-3-6. 吸着量とスケールに関する考察

LA への高分子 PEG の吸着量について、分子量の影響を調べた文献¹³による と、PEG 分子量が高いほど吸着量は多く、特に分子量数万以下では分子量依存が 大きく、逆に分子量 100 万以上では大きな変化はない。また PEG 分子の吸着層 は、LA 粒子表面では 1.5nm 程度で PEG 分子量には依存せず、エッジ部分の吸着 層は平面よりもやや厚く 2.5nm~4nm で PEG 分子量が高くなるにつれて厚くな っていく。 LA と LAX への PEG 吸着挙動が同じであると仮定し、レオオプテ ィック測定における PEG90 と LAX 粒子の量や分子と粒子のスケールを具体的 に考えるために、PEG の LAX 表面への吸着面積と分散液中の LAX 粒子占有体 積について計算を行った。

先に述べた文献によると、本研究で用いた PEG90 の吸着量は 0.6 mg/cm²であ る。LAX 粒子を縦・横・厚み=30nm×30nm×1nm の直方体とみなして計算する と、5wt%添加した PEG90 のうちの 20~25%程度しか粒子表面には吸着してい ないことになる。またその際、PEG4000 分子 1 個が LAX 表面に占める吸着面積 は 4nm 四方である (Fig.16 (a))。

LAX 粒子の表面に吸着した PEG の厚みを考慮すると、粒子は Fig.16(b)のよう に、縦・横・厚み=35nm×35nm×4nm の体積を持つ。粒子は分散液中に 2wt%含 まれるが、LAX の比重を LA と同じ 2.53g/cm³(メーカー情報)とすると、PEG90 が吸着した LAX 粒子は、一辺が 48nm の水の立方体の中に 1 つ入る程度に存在 する (Fig.16 (c))。シェアをかけるとすぐに隣の粒子と触れ合う程度には近接し ており、さらに多量の余剰 PEG90 が粒子の周囲を取り囲んでいる様子がイメージできる (Fig.16 (d))。

2-4. 結言

分子量 4000 以上の高分子 PEG はスメクタイト粒子に吸着し、スメクタイト粒 子の再配列に伴うエージング現象を遅らせた。低 pH 環境下ではスメクタイト粒 子からのイオン溶出が認められるが、高分子 PEG 添加により溶出が若干抑制さ れた。高分子 PEG は中性付近でのスメクタイト粒子どうしの密なスタックを弱 め、ゆるく架橋して粘土鉱物粒子の構造変化を緩和し、離水を抑制していると考 えられた。これらの結果から、増粘作用のない PEG と併用することで、スメク タイト粒子の心地よい感触を損なうことなく、水系基剤におけるゲル化剤として スメクタイトを利用できる可能性が示唆された。

脚注 1. SA と LA の濃度が異なるサンプルの結果を示したのは、2wt%分散液は PEG を加えても離水するサンプルが多く、粘度測定が行えなかったためである。 脚注 2. 測定時に与えるせん断応力は、PEG9 との混合分散液は実験開始ととも に 20Pa を印加し、それから徐々に増加して 100 秒間で 30Pa になるようにした。 PEG90 との混合分散液ではゼロから 10Pa まで 100 秒間で増加させているため、 時間あたりのせん断応力の増加率は両者とも同じである. PEG9 との混合分散液 は降伏応力が高いためにスタートの応力を 20Pa から始めた。なお Fig.15 におい て流動は 5 秒からスタートしている。

2-5. 参考文献

- 1) A. P. Cuillo, D. B. Braun, Cosmetics and Toiletries, (1991) 106, 89-95.
- 2) H. Van Olphen, (1977) An Introduction to Clay Colloid Chemistry, Wiley.
- 3) H. M. Lindsay, P. M. Chaikin, (1982) J. Chem. Phys., 76-7, 3774-3781.
- 4) B. Ruzicka, E. Zaccarelli, (2011) Soft Matter, 7, 1268-1286.
- 5) 黒田芳弘·中石克也, (1996) 粘土科学、第 36 巻, 1-8.
- 6) J. M. Sanders, J. W. Goodewin, R. M. Richardson, B. Vincent, (1999) J. Phys. Chem., 103, 9211-9218.

- 7) M. Munir, J. Karube, (1998) Nogyodoboku-Ronbunsyu, 195, 93-99.
- 8) S. Garcia-G., M. Jonsson, S. Wold, (2006) J Colloid Int. Sci., 298, 694-705.
- 9) A. Shahin. A, M Joshi Yogeshi, (2012) Langmuir, 28-44, 15674-15686.
- 10) Y. Yamada, (1982) Nendo Kagaku, 22, 68-74.
- 11) S. Rossi, P. F. Luckham, T. F. Tadros, (2003) Colloids and Surfaces. A, 215, 1-10.
- 12) R. D. Lisi, M. Gradzielski, G. Lazzara, S. Milioto, S. Prevost, (2008) J. Phys. Chem.
 B., <u>112</u>, 9328-9336.
- 13) A. Nelson, T. Cosgrove, (2004) Langmuir, 20, 2298-2304.
- 14) A. Nelson, T. Cosgrove, (2004) Langmuir, 20, 10382-10388.
- 15) E. Loizou, P. Butler, L. Porcar, E. Kesselman, Y. Talmon, A. Dundigalla, G. Schmidt, (2005) Macromolecules, <u>38</u>, 2047-2049.
- 16) Y. Miwa, Macromolecule, (2008), <u>41</u>, 4701-4708.
- 17) D. W. Thompson, J. T. Butterworth, (1991) J. Colloid Int. Sci., <u>151</u>, 236-243.
- 18) 中井信、吉永長則、(1987)、粘土科学、第 27 巻、153-161.
- 19) A. I. Vogel, "Quantitative Inorganic Analysis," 3rd Ed. Longas, Green New York, 1966.
- 20) G. Fuller, Optical Rheometry of Complex Fluids; Oxford University Press: New York, 1995.
- 21) T. Takahashi, G. Fuller, (1996) Rheol. Acta <u>35</u>, 297-302.
- 22) J. L. Michot, I. Bihannic, C. Porsch, S. Maddi, C. Baravian, J. Mougel, P. Levitz, (2004) Langmuir, <u>20</u>, 10829-10837.

Fig.1 Rheo-Optical analyzer system

Scheme 1

Table 1 Characte	eristic value of clay					
Product name	KunipiaG	SmectonSA	LaponiteXLG	Laponite XL21		
Abbreviation	KU	SA	LA	LAX		
Company	Kunimine.Ind	Kunimine.Ind	BYK Additives & Instrumen			
Group	Natural	Synthesized	Synthetic	Synthetic		
Oloup	montmorillonite	saponite	layerd silicate	layerd silicate		
SiO ₂	61.30%	52.7	59.5	62.5		
Al ₂ O ₃	21.9	5.1	<0.1	<0.1		
Fe ₂ O ₃	2.2	<0.1	<0.1	<0.1		
MgO	3.4	29.1	27.5	27.1		
Na ₂ O	4.1	4.0	2.8	2.3		
F				3.0		
CEC	11/1 3	71	55	107		
(meq/100g)	114.3	/ 1	55	107		
Diameter (nm)	200 ~ 300	50 ~ 100	20~30	40~60		

Table 2 Molecular weight of PEGs						
Material name	Mw					
PEG9	400					
PEG23	1,000					
PEG90	4,000					
PEG250	11,000					
PEG460	20,000					

Fig.2 Viscosity change of LA 2wt% dispersion prepared by different procedure (shown in schem1), O; A, \Box ; B, filled points; samples stored at room temperature, open points; stored at 50 degree

Fig.3 Birefringence of SA 2wt% dispersion Between crossed polarizer, A; 0day, B; 6days, C; 14days after preparation

- A 50°C

- B 50°C

Fig.4 Viscosity change of LA 2wt%+PEG 9 5wt% dispersion prepared by different procedure (shown in scheme1): O; A, \Box ; B, open points; samples stored at room temperature, filled points; samples stored at 50 degree. Samples in dotted area have birefringence.

Fig.5 Viscosity change of LA 2wt%+PEG 90 5wt% dispersion prepared by different procedure (shown in scheme1): O; A, \Box ; B, open points; samples stored at room temperature, filled points; samples stored at 50 degree. Samples in dotted area have birefringence.

Fig.6 Amplitude Sweep of LA 2wt% and LA 2wt%+PEG 5wt% dispersion (prepared by procedure A, measured 40 days after preparation, stored at room temperature)

Fig.7 Amplitude Sweep of SA 2wt% and SA 2wt%+PEG90 5wt% dispersion (prepared by procedure A, measured 40 days after preparation, stored at room temperature)

Fig.8 Viscosity change of LA 1wt%+PEG 4wt% dispersion including 0.03wt% of citric acid and 0.07wt% of sodium citrate.

Fig.9 Viscosity change of SA 2wt%+PEG 5wt% dispersion including 0.03wt% of citric acid and 0.07wt% of sodium citrate.

Table 3 pH change of clay-PEG mixtures							
Clay	S	A	LA				
time	1d	1M	1d	1M			
Control	5.98	8.63	6.02	9.4			
PEG 9	5.76	8.18	5.88	7.78			
PEG 23	5.9	7.94	6.12	8.05			
PEG 90	6.08	8.65	6.04	8.12			
PEG 460	5.96	8.44	6.1	8.11			

Fig.10 Appearances of the LA dispersion; LA 2wt%, PEG 5wt%, Citric acid 0 .03wt%, Sodium Citrate 0.07wt% (a) LA (b) LA + PEG9 (c) LA + PEG90

Fig.11 Appearances of the SA dispersion; SA 2wt%, PEG 5wt%, Citric acid 0 .03wt%, Sodium Citrate 0.07wt%; Appearances of (a) SA (b) SA + PE90, between crossed polarizer; (c) SA +buffer, (d) SA + PE90 +buffer, phase separation occurred in sample a.

with citric acid buffer of different pH (ppm)										
						1		T		
Clay pH	nH	Mg			Al			ь		
	PII	3 days	2 weeks		3 days	2 weeks		3 days	2 weeks	
	4	3.5	5.7		0.1	0.2		0.0	0.0	
	6	3.8	5.4		0.1	0.1		0.0	0.0	
KU	7	4.6	4.5		0.1	0.1		0.0	0.0	
	8	3.3	3.5		0.0	0.0		0.0	0.0	
	9	2.8	2.3		0.0	0.0		0.0	0.0	
	4	89	194		0.1	0.0		0.0	0.0	
	6	103	159		0.1	0.1		0.0	0.0	
SA	7	53	83		0.1	0.0		0.0	0.0	
	8	14.4	21.1		0.0	0.0		0.0	0.0	
	9	3.9	9.0		0.0	0.0		0.0	0.0	
	4	87	249		0.0	0.0		0.0	0.0	
	6	105	223		0.0	0.0		0.0	0.0	
LA	7	41	81		0.1	0.1		0.0	0.0	
	8	3.0	7.6		0.0	0.0		0.0	0.0	
	9	0.3	1.6		0.0	0.0		0.0	0.0	

Table 4 Amound of cationic ion dissolution from 2wt% clay dispersions

Fig.12 pH alteration of (a) KU + buffer (b) SA + buffer (c) LA +buffer dispersions at 0 and 50 degree. All samples contains 1wt% clay.

Fig.13 Dissolution of Mg ion from LA-PEG composites

Fig.14 pH alteration of LA-PEG dispersion (formulation is the same as Fig.13)

Fig.15 Rheo-Optic measurement flow chart; (a) LAX+PEG9+buffer (b) LAX+PEG90+buffer

Fig.16 Schematic image of adsorbed PEG and LAX particle in water (a) single molecule of PEG4000 adsorbed on LAX (b) Adsorbed layer of PEG90 on LAX (c) single LAX-PEG90 particle in water (d) image of particles and excess PEG90 in water

Table5 Formulation for Rheo-optic measurement							
	Α	B					
LAX	1.6	1.6					
PEG 9	5	-					
PEG 90	-	5					
Glycylglycine	0.48	0.48					
Preservative	0.3	0.3					
Ion exchanged water	92.62	92.62					

Fig.17 Schematic image of (a) clay and (b) clay-PEG network in water

3 章 塩およびカチオン性ポリマーを含むスメクタイト分散液の粘度変化と乳 化能に関する研究

3-1. 緒言

乳化は日常生活の様々な場面、例えば日用品や化粧品、医薬品、食品、医薬品 において利用されている。エマルションとは、混じり合わない二種の液体におい て、片方の液体がもう片方の液体中に細かく分散された状態を示し、通常両方の 液体(大抵の場合は油と水)に親和性のある、界面活性剤を用いて調製される。 しかしながら、環境面(生分解性)や人体への安全面において、界面活性剤に対 する悪いイメージをもつ人が少なからず存在し、そのため界面活性剤フリー製剤 の開発がさかんに行われている。その一つの手段として、ピッカリングエマルシ ョン技術がある。

ピッカリングエマルション(Pickering Emulsion)とは、固体粒子が油水などの 液-液、あるいは気-液界面に吸着し、安定化されたエマルションのことをとい う。名前の由来である Pickering が、親水性の固体粒子が油水界面に吸着し、あ たかも界面活性剤のようにエマルションを安定化する現象を 1907 年に報告¹し てから(実際に固体粒子の乳化安定化、及び気泡安定化を初めて報告したのは Ramsden である²)100 年以上が経過するが、ナノ粒子に関する研究ブームによ り、精力的に研究されるようになったのは 1990 年以降のことである。

乳化剤としては様々な粒子を用いた研究があり、金属酸化物や粘土鉱物、カー ボンブラックなどはごく初期の研究から登場していた¹⁻³。無機粒子の他にも、 ポリスチレン^{4,5}やポリ(N-ポリイソプロピルアクリルアミド)(PNIPAM)のミ クロゲルを用いた刺激応答性のエマルション⁶などが報告されている。

一方、スメクタイトを用いた乳化に焦点をあててみると、スメクタイト単独 で安定な乳化物を調製した報告⁷は非常に少なく、スメクタイトと界面活性剤と の共存系⁸⁻¹⁰ や、ホストーゲストの電荷が互いに逆である層状複水化合物 (Layered double hydroxide, LDH) とスメクタイトとの共存系¹¹⁾、またタンパク 質^{12,13} あるいは疎水性物質¹⁴ との複合体を形成させて安定な乳化物が調製され るという報告がある。また、塩の添加により塩を全く含まないときと比較して安 定なエマルションが調製されるという報告もある¹⁴。

固体粒子により安定化された乳化物については、これまでの研究¹⁵⁻¹⁹から1) 粉末が親疎水性を有することが、乳化の安定化に非常に重要であること、2)界 面活性剤系と同様に、よく濡れる溶媒相が通常外相となるが、どちらが外相にな るかは相比によっても変わりえること、3)乳化粒子径は粉末径よりも小さくな らないこと、4)乳化の安定化には粉末同士の相互作用が重要で、粉末がやや凝 集した状態のほうが安定なこと、がわかっている。スメクタイト単独で安定な乳 化物を調製するのが困難であるのは、親水性が高く水への分散性が高いためであ る。従って、上記の例のように、疎水性物質をスメクタイト表面に吸着させたり、 電荷遮蔽により脱水和したりすることで、スメクタイトを水中である程度凝集さ せることが乳化物の調製には有用である。

通常 O/W 型(oil in water type:水中油型) 化粧品は、乳化剤として界面活性剤、 増粘剤として水溶性高分子を配合する。しかし、界面活性剤のべたつきや、水溶 性高分子のぬめりなどは、化粧品の塗布時の感触を損ない、消費者に嫌われるこ ともしばしばある。スメクタイトは板状の粒子であるため、肌に塗布し乾燥させ るとさらさらとした感触を有し、さらにスメクタイトゲルは、汎用の水溶性増粘 剤のようなぬめりがない。スメクタイトを乳化剤および増粘剤として用いて安定 な乳化物を調製できれば、従来にない感触の化粧品が得られると考えられる。

本研究では、最も簡単にスメクタイトの乳化能を向上させることができる塩 を配合し、スメクタイトによるピッカリングエマルションの調製を試みた。その 中で、まず種々のスメクタイトを用い、塩濃度によるスメクタイトの乳化性の変 化を調べた結果を示す。次に、塩を多量に配合した系においてもスメクタイトが 増粘機能を失わず、かつ乳化能を有するように、種々のカチオン性ポリマーとの 複合体の増粘機能と乳化能について調べた結果について報告する。

3-2. 実験方法

3-2-1. 原料

スメクタイトとしては、天然のモンモリロナイトであるクニピアF(クニミネ工 業、以下 KU と記載)、合成サポナイトであるスメクトン SA(クニミネ工業、以 下 SA と記載)、合成ヘクトライトである XLG(BYK Additives & Instruments、以 下 LA と記載)を用いた。それぞれの組成と特性値は2章の Table1 に示した。ま た、用いたカチオン性ポリマーを Table1 に示した。カチオン化度(Nc)は、ポ リマー構造の中で4級アミン基を有する構成分子のモル分率(%)を示す。これ らの原料については化粧品原料としての市販品を、洗浄、精製などの工程を経ず、 そのまま用いた。添加塩としては、塩化ナトリウムおよび塩化マグネシウム(い ずれも試薬一級、和光純薬)を用いた。

3-2-2. サンプルの調製方法

まず、680gのイオン交換水を低速撹拌しながら20gのスメクタイトを徐々に 添加、全量添加したのちにホモミキサー(TKホモミキサー、特殊機化)を用い て回転数 6000rpm で10分間撹拌し、スメクタイトの分散液を調製した。このス メクタイト分散液を全てのサンプルに用いた。ポリマーを含まないスメクタイト 分散液は、上記スメクタイト分散液と 10wt%の塩水溶液、およびイオン交換水を 所定の濃度となるように 50ml スクリュー管に加え、ホモミキサー(ポリトロン、 KINEMATICA)を用い、回転数 10000rpm で 1 分間撹拌して調製した。スメクタ イトとポリマーとの混合液は、調製して 1 週間以上経過した上記スメクタイト分 散液と、調製して 1 昼夜静置したポリマー20wt%水溶液、およびイオン交換水を 所定の濃度となるよう 50ml スクリュー管内で均一になるまでポリトロンで混合 して調製した。塩を含むスメクタイトーポリマー液は、上記の方法で予め混合し たスメクタイトーポリマー液に 20wt%の塩水溶液を加えて、50ml スクリュー管 内で均一になるまでポリトロンで撹拌して調製した。エマルションは、それぞれ を所定の濃度となるよう混合し、50ml スクリュー管内でポリトロンを用い、回 転数 10000rpm で 1 分間撹拌して調製した。

3-2-3. 粘度测定方法

ゲルおよび乳化物の粘度測定は Brookfield 型粘度計(ビスメトロン、芝浦シス テム)を用い、ローターNo.3、回転数 12rpm で行い、各温度に保存したサンプル を 25℃にて測定した。カチオン化ポリマー水溶液の粘度は自動マイクロ粘度計 (AMVn、Anton Parr)を用いて測定した。

3-2-4. 顕微鏡観察方法

乳化粒子の光学顕微鏡観察は OLYMPUSBX-60 を用い、スライドガラス上でイオン交換水にて 10 倍程度に希釈して行った。SEM 観察は KEYENCE VE-8800を用い、作動距離約 9mm、荷電圧 1.7K V にて行った。試料は、アルミ製試料台に直接塗布し、室温にて自然乾燥させて観察した。

3-3. 結果および考察

3-3-1. スメクタイト分散液への塩添加と乳化状態

異なる濃度の NaCl を加えたスメクタイト分散液の粘度を、調製1日後に B 型 粘度計を用いて測定した(Fig.1)。スメクタイト分散液は、塩濃度が増加するに つれ、スメクタイト粒子間の電荷反発がなくなり構造形成することで増粘したが、 さらに塩濃度が増加すると粒子同士の凝集により、粘度は急激に減少した。極大 粘度はスメクタイトの種類によって異なり、KU、SA、LA分散液の順、すなわち スメクタイト粒子径が小さいほど極大粘度は高かった。極大粘度を示す濃度にお いて、調製1週間後の KU分散液は流動性を有していたが、SA および LA分散 液はゲル化し、流動性が見られなかった。粘度極大となる塩濃度は、KU分散液 では 0.7wt%、SA分散液では 0.05wt%、LA分散液では 0.1wt%であり、スメクタ イトの粒径や陽イオン交換容量(CEC)とは相関がみられなかった。これらのス メクタイト分散液を SEM の観察台に塗布し、室温にて自然乾燥させて観察した 状態を Fig.2 に示す。NaCl の添加により粒子が凝集しており、特に LA で顕著であった。

NaCl 添加量を変えた LA3wt%分散液の外観と、これらの分散液と等量の流動 パラフィンを加えて(LA; 1.5wt%、流動パラフィン 50wt%)乳化したときの外 観を、それぞれ Fig.3 に示す。 乳化物は全て水中に油滴が分散された O/W 型であ った。水中での塩濃度が 0.01wt%までは LA は分散状態を保っており分散液は透 明であった。これらの分散液に流動パラフィンを加えて調製したエマルションは 乳化直後に乳化粒子が合一、水相と油相とに分離した。塩濃度 0.05wt%の分散液 は半透明であり、粒子径の粗大な乳化物が調製された。塩濃度 0.1wt%では、外 観は塩濃度 0.05wt%の際と大きく変わらず半透明であったが、安定な乳化物が調 製された。塩濃度1wt%および2wt%ではLAは凝集し、相分離を起こしたが、安 定な乳化物が調製された。塩濃度 5wt%以上では LA は沈殿し、粗大な乳化粒子 径をもつ乳化物は調製されたが、油滴が上部に浮上し不均一となるクリーミング が生じた。LA が弱く凝集する塩濃度で良好な乳化物が調製されるという現象は 2価塩(MgCl₂)の添加でも同様であった(Fig.4)。塩を含まない水中では、LA 粒子は水との親和性が高くよく分散され油水界面への吸着がおこりにくいが、塩 添加により凝集し親水性が低下(疎水化)すると油水界面へ吸着しやすくなり安 定な乳化物を調製可能となる。すなわち、流動パラフィンを乳化するのに適した 親疎水性を有した LA 粒子は、ある程度の大きさの凝集体を水中で形成すること を示していると考えられる。

SA、KUにおいても同様に NaCl 濃度を変え、乳化物調製を試みた結果を比較 し、Table 3 に示す(スメクタイト 1.5wt%、流動パラフィン 50wt%)。いずれも塩 添加により乳化性は向上したが、LA を含む系でのみ乳化粒子径が微細な(30 µ m 程度)乳化物が調製され、KU、SA を含む系では、100 µ m 以上の粗大な乳化 粒子しか調製されなかった。LA による乳化物の光学顕微鏡写真を Fig.5 に示す。 乳化粒子径は乳化剤であるスメクタイト凝集体の大きさにある程度依存するた め、平均粒子径が数 µ m 以上のスメクタイトでは、100 µ m よりも小さい乳化粒 子が調製できなかったと考えられる。いずれの乳化物も経時で油浮きなどの現象 は見られず、スメクタイト粒子による強固な界面膜が形成されていると考えられ た。

塩を3wt%以上含む分散液は、スメクタイトが沈殿し分散液は完全に粘度を失い、乳化物は調製できたがクリーミングした。化粧品においては、塩型の薬剤を 多量に配合することもしばしばあるため、塩を3wt%以上配合しても増粘機能を 失わないような基剤の調製をめざし、次にスメクタイトとカチオン性ポリマーと の複合体について検討を行った。

3-3-2. スメクタイトーカチオン性ポリマー複合体による乳化

スメクタイトは表面に強い負電荷を有しているため、カチオン性物質と強く相 互作用する。4級アンモニウム塩型カチオン性界面活性剤をインターカレートさ せた疎水化スメクタイト、すなわち有機変性スメクタイトは、有機溶剤のレオロ ジーコントロール剤として汎用されている²⁰。親水性の粉末表面を界面活性剤等 で部分的に疎水化し、両親媒性を付与することでピッカリングエマルションを調 製するといった報告はこれまでにもあり²¹、有機変性スメクタイトを用いて安定 な W/O型(water in oil type;油中水型)エマルションを調製するという研究もな されている¹⁰。スメクタイトをカチオン性界面活性剤で疎水化すると、水への 分散性が低下するために凝集して沈殿し、スメクタイトの水増粘機能は失われる。 スメクタイトの水増粘機能を大きく損なうことなく疎水化するために、カチオン 性界面活性剤よりも親水性が高く分子量の高いカチオン性ポリマーを加えて、ス メクタイトーポリマー複合体を形成させ、その乳化能と増粘挙動について調べた。

まず、各種スメクタイトの3wt%分散液にカチオン化セルロース(CC-A、Table2) を 0.01~0.5wt%まで加えて状態を観察したところ、加えるカチオン化セルロー ス量が増えるに従い分散液の外観は白く濁り、両者が(静電的相互作用により) 凝集していることが示された。カチオン化セルロース濃度が高くなるに従い粘度 は減少したが、0.5wt%までの添加量では、スメクタイトの増粘機能が完全に失わ れることがなかった。このことから、CC-Aは、スメクタイトの増粘機能を大き く減ずることなく、スメクタイトを凝集、疎水化させる効果があることが示され た。

次に SA 分散液に NaCl を 3wt%加えて比較した(Fig.6)。これらの粘度を B 型 粘度計により測定した結果を Fig.7 に示す。比較のため、CC-A 単独水溶液につ いても同じグラフ上に示した。NaCl を含有しない SA-CC-A0.01wt%複合体の水 分散液は、弾性が強く測定時に治具がスリップしたため測定できなかった。3wt% NaCl を含有する分散液は、NaCl を含まない分散液と比較して、いずれの CC-A 濃度でも粘度低下を示したが、単独のスメタイトゲルに NaCl を添加した際のよ うな顕著な凝集および沈殿を生じることなく、増粘状態を保っていた。すなわち、 SA-CC-A 複合体は、耐塩性の増粘剤として機能することが明らかになった。 NaCl を添加した SA-CC-A 複合体水分散液の粘度は、CC-A 濃度が 0.2wt%で極 大値を示した。SA 分散液は 3wt%の NaCl を添加すると凝集、沈殿をおこし水増 粘効果はなくなること、また CC-A 単独水溶液よりも SA-CC-A 複合体水分散物 が顕著に高粘度であることから、SA と CC-A の相互作用による増粘と考えられ る。CC-A が SA に吸着し、粒子同士の架橋剤として働くことによる増粘と、CC-A が SA 粒子同士の静電的反発力を弱め凝集することによる減粘が同時に進行し ているが、CC-A 濃度が低い場合には前者の影響が、高い場合には後者の影響が 大きく表れていると考えられた。

次に、各種スメクタイトと CC-A 複合体の乳化能について調べた。スメクタイト と たみ率良く界面に吸着させるためには乳化物の界面でスメクタイトと CC-A 複合体が形成し、吸着することが重要と考え、CC-A を含む水中に、各種ス メクタイトを分散した流動パラフィンを加えて撹拌し、乳化物を調製した。流動 パラフィンは乳化物全体の 15wt%、CC-A は全量の 0.005~3wt%となるようサン プル調製した。Fig.8 に、スメクタイト-CC-A 複合体による乳化物の粘度と乳化 粒子径を示す。

スメクタイト種により CC-A の添加効果は異なった。KU との複合体は、CC-A 濃度が高まるほど乳化粒子は粗大になり、油浮きが顕著となり、CC-A 濃度が 0.1wt%では均一な乳化物が得られなかった。これは、KU 粒子が CC-A 添加によ り凝集することで、KU-CC-A 複合体の粒子径が増大し、細かい乳化粒子を形成 できなかったためと考えられる(ピッカリングエマルションにおいて、乳化粒子 径は乳化剤である粒子の 10 倍以上であることが実験的にわかっている)。SA と の複合体は、CC-A 濃度が 0.01wt%以上では乳化粒子径に変化はなかった。LA は、 微量の CC-A 添加(0.005wt%) で細かい乳化粒子の乳化物を調製可能であり、 CC-A の添加濃度により乳化粒子径にほとんど変化がなかった。

乳化物の粘度に関しては、KUでは、ある CC-A の添加量で極大値を持った。 これは、Fig.7 に示した SA-CC-A-NaCl 複合体での結果と同様に、ポリマーと の相互作用による増粘と凝集とが同時進行しているためと考えられる。LA につ いては、CC-A 添加量 0.1wt%未満では LA-CC-A 複合体水分散液がゲル状態であ り、B型粘度計の治具表面での離水による滑りで測定できなかったが、SA、KU との複合体水分散物は、いずれの CC-A 濃度においてもゲル化せず、経時でもゲ ル化が見られなかった。SA3wt%単独水分散液は調製1日後にゲル化するが、カ チオン性ポリマーが SA 粒子を架橋することで、より高分子に近いレオロジー挙 動を示していると考えられる。いずれのスメクタイトでも、CC-A 添加濃度が 0.05wt%を超えると急激に減粘する傾向を示した。

3-3-3. カチオン性ポリマー種の検討

次に、スメクタイトとして SA を用い、電荷密度や分子量の異なるカチオン性ポ リマーを加えて複合体を形成させ、その挙動を調べた。SA3wt%および、Table2 に ある種々カチオン性ポリマー0.1wt%の複合体の水分散液の粘度(V)を Fig.9 に 示す。複合体水分散液の粘度は、カチオン性ポリマーの分子量が高いほど高い傾 向にあり、特に分子量 100 万前後から急激に上昇した。参考までに、分散液中の SA 粒子が占有する体積について計算を行った(SA 比重 = 2.5kg/m⁻³)²²。SA 粒子 を縦・横・厚み=75nm×75nm×1nm(2章 Table1より)の直方体とみなして計算 すると、3wt%分散液中においては一辺 75nmの立方体の中に1個の SA 粒子が存 在することになる。用いたカチオン性ポリマーの中で、最も低分子量であるカチ オン化 HEC(CH、Mw=5万)は、DLS を用いて測定した結果直径 70nm であっ たことから、ポリマーが SA 粒子を架橋できる程度には十分近接していることが わかる。

カチオン性ポリマーのカチオン化度(Nc)が高いほどスメクタイトの凝集が促進し粘度が低くなるとの予想に反し、Ncの高い DD-A、DD-B との複合体分散液と、Ncの低い CH との複合体水分散液の粘度はほぼ同等で、複合体分散液の粘度は Nc とは相関がなかった(Fig.10)。

次に、これらの複合体分散液に NaCl を 3wt%加えた際の粘度(Vn)を測定し、 NaCl を添加しない分散液との比較を行った。結果を Fig.11 に示す。NaCl を含ま ない複合体分散液の粘度 V と NaCl を含む複合体分散液の粘度 Vn の比(Vn/V)、 すなわち塩による減粘度合は、同じ構造を有するポリマー同士ではほぼ同等であ った(CC 系:約0.5、DD 系:約0.3)が、カチオン性ポリマーの分子量、カチオ ン化度(Nc)のいずれとも相関がなかった(Fig.12)。

SA とポリマーの電荷密度について計算すると、カチオン化度が低い CH は、 SA 粒子表面の負電荷に対し 1/1000 程度しか正電荷を有していないが、カチオン 化度の高い DD-A は 1/3 程度を有している。多糖を主体とする高分子は硬くフレ キシビリティーが低いが、DADMAC を主体とする高分子の分子鎖は柔らかくフ レキシビリティーが高い。これらのことから、DD 系と CC 系とは、SA 粒子の負 電荷と相互作用している正電荷の数が大きく異なると考えられ、両者の挙動に大 きな違いが出ると予想されたが、結果は予想に反していた。この理由については 不明であり、今後さらなる検討が必要である。

次に、SA 分散液に種々カチオン性ポリマー0.1wt%および NaCl3wt%を加えて 調製した複合体分散液に、流動パラフィン 30wt%を加えて乳化物を調製した。乳 化物の粘度と乳化粒子径を Fig.13 に示す。NaCl および SA を含む分散液で調製 した乳化物の乳化粒子径は 100 µ m 以下にはならなかったが (Table 3)、カチオ ン性ポリマーを添加することで、いずれも 30~50 µ m の微細な乳化粒子を調製 することができた。カチオン性ポリマーには、分子内に疎水基を有するものも多 いため、スメクタイト - カチオン性ポリマー複合体の疎水性がスメクタイト単独 よりも向上し、油水界面への吸着が容易になったためと考えている。乳化粒子径 はカチオン性ポリマー種により大きな変化がなく、コンプレックスの親疎水性や 粒子径などの性質に、大きな差がないことが示された。このことは、SA-カチオ ン性ポリマーコンプレックス中のスメクタイト粒子同士の距離がカチオン性ポ リマーの電荷密度や分子量に大きく影響されないことを示唆していると考えら れる。いずれの乳化物も経時で乳化粒子の合一は見られず安定であり、スメクタ イトーカチオン性ポリマー複合体が、Fig.14に示すように耐塩性の増粘剤と乳化 剤として機能することが示された。

3-4. 結言

・スメクタイト分散液に、スメクタイト粒子が凝集・沈殿する程度の濃度まで塩
 を添加すると、安定な乳化物が調製できることが分かった。

・スメクタイトーカチオン化セルロール複合体は NaCl を 3wt%含む水中でも増 粘効果があり(耐塩性増粘効果)、かつ乳化剤として機能することが分かった。

・スメクタイトーカチオン化セルロール複合体はスメクタイト単独分散液と比較して、塩の存在下でスメクタイトの凝集を防ぎ、結果として微細な乳化粒子径のエマルションを調製できた。

3-5. 参考文献

1) S. U. Pickering, (1907) J. Chem. Soc., <u>91</u>, 2001-2021.

2) W. Ramsden, (1904) Proc. Roy. Soc. 72, 156-164.

3) T. R. Briggs,(1921) Ind. Eng. Chem., 13, 1008-1010

4) J. I. Amaly, S. P. Armes, B. P. Binks, J. A. Rodrigues, G-F. Unali, (2003) Chem. Commun., 1826-1827

5) J. I. Amaly, G-F. Unali, Y. Li, Granger-Bevan, S. P. Armes, B. P. Binks, J. A. Rodrigues, C. P. Whitby, (2004) Langmuir <u>20</u>, 4345-4354.

6) B. Brugger, A. Rosen Brian, W. Richtering, (2008) Langmuir, <u>24</u>, 12202-12208.

7) N. P. Ashby, B. P. Binks, (2000) Phys. Chem. Chem. Phys., 2, 5640-5646.

8) A. Tsujita, S. Takemoto, K. Mori, T. Yoneya, Y. Otani, (1983) J. Colloid Int. Sci., <u>95</u>, 551-560.

9) G. Lagaly, M. Reese, S. Abend, (1999) Appl. Clay Sci., <u>14</u>, 273-276.

10) 山口道廣、熊野可丸、戸辺信治、 (1991) 粘土科学、第 40 巻、491-496

11) S. Abend, G. Lagaly, (2001) Clay Miner., <u>36</u>, 557-570.

12) M. Reger, T. Sekine, H. Hoffmann, (2012) Colloids and Surfaces A, 25-32.

13) M. Reger, T. Sekine, H. Hoffmann, (2011) Colloid Polym. Sci., 631-640.

14) N. Yan, J. H. Masliyah, (1996) J. Colloid Int. Sci., <u>181</u>, 20-27.

15) V. B. Menon, D. T. Wasan, (1988) Separation Science and technology, 23, 2131-

2142.

16) V. B. Menon, D. T. Wasen, (1988) Colloid and Surfaces, 29, 7-27.

17) H. Hassander, B. Jhoansson, B. Tornell, (1989) Colloids and Surfaces, 40, 93-105

18) S. Levine, B. D. Bowen, S. Partridge, (1989) J., Colloids and Surfaces, <u>38</u>, 325-343.

19) R. Aveyard, B. P. Binks, J. H. Clint, (2003) Advances in Colloid and Interface Science, <u>100-102</u>, 503-546.

20) M. Minase, M. Kondo, M. Onikata, K. Kawamura, (2008) Clays and Clay Minerals, <u>56</u>, 49-65.

21) B. P. Binks, S. O. Lumsdon, (1999) Phys. Chem. Chem. Phys., 1, 3007-3016.

22) 粘土ハンドブック 第2版、日本粘土学会編、技報堂出版株式会社, P.133.

Table 1 Ca	tionic polymers use	d in this investigatio	n			
Abbreviation	Sales name	Supplying company	Chemical structure	Mw (×10 ⁴)	Nc	structure of cationic part
CC-A	PolymerJR-400	The Dow Chemical Company	. Cationic cellulose	45	1~2	Гснал
CC-B	Jelner QH400	Daicel Fine Chem Ltd.		80	1~2	
CC-C	Catinal HC200	Toho Chemical		160	1~2	
CC-D	Catinal HC400	Industry		200	~ 1	L он сн ₃ _
СН	Oligoquat M	Arch Chemicals	Cationic HEC*	3~5	0.3 ~ 0.6	$ \begin{array}{c} $
CG-A	JAGUAR C-14S		Cationic guar gum	280	1~2	
CG-B	JAGUAR C-17	Rhodia		650	1~2	same as CC series
CG-C	JAGUAR EXCEL			200	1~2	
DD-A	Merquart 100			15	100	
DD-B	Merquart 106		DADMAC	1.5	100	
DA	Merquart 550	Lubrizol	DADMAC- AM***	- 160	8	$\begin{bmatrix} I & I \\ H_2C_+, CH_2 \\ N & \alpha^{-1} \end{bmatrix}$
DAA	Merquart PLUS 3300		DADMAC-AM- AA****	150	10	[н₃с́ `сн₃ ध]
			* Hydroxyl ethyl	cellulose	e	
			** Diaryl dimethyl ammonium chloride			ide
			*** Acrylamide			
			**** Acrylic acid	1		

Fig.1 Viscosity of the $(\spadesuit) 2 (\blacksquare) 3 (\blacktriangle) 4$ wt% clay dispersions a; KU, b; SA, c;LA, as a function of NaCl concentrations.

Fig.2 SEM images of the 3wt% clay dispersions with and without NaCl, a-1; KU without NaCl, a-2; with 2wt% NaCl, b-1; SA without NaCl, b-2 with 0.5wt% NaCl, c-1; LA without NaCl, c-2; with 0.5wt% NaCl.

	(a)	(b)	(c)	(d)	(e)	(f)
					water	water
А						
Appearance		homoge	phase	phase separation		
В	water	water				
Appearance	phase separation		emulsion		emulsion	
Droplet size (µm)	-		>100		30~100	

Fig.3 A: LA 3wt% dispersions, B: Emulsions containing 50wt% liquid paraffin and 1.5wt% LA and water.

Concentration of NaCl are (a) 0 (b) 0.01 (c) 0.05 (d) 0.1 (e) 1 (f) 2wt%, respectively. Doted area expresses its appearance; □:transparent, □:translucid, ■turbid

Fig.4 A: LA 3wt% dispersions, B: Emulsions containing 50wt% liquid paraffin and 1.5wt% LA, water, MgCl₂.
Concentration of MgCl₂ are (a) 0.001 (b) 0.01 (c) 0.05 (d) 0.1 (e) 1 wt%, respectively. Doted area expresses its appearance;
□ :slightly translucid, International content of the second se

Table 3 Appearances and the droplets diameter of the clay-NaCl emulsions Emulsions containing 50wt% liquid paraffin and 1.5wt% smectite, water, NaCl, respectively. Doted area expresses its appearance; □transparent, □:translucid, ■turbid

NaCl (wt%)	0	0.01	0.1	0.5	1	2	5
KU							water
Droplet diameter (µm)		500~100	0	~500			phase separation
SA							water
Droplet diameter (µm)		~500		~100			
LA	Qil water	QH water					water
Droplet diameter (µm)	ph sepa	ase ration	~100		30~50		

Fig.5 Microscopic image of the emulsion prepared with 2wt% LA, 0.24wt% NaCl, 50wt% liquid paraffin and water.

Fig.6 SA 3wt% dispersions with various CC-A concentrations, A: without NaCl, B: with 3wt% NaCl. Concentration of CC-A is (a) 0.01, (b) 0.05, (c) 0.1, (d) 0.2, (e) 0.5wt%, respectively.

Concentration of CC-A / wt%

Fig.7 Viscosities of SA 3wt% dispersions as a function of CC-A concentrations, ◆;without NaCl, ■;with 3wt% NaCl, ▲; CC-A aqueous solution, respectively.

Fig.8 A: Viscosities, B: droplet diameter of 3wt% emulsions of clay-CC-A composite as a function of CC-A concentrations, $\bigstar KU$, $\blacksquare SA$, $\blacktriangle LA$.

Mw of added cationic polymer (×10⁴)

Fig.9 Relationships of the viscosities of clay- cationic polymer composite gel and molecular weight of cationic polymer.

Fig.10 Schematic image of cationic polymer and clay particle in water (a) SA 3wt% (b) CC-A

Fig.11 Viscosities of composite gel of SA3wt% and 0.1wt% of various cationic polymers, shaded bar is that of containing 3wt% NaCl.

Fig.12 Relationships of the Vn/V and A; Nc, B; molecular weight of the cationic polymer, respectively.

Fig.13 Black bar; viscosity, grey bar; average droplet diameter, of SA-cationic polymer-NaCl emulsions, respectively.

Fig.14 Schematic illustration of oil droplet stabilized with smectite-cationic polymer complex.

4 章 イソヘキサデカン中での有機変性粘土鉱物のゲル化メカニズムの解明お よび、これを用いた W/O 型乳化製剤の化粧品への応用

4-1. 緒言

W/O 乳化皮膚化粧料は外相が油相であるため、疎水的な肌表面になじみやす く、高いエモリエント(保湿)効果、水や汗で落ちにくいなど、O/W 型製剤には ない特徴がある。しかし、W/O乳化は O/W 乳化に比べて安定化が難しいとされ ている ^{1,2}。これは、一般的に油溶性の界面活性剤が非イオン性であり、親水部 であるポリオキシエチレン鎖の疎油性が低く、界面に吸着しにくいこと 3) 、親 水性のイオン性界面活性剤のように、静電反発による乳化粒子どうしの凝集抑制 が困難なこと、乳化粒子の衝突頻度を下げるための油分の増粘剤バリエーション が少ないこと、などが原因として挙げられる。油分を増粘して油の離漿を防止す るとともに、水滴を不動化し、粒子同士の衝突頻度を低下させるといった研究に おいて、シリコーンポリマー^{4,5}や液晶 6、また有機変性粘土鉱物 ⁷を用いるとい う報告がある。1章で述べたように、有機変性粘土鉱物は水膨潤性のスメクタイ トの層間のイオンを第 4 級アンモニウム塩型カチオン性界面活性剤でカチオン 交換反応をして得られ、流動パラフィンなどの油分中で界面活性剤と複合体を形 成してオイルゲルを構築する⁸⁻¹⁰(Fig.1、2)。板状粉末である有機変性粘土鉱物 を用いたオイルゲルは、塗布時のシェアで瞬時に減粘してのびが軽くなり、また 乾燥後もべたつかないといった利点がある。また、有機変性粘土鉱物とある種の 非イオン性界面活性剤を混合したオイルゲルに水を加えると、安定な乳化剤が得 られることが知られている^{11,12}。これは、有機変性粘土鉱物が油分の増粘剤とし て機能するばかりでなく、油水界面に吸着し「殻」をつくることで、乳化粒子を 安定化するという機能があるためである¹³。これはすなわち、有機変性粘土鉱物 がピッカリングエマルションの乳化剤としても機能していることを示している。 この技術は、スキンケア化粧料などに広く活用されているが¹⁴、開発された 1980 年ごろは、流動パラフィンを主な油分としたオイルゲルを用いたクリーム製剤が 調製されていた。しかしその後の研究で、クリームの油っぽさを低減させること を目的に、デカメチルシクロペンタシロキサンとアルキルエーテル変性シリコー ン系の界面活性剤を用いた製剤が開発されている¹⁵。高粘度のオイルゲルを調製

するためには、有機変性粘土鉱物と非イオン性界面活性剤の比率を適正にするこ とが重要であると報告されている¹⁶。有機変性粘土鉱物の層間は X 線散乱法で 確認することができ、山口らは非イオン性界面活性剤の有機変性粘土鉱物に対す る重量比率、ratio=0.2のときに層間距離は最大値に達し、このとき流動パラフィ ンのオイルゲルが最も高粘度になることを確認している¹²。先に述べたデカメチ ルシクロペンタシロキサンも、アルキルエーテル変性シリコーンと有機変性粘土 鉱物による複合体で増粘することができる。またこの際、山口らの報告同様に、 有機変性粘土鉱物の層間が、界面活性剤の配合によりシリコーン油中で拡張する ことが確認されている。これまで界面活性剤と複合化した油中の粘土鉱物の層間 が拡張するほど、粘度の高いオイルゲルが調製されると考えられていた。しかし ながら山口らの報告の中で、有機変性粘土鉱物の層間が最大値に達した後も界面 活性剤比率を高めると粘度が減少しているが、このメカニズムについては分かっ ていなかった。本研究では、イソヘキサデカンを油分として用い、有機変性粘土 鉱物への界面活性剤の吸着量に着目し、ゲル化のメカニズムにおよぼす界面活性 剤の役割について解析した。これにより、安定な乳化物を調製するための最適な (最小量の)界面活性剤量を求めることが可能となった。さらに、デカメチルシ クロペンタシロキサンよりもなめらかでなじみがよい感触を持つ、イソヘキサデ カンのオイルゲルを用いた W/O 型乳化製剤は、これまでにない軽い感触を有す ることを検証した。

4-2. 実験

4-2-1. 試薬

有機変性粘土鉱物はジステアルジモニウムヘクトライト(Elementis Specialties、 以後 OC(Organoclay)と記載)を用いた。非イオン性界面活性剤はジイソステア リン酸ポリエチレングリコール(8) (日本エマルジョン、以後 P8Iと記載)、 ポリオキシエチレン・メチルポリシロキサン共重合体 (信越化学工業、以後 P10DM と記載)を用いた。油分はイソヘキサデカン(Presperse)、デカメチルシ クロペンタシロキサン(信越化学工業)、流動パラフィン(新日本石油)、その他 の成分は化粧品用原料をそのまま用いた。

4-2-2. オイルゲルの調製

オイルゲルは、25℃において OC に非イオン性界面活性剤と油分を加え、ホモ ミキサー(T.K.ROBOMIX®、プライミクス)にて 4000rpm で 1 分間攪拌して調 製した。オイルゲル組成は、OC と非イオン性界面活性剤を Fig.3 に示した比率 により総量 10%とし、他 90%を油分(イソヘキサデカン、流動パラフィン、ま たはデカメチルシクロペンタシロキサン)にて調製した。

4-2-3. オイルゲルの粘度測定

オイルゲルの粘度は、25℃においてブルックフィールド型粘度計(DIGITAL VISMETRON VDA 2、芝浦セムテック)を用いて測定した。試験対象物の粘度に より下記の通りに粘度計を使い分けた。試験物の粘度が 0 ~2500 (mPa·s)の場合、 ビスメトロンローターNo.2 を使用し、回転数 12rpm、1 分間で測定した。試験物 の粘度が 2500~10000 (mPa·s)の場合、ビスメトロンローターNo.3 を使用し、回 転数 12rpm、1 分間で測定した。試験物の粘度が 10000~100000 (mPa·s)の場合、 ビスメトロンローターNo.4 を使用し、回転数 12rpm、1 分間で測定した。試験物 の粘度が 100000~400000 (mPa·s)の場合、VDH 型を用いてビスメトロンロータ ーNo.7 を使用し、回転数 10rpm、1 分間で測定した。

4-2-4. W/O 型乳化製剤の調製

オイルゲルに水相を添加し、ホモミキサー(T.K. ROBOMIX®、プライミクス) にて 4000rpm で 1 分間攪拌混合することで調製した。組成は Table 1 に示す。

4-2-5. 有機変性粘土鉱物の層間距離の測定

小角 X 線散乱装置 (SAXSess、Anton Paar)を用いて測定を行った。

4-2-6. 有機変性粘土鉱物の分散状態の観察

油中に分散した OC、またはオイルゲルを走査型電子顕微鏡(VE-8800、キー エンス)を用い、加圧電圧を 2.0kV、倍率を 1000 倍として観察を行った。

4-2-7. 油中での有機変性粘土鉱物への界面活性剤の吸着量の測定

オイルゲルを 25℃条件下で、10000rpm で 10 分間遠心分離して OC 層と油分層 に分離させ、油分層に存在する P8I を NMR にて定量し、仕込み量との差を吸着 量とした。 NMR による定量は、外径 5mm の二重 NMR 試料管(WGS-5BL、 WILMAD)を用いて行った。内管には、クロロホルム-d にクロロホルムを 10vol% 溶解させた液を、外管には遠心分離させた油分層を入れ、NMR(ECA-400、JOEL RESONANCE)を用い、油分層中のイソヘキサデカンの信号を DANTE パルスに より消去しながら、測定温度 30℃、観測周波数 6000Hz、45°パルス、パルス繰 り返し時間 12 秒、積算回数 64 回の条件で 1H-NMR の測定を行った。内管のク ロロホルム-d は分解能調整、NMR ロックに利用した。イソヘキサデカンに各種 濃度の P8I を溶解させた標準溶液を調製して 1H-NMR 測定を行い、得られたス ペクトルの内管中のクロロホルムの信号の面積を内部標準とし、外管中の P8I の エチレンオキサイド鎖部の信号の面積との検量線を作成し、内部標準法により P8I の定量を行った。

4-2-8. 乳化製剤の塗布時の摩擦力測定

乳化製剤を塗布したときのなじみの早さとべたつきを、トライボギア (HEIDON-14DR、新東科学)を用いて動的摩擦係数を測定することで解析した。 人工皮革(サプラーレ、出光テクノファイン)上に乳化製剤を25µL乗せ、サプ ラーレで覆われたプローブがこの乳化製剤を塗り広げる際に生じる動的摩擦係 数を測定した。プローブは 20g 加重とし、塗布面積 10cm²に対し 10cm の往復運 動を行う設定として実験を行った。実験はすべて温度 25℃、湿度 50%の恒温恒 湿度下で行った。

4-2-9. 乳化製剤の官能評価

社内で使用感触評価を専門業務とする女性 8 名の被験者により、乳化製剤を顔 に使用したときののびの良さ、油っぽさ、肌なじみ、べたつき、うるおい、肌の なめらかさの 6 項目について官能評価を行った。評価はデカメチルシクロペンタ シロキサンと P10DM を用いて調製した W/O 乳化製剤を基準とし、イソヘキサデ カンと P8I を用いて調製した乳化製剤を上記 6 項目について各 5 段階評価で比 較した。

4-3. 結果と考察

4-3-1. 界面活性剤濃度とオイルゲルの粘度

OC を用いたオイルゲルの粘度は、OC に対する非イオン性界面活性剤比率 (=ratio)に依存して変化した。各種界面活性剤を用いてオイルゲルの構築を検討

した結果、いくつかの界面活性剤でオイルゲルが調製できた(Fig.3)。粘度の絶 対値や、ピークトップとなる ratio は異なるものの、いずれのオイルゲルでも、 界面活性剤比率が高まるにつれて粘度が上昇⇒下降というプロファイルを示し た。油分にイソヘキサデカンを用い、種々界面活性剤と組み合わせた結果、P8I との複合化で高粘度かつ均一なオイルゲルが得られることを見出した。イソヘキ サデカンを用いたオイルゲルは、ratio=0.33 において極大粘度を示した。P8I は、 流動パラフィンを油分として用いた系でも ratio=0.33 で粘度が高いオイルゲルの 構築を可能にした。一方、デカメチルシクロペンタシロキサンのオイルゲル化に は、従来界面活性剤として P10DM が用いられるが、ratio=0.8 において極大粘度 を示すことから、流動パラフィンの増粘と比較して非イオン性界面活性剤を多く 必要とするといえる。界面活性剤と油分の組み合わせを変更し、イソヘキサデカ ンと P10DM を組み合わせにより得られたオイルゲルは、OC と界面活性剤重量 比率を変化させても粘度が低く、粘土鉱物が沈降した(極大で 7150mPa・s)。ま た、デカメチルシクロペンタシロキサンと P8I を組み合わせた場合にも安定な オイルゲルは得られなかった(極大で 3930mPa・s)。このことから、オイルゲル の構築においては、油分と界面活性剤の組み合わせが重要であることが示された。

4-3-2. 粘土鉱物への界面活性剤の吸着

新規なイソヘキサデカン-P8I系のオイルゲルについて粘土鉱物の層間距離、 および粘土鉱物へのP8Iの吸着率を測定し、オイルゲル粘度との関係について考 察した。参考までに、OC原体および、P8I7wt%、OC21wt%、イソヘキサデカン 72wt%で調製したオイルゲルのSAXSデータをFig.4 に示す。SAXS測定の結果 から、OCに対するP8Iの重量比率が増えるに従い、粘土鉱物の層間の拡張が確 認できた。山口らは、OCに非イオン性界面活性剤を添加すると粘土の層間が拡 張し、ratio=0.2のときに層間距離は最大値に達し、このとき最も高粘度のオイル ゲルが調製されることを示している。そのため、油中で界面活性剤と混合させた 際のOCの層間の拡張が、粘度の高い安定なオイルゲルの構築との相関があると 考えられていた。しかし興味深いことに、今回の結果では層間距離の変化とオイ ルゲルの粘度変化には相関が見られなかった(Fig.5,A)。すなわち、ratio=0.1 では層間の十分な拡張が確認できるがオイルゲルは形成されず、また、ratio=0.4 以上では層間距離は最大値をとっているが粘度は低かった。この結果より、層間 の拡張はオイルゲル形成の十分条件ではないことが明らかとなった。

次に、OCに対する P8Iの吸着率を解析した。オイルゲルを遠心分離して粘土 鉱物層と油分層に分離させ、油分層に存在する界面活性剤量を定量し、仕込み量 に対する粘土への吸着率を算出した。Fig.5, Bに示すように、ratio=0.2以下では 高い吸着率を示し、系の中の 95%以上の P8I が粘土鉱物に吸着していた。 ratio=0.23~0.33 の範囲においては吸着率が顕著に低下し、吸着量はプラトーに 達した。この範囲でオイルゲルは急激に粘度が上昇した。ratio=0.33~では P8Iの 吸着量は再び上昇し、オイルゲルの粘度は低下した。これらの結果から、粘土鉱 物への P8I の吸着挙動とオイルゲルの粘度発現について次のように考察した。 ratio=0.2 以下では、OC 表面へ P8I が吸着することで OC の層間が拡張している と考えられる。この時点では増粘しない。ratio=0.23~0.33 においては、OC 表面 への P8I の吸着はほぼプラトーに達し、層間距離は最大値をとったまま不変であ る。すなわち、OC 表面に吸着しない P8I が油中に存在し始め、これが粘土鉱物 同士の何らかの相互作用を促進し、オイルゲルが形成されたと考えられる。この 相互作用については、P8Iの逆ミセルによる粘土鉱物粒子の架橋ではないかと考 えているが、現時点で実証できていない。ratio=0.33~では P8I の OC への吸着が 再び上昇しているが、これは油中に存在する多量の逆ミセルが OC へ吸着、架橋 を解消することで分散性がさらに向上し、オイルゲルを崩壊させたと考えられる。 4-3-3. 界面活性剤による有機変性粘土鉱物の分散

P8Iの重量比率が異なる各点での OC の状態を、SEM を用いて観察した結果を Fig. 6 に示す。P8I が存在しない条件(Fig.6 A)では OC は凝集体を形成してい る。しかし、界面活性剤の添加量に比例して分散性が向上、ratio=0.1 では一部分 散した OC 粒子が認められ、界面活性剤の OC への吸着がプラトーになる ratio=0.3 (C)では、OC 全体がほぼ分散されている。さらに、P8I が過剰な ratio=0.7 (D)で は、より均一に OC は分散されているが、オイルゲルの粘度は減少した。このよ うに、P8I は OC を凝集した状態から均一に分散させる作用を有しているが、オ イルゲルの形成においては、界面活性剤により OC が適度に分散されることが重 要であることが示された。

4-3-4. イソヘキサデカンと P8I を組み合わせたオイルゲルを用いた W/O 型乳 化製剤の使用感触評価

粘度が極大値を示す比率で調製したオイルゲルに水を添加し、乳化物を調製す れば、最も安定な W/O 型エマルションが調製できると考えられる。W/O 型エマ ルションの感触評価をする前に、極大粘度を示す各種オイルゲルの感触を調べた。 流動パラフィンと P8I の複合体によるオイルゲルは、流動パラフィン由来の油っ ぽさ、べたつき、肌なじみの悪さが感じられた。デカメチルシクロペンタシロキ サンと P10DM の複合体によるオイルゲルは、流動パラフィンのオイルゲルと比 較して油っぽさは低減されたが、界面活性剤の配合量が多いために、界面活性剤 由来のべたつきが感じられた。また、デカメチルシクロペンタシロキサンと P10DM の複合体によるオイルゲルにおいて、界面活性剤比率を極大粘度を示す ratio=0.8 よりも減量した結果、粘土鉱物が沈降した。つまり、デカメチルシクロ ペンタシロキサンのオイルゲルから構築される乳化製剤において、べたつきの低 減を目的とした界面活性剤の減量はオイルゲルの粘度低下につながり、得られる 乳化製剤も同様に安定性を維持できないと考えられる。対して、イソヘキサデカ ンと P8I の複合体によるオイルゲルは、デカメチルシクロペンタシロキサンと P10DM の複合体によるオイルゲルに比べて少ない界面活性剤量で極大粘度を示 すことから、界面活性剤のべたつきが低減され、さっぱりとした感触のオイルゲ ルが調製された。

イソヘキサデカンと P8I を組み合わせた新規なオイルゲルを用いて得られた W/O 型乳化クリーム(非イオン性界面活性剤 2.0%)において、イソヘキサデカン の一部を炭化水素油分やシリコーン油分への置換配合が可能であった。イソヘキ サデカン単独で油相を構成するよりも、イソドデカンやジメチコンを少量添加し たほうが、肌なじみが良くべたつかない特徴を発揮できる乳化製剤の構築には効 果的であった。得られた W/O 型乳化クリームの使用感触(塗布した場合の肌な じみとべたつき)について、従来べたつきが少ないと言われていたデカメチルシ クロペンタシロキサンと P10DM の組み合わせによるオイルゲルを用いて得られ たクリーム(非イオン性性界面活性剤 3.0%)と比較評価を行った。比較したクリ ームの処方を Table1 に示す。人工皮革上でのそれぞれのクリームの摩擦係数の

変化を Fig.7 に示した。塗布直後では、デカメチルシクロペンタシロキサン /P10DM 系クリームと同様の挙動を示した。しかし、イソヘキサデカン/P8I 系は 早い段階で低下に転じ、低レベルで推移した。すなわち、イソヘキサデカン/P8I 系乳化製剤は、従来技術で得られたさっぱりしたクリームよりも更に肌なじみが 良く、べたつきが少ないことが示された。これは、新規なオイルゲルがデカメチ ルシクロペンタシロキサンよりも肌なじみの良いイソヘキサデカンで構築され たことに加え、界面活性剤に P8I を組み合わせることで従来よりも安定化に必須 であった界面活性剤量を減量できたためと考えられる。このことは、クリームの 官能性パネルテストにおいて、パネリストが塗布中に肌なじみの良さを実感でき た結果と一致していた(Fig. 8)。

4-4. 結言

OCによるイソヘキサデカンのゲル化と、そのオイルゲルから得られる W/O 型 乳化製剤について研究を行い、界面活性剤として P8Iを用いると少ない界面活性 剤量で安定なオイルゲルと乳化製剤が得られることを見出した。得られた乳化製 剤は、従来のデカメチルシクロペンタシロキサン/P10DM 系の乳化製剤よりもべ たつきが少なく、肌なじみも良かった。さらに、新規に得られたオイルゲルにお いて界面活性剤 P8I は、OC の層間の拡張と、その油分中での分散促進に寄与す ることが示された。この P8I を用いた新規なイソヘキサデカン系のクリームは、 スキンケアのみでなく、耐水性のあるサンケア製剤やファンデーションにも応用 が可能であり、従来よりもべたつきが少なく肌なじみのよい化粧品を提供できる ようになる。また、この乳化製剤は美白薬剤のような有効成分も安定に配合でき るため、優れた使用感触とともに薬理効果を提供することが期待できる。

4-5. 参考文献

- S. Buchmann, (2001) Handbook of Cosmetics Science and Technology. New York: Marcel Dekker, 145-169.
- 2) K. Shinoda, M. Fukuda, A. Carlsson, (1990) Langmuir, <u>6</u>, 334-337.
- 3) 福田守伸、篠田耕三、(1999) 油化学、<u>48</u>、587.

- 4) 渡辺啓, フレグランスジャーナル, 37 (11), 28-33 (2009)
- 5) 渡辺啓,大村孝之,池田智子,三木絢子,勅使河原喬史、(2009) 化粧品 技術者会誌,43,185-191(2009)
- 6) Y. Kumano, S. Nakamura, S. Tahara, S. Ohta, J. Soc. Cosmetic Chemist., 28, 285 (1977)
- 7) M. Yamaguchi, Y. Kumano, S. Tobe, (1991) J. Oleo Sci., <u>40</u>, 491.

8) B. K. G. Theng, (1974) "The Chemistry of Clay-Organic Reaction" Adam Hilger Ltd., London.

- 9) L. Ho Derek, Charls J. Glinka, (2003) Chem. Mater., <u>15</u>, 1309.
- 10) J. W. Jordan, (1954) Kolloid Z., <u>137</u>, 40.
- 11) 山口道廣、熊野可丸、戸辺信治、(1990) 油化学、<u>39</u>、100.
- 12) 山口道廣、熊野可丸、戸辺信治、(1991) 油化学、40、491.
- 13) 山口道廣、表面, 35 (1997), 1
- 14) 特許第 5007369 号
- 15) 特開 2009 40720 号公報
- 16) 山口道廣、熊野可丸、戸辺信治、(1990) 油化学、<u>39</u>、95.

Fig.1 Oilgel with Organoclay (OC) and liquid paraffin

Fig.2 Schematic image of oilgel of OC

Fig 3 The viscosity of oil-gel prepared from the various mixing nonionic surfactants Surfactant ratios of OC. for / cyclomethicone was **PEG-10** dimethicone, that for isohexadecane and liquid paraffin was PEG8 diisostearate, respectively. Stable oil-gels were shown by the dash lines.

formulation

P8I		7
Organo clay (OC)	100	21
isohexadecane		72

Fig 4 Comparison of the inclusion compound and OC SAXS spectra

Surfactant concentration in oil phase (wt%)

Fig 5 (A) The interlayer distance of OC, the viscosity of oil-gel prepared from the various mixing ratios of PEG-8 diisostearate (P8I) / OC. (B) The adsorption ratios of P8I on OC and free P8I in the systems.

Fig 6 SEM observation of oil-gel prepared from P8I / isohexadecane with various mixing ratios of P8I / OC. The ratios were shown at the lower left corners of individual photographs.

Ingredients	Dimethicone type (%)	Isohexadecane type(%)
Water	58.38	59.35
Alcohol	3	3
Glycerin	3	3
Butylene glycol	5	5
Disteardimonium hectorite (OC)	2.1	2.1
Polyoxyethylene•methylpolysiloxane Copolymer (P10DM)	3	1.5
Polyethyleneglycol (8) diisostearates (P8I)	-	0.1
Isohexadecane - 10	-	10
Isododecane - 13	-	13
Dimethicone	2	2
Decamethyl cyclopentasiloxane	23	-
EDTA	0.02	0.05
Phenoxyethanol	0.5	0.5

Table 1 Formulae of the W/O type emulsions prepared in this study

Fig 7 Changes in the frictional properties of the emulsions on artificial skin. The blue and red lines represent the friction of conventional cyclomethicone oil-gel and isohexadecane oil-gel systems, respectively. The friction of the latter was found to be lower than that of the former.

Fig 8 Results of sensory texture evaluation of isohexadecane / P8I formula. Eight experienced panels compared the formulae with cyclomethicone / P10DM formula as the control by 6 evaluation items and graded their impressions into 5 grades; better, good, no difference, bad, and worse. The 6 evaluation items were spreading character, non-oily feeling, skin compatibility, non-stickiness, moisture providing ability, and smooth after application. The non-stickiness and skin compatibility of isohexadecane / P8I formula was found to be better than that of cyclomethicone / P10DM.

5章 O/W/O型マルチプルエマルションの調製とその化粧品への応用

5-1. 緒言

5-1-1. マルチプルエマルションとは

マルチプルエマルションとは、多相エマルション、複合エマルションとも言わ れ、水相中に W/O 型エマルションが分散した W/O/W 型と、油相中に O/W 型エ マルションが分散した O/W/O 型とが存在する。W/O/W、O/W/O 型両者を比較す ると、W/O/W 型のほうが比較的研究が進んでおり、特許や文献数も多い¹⁻³。 後述するように、工業的には様々なマルチプルエマルションの応用例があり、化 粧品としても単純な O/W または W/O 型にはない機能や感触が得られる可能性が あり、古くから研究が行われているものの、製品化された例は非常に少ない。こ こでは、まずマルチプルエマルションの化粧品以外での応用例と安定化について の知見を述べる。次に、実際に我々が研究した内容について述べる。なお、ここ では内側の相から順に、内相、中間相、外相と呼ぶことにする (Fig.1)。

5-1-2. 工業的なマルチプルエマルションの応用

マルチプルエマルションについては、1925 年にその存在が確認され世に知ら れるようになったが、活発な研究が行われるようになったのは 1960 年代後半か らである。薬学分野では最内相に薬剤を配合することによる不安定薬剤の安定化 ⁴ や酵素の固定化⁵、薬剤の徐放化を目的としたドラッグデリバリーシステムへ の応用 ⁶⁻¹²を、食品分野ではホイップクリーム、バター等のテクスチャー改善¹³⁻ ¹⁴, が多く報告されている。廃液処理などの分野では、薄い中間膜を通して内外 相間を物質が移動することを利用した液膜分離法 ¹⁵⁻¹⁷ について詳しく研究され ている。また、中間相全体を固化してカプセル内部に粒子を含む多核マイクロカ プセルを調製する手法 ¹⁸ や、マルチプルエマルションの中間相と外相の界面で 重合反応を起こして中空のマイクロカプセルを調製する手法 ¹⁹ も研究されてい る。

5-1-3. 一般的なマルチプルエマルションの調製法

マルチプルエマルションの調製法には、大きく分けて1段階乳化法(Single Step 法)と2段階乳化法(Double Step 法)がある。Single Step 法は、一度の乳化工程 でマルチプルエマルションを得る方法で、W/O/W 型であれば、油相に水相を添

加してゆき、W/O型から O/W型へ転相させて調製する^{13,20}。内外相の組成は同 一であり、また用いる界面活性剤、油分の量や種類によって各相の比率はほぼ決 まってくる²¹。

Double Step 法(Fig.2) は、始めに調製(1次乳化)したエマルションを、外相 となる液体中に再乳化(2次乳化)することで得られる。1次乳化で得られたエ マルションを破壊せずにマルチプルエマルションを調製するためには、1次乳化 よりも2次乳化のせん断力を小さくする必要がある。微細な1次粒子を調製す るために、1次乳化でD相乳化法²²や高圧ホモジナイザーを用いる手法²³も、 O/W/O型マルチプルエマルションの調製法として報告されている。Double Step 法では、各相の組成比が比較的自由にコントロールできること、内相比の高いマ ルチプルエマルションが再現良く調製できること、親油性及び親水性界面活性剤 をW/O、O/W界面に効率良く吸着できるために安定性を保ちやすいことなどか ら、Single Step 法よりも多用されている。

しかしながら、Single Step 法でマルチプルエマルションを調製した後に、中間 相と外相の界面に吸着して安定化させるような高分子の界面活性剤を外相中に 後添加することで、簡便に経時安定性に優れたマルチプルエマルションを調製す る方法も提案されている²⁴。

この他、細管を段階的に二つ繋ぎ、内相となる液体を細管を通して中間相となる 液体中に滴下し、これをさらに外相となる液体中に滴下することで、粒子径の揃 ったマルチプルエマルションを簡便に調製する方法も報告されている²⁵。

5-1-4. マルチプルエマルションの安定化技術

マルチプルエマルションの実用化において、最も大きな障害はその安定性であ る。Fig.3 にマルチプルエマルションの典型的な不安定化経路を示す²⁶。内相の 合一 (a)、中間相の合一 (b)、外相から内相へのマイグレーション (c)、内相か ら外相へのマイグレーション (d)、及び、これらの複合経路により、最終的に内 相が外相に吸収されて O/W 型、W/O 型の単純エマルションに変化する、あるい は分離が起こる。以下に、経時安定性の良好なマルチプルエマルションを調製す るためのポイントについて述べる。

5-1-4-1. 界面活性剤の選択と配合量

用いる界面活性剤の種類や量は、全ての不安定化経路に大きな影響を及ぼす。

まず、マルチプルエマルション調製に適した界面活性剤の選び方について述べる。 安定性の良好なマルチプルエマルションを調製するには、親水性界面活性剤と親 油性界面活性剤の併用が必須であり、その場合マルチプルエマルションの界面は、 図5に示すように親水・親油性界面活性剤の両方が吸着した状態と考えられる。 合一やマイグレーションをできるだけ抑制するには、用いる界面活性剤が以下の 条件にあてはまることが重要である²⁷⁻²⁸。

a) 親油性界面活性剤が安定性の良好な W/O エマルションを調製可能

b) 親水性界面活性剤の HLB が 15 以上

c) 親水性界面活性剤の油相への溶解度が低い

d) 親水性界面活性剤の分子量が大きい

イオン性、非イオン性に関わらず使用可能であるが、非イオン性の方が一般的に 分子量が大きいこと、また食品、化粧品分野では安全性の観点から、医薬品でも イオン性薬剤との相互作用を抑制する観点から、非イオン性界面活性剤が用いら れることが多い。

次に、界面活性剤の配合量について述べる。W/O型エマルションは親水性界面活 性剤により容易に不安定化されるため、マルチプルエマルションの型に関わらず、 親水性界面活性剤はできるだけ少なく、親油性界面活性剤は単純 W/O型エマル ションを調製する際よりも多めに用いる必要がある²⁹⁻³¹。一方2次乳化に用いる 親油性界面活性剤は、比較的多量に存在しても親水性界面活性剤ほど系の安定性 に大きく寄与しない。ただし、W/O/W型エマルションの内・外水相に塩濃度差 がある場合は、浸透圧により水相の移行は一方行に優先的に起こるので、油相中 の親油性界面活性剤濃度が高いと油相中に可溶化される水相量が増大し、移行速 度が高まり不安定化する。

5-1-4-2. 增粘剤

増粘剤の配合は、合一を抑制する、さらに内・外相間の移行速度を低下させてマ ルチプルエマルションの安定性を向上させるのに効果的である。O/W/O型エマ ルションの場合には、本章で述べる有機変性粘土鉱物や、シリコーン油を増粘す る架橋型ポリエーテル変性シリコーンを最外相に配合した例³²などが見受けら れる。W/O/W型エマルションの場合には、各種水溶性高分子を配合³³するほか、 高級アルコールのαゲル中に W/O型エマルションを分散させる手法³⁴も用いら れている。

5-1-4-3. 油分

基本的にはどのような油分を用いても、条件さえ整えばマルチプルエマルションの調製は可能と考えられる。しかしながら安定性という観点からいえば、極性の高い油を用いた O/W、W/O型エマルションは安定化が難しいため、マルチプルエマルションの安定化も難しいといえる。W/O/W型エマルションの場合は、中間相である油分の粘度が高く、水への溶解度が小さい方が内・外水相の移行が起こりにくく安定で、逆に油相の粘度が低く水への溶解度が高ければ、マルチプルエマルションとしての安定性は低いが、内水相中の薬剤を外水相に早く放出できるため、DDS製剤としては有用といえる。O/W/O型エマルションの場合は、内・外油相の構成が異なるとW/O/W型エマルションと同様に浸透圧差が生じるが、分子量の大きい油分であれば移行速度は非常に遅く、安定性には大きく影響しない。

5-1-5. マルチプルエマルションの経時安定性評価法

マルチプルエマルションの経時安定性を調べるには、2種類の粒子の経時変化を 追う必要がある。しかしながら内相の粒子は、それ自身が中間相粒子の中に含ま れているため、その経時変化を定量的に評価するのは非常に困難なことといえる。 これまでにも内相粒子径の変化と内相粒子が消滅した割合を定量する手法がい くつか開発されていて、主に顕微鏡観察法と内相マーカー法、粘弾性測定法の3 つに大別できる。顕微鏡観察法は、顕微鏡写真を撮影して内相の粒子径、粒子数 をしらべる手法である。最も直接的で簡便である一方、内相粒子が非常に微細(> 1μm)な場合には観察が困難であること、誤差が大きいことなどの問題点もあ る。内相マーカー法は、内相に電解質や蛍光物質等のマーカーを予め配合し、内 相粒子が外相に吸収されることにより増加する外相中のマーカー濃度を経時で 測定する方法 35,36 である。この方法で、2 段階乳化法の 2 次乳化で破壊された 1 次エマルションの量を評価する研究も行われている⁴。粘弾性測定法は、マルチ プルエマルションのレオロジー特性の変化を経時で調べて、安定性を評価する手 法である。これは、中間相の液膜を介した内・外相間の移動によりエマルション の相比が変わった場合、マルチプルエマルションの粘度が変化することを利用し ている 37,38

5-1-6. 本研究の背景

前述したように、O/W/O 型エマルションよりも W/O/W 型エマルションに関す る研究例が多いのは、微細な乳化粒子径を有する安定な W/O 型エマルションを 調製するのが困難であるからに加え、エマルションを安定化するために必要な、 外相のオイルゲル化剤が非常に限られているからである。

我々は、化粧品に配合する油溶性不安定薬剤の安定化を目的として、O/W/O 型に焦点をあてて研究を行い、微細な O/W 型エマルションを、前章で述べた有 機変性粘土鉱物を用いたオイルゲル中に分散することで、安定な O/W/O 型マル チプルエマルションを調製する方法を確立した。本報告では、まず非イオン性界 面活性剤を用いた微細な O/W 型エマルションを内水相に配合した O/W/O 型マル チプルエマルションの調整法、および、安定薬剤のモデル物質として選択したレ チノール(ビタミン A アルコール)の安定化について述べる。また、イオン性界 面活性剤を用い、硬い O/W 界面膜を有する微細エマルションを内水相に配合し た O/W/O 型エマルションの、特徴的な使用感触について、シェアを与えた際の 乳化粒子の壊れ方と、レオロジー特性から考察した結果について述べる。

5-2. 非イオン性界面活性剤を用いた安定性に優れた O/W/O 型マルチプルエマル ションの調整法およびビタミン A の安定化研究

5-2-1. 本研究の目的

ビタミン A は生物の成長、免疫系、視覚にとって重要な脂溶性ビタミンであ るが、皮膚の角化をコントロールする機能 が発見されて以来、化粧品分野にお いても注目を集めている²⁴。しかしながら、ビタミン A は熱、光、酸化によって 容易に分解し⁴⁰⁻⁴²、有効濃度の減少、臭いの原因となり、安定に配合することが 困難である。これまでにも、安定配合のため、カプセル化²⁵や抗酸化剤の配合²⁶ など、さまざまな試みがなされており、ビタミン A を安定配合した化粧品も多 く上市されている。しかしながら、ビタミン A を安定配合するためには、酸素透 過率が低く、不透明かつ、使用時に空気が入らない、いわゆるバックレスチュー ブを用いるなど、容器上の工夫や、充填時に窒素置換を行うなどの処置が必要不 可欠であった。我々は、ビタミン A を O/W/O 型マルチプルエマルションの内相 に配合することで、ビタミン A の経時での酸素との接触を最大限に抑制し、容

器上の工夫がなくてもレチノールを経時で安定に保てるのではないかと考え、検討を行った。それに先立ち、まず、非イオン性界面活性剤を用いた安定な O/W/O型マルチプルエマルションの調製法について検討した。

5-2-2. 実験方法

5-2-2-1. 原料

内包する薬剤としてはビタミン A (All-trans レチノール、150 million IU/g, ク ラレ化学) およびビタミン A パルミテート (1.7 million IU/g、日本ロッシュ) を用いた。レチノールの構造を Fig.5 に示した。その他の原料は、全て市販の化 粧品原料を精製することなく用いた。

5-2-2-2. O/W/O 型マルチプルエマルションの調製方法

本研究ではいずれも Double Step 法を用いた。嵩高い界面活性剤を用いて安定な O/W 界面をつくる目的で、親水性界面活性剤としては POE 硬化ヒマシ油(ニ ッコール HCO-60、ニッコーケミカル、以下 HCO60 と記載)を用いた。

O/W 型エマルションは鈴木らの示す方法⁴³を用い、1µm以下の粒子径を有す る流動パラフィンを内相に含むエマルションを、ホモミキサー(TKホモミキサ ー、プライミクス)を用いて調製した。これを前章で報告した有機変性粘土鉱物 である(ベントン 38、ズードケミー、あるいはスメクトン DS-100、クニミネエ 業)および中間 HLB を有する界面活性剤である POE14 ジイソステアリル(エマ レックス 600di-IS、日本エマルジョン、以下 PEIS と記載)を含む油相中にホモ ディスパー(TK ホモミキサー、プライミクス)を用い、再乳化して O/W/O 型マ ルチプルエマルションを調製した。

ビタミン A を含むマルチプルエマルションは、内相油となる油分に予め室温 にて溶解させ、乳化を行った。

5-2-2-3. 乳化粒子径の測定法

O/W型エマルションの平均乳化粒子径は、レーザー粒度分布測定装置(LA-910、 堀場製作所)を用いた。O/W/O型マルチプルエマルションの中間相の乳化粒子径 は、光学顕微鏡(BX-60、Olympus)および Cyro-SEM(S-4200、日立製作所)に て観察、測定した。

5-2-2-4. エマルションの見かけ粘度および硬度測定法

見かけ粘度は、コーンプレート型ビスコメーター(B.E.E.)を用い、シェアレー

ト 1700s⁻¹にて測定した。粘度が 10000mPa・s 以上のエマルションについては、 硬度計(カードメーター、濁川)にて硬度を測定した。

5-2-2-5. 過酸化值(Peroxide value (POV))の測定法

ヨードメトリーを用いた界面活性剤の POV 測定は、原らの方法⁴⁴に準じて自動滴定装置(AT-118、京都エレクトロン)を用いて行った。酸化レベルを変えた 親水性界面活性剤(HCO60)は、5~48時間 60℃で加熱して調製し、使用する直 前まで 40℃にて保存した。

5-2-2-6. ビタミン A の定量法

ビタミン A の定量はダイオードアレイ検出器(SPD-MIOAV、島津製作所)を 併設した HPLC (Nanospace、資生堂)を用いて測定した。ビタミン A およびビ タミン A パルミテートの測定条件を Table 1 に示した。測定は全て 2 回ずつ行 い、平均値を示した。

5-2-2-7. 内包率の測定

内相に含まれるビタミン A の定量は、Kang らの方法⁴⁵ に準じて行い、マルチ プルエマルション全体に含まれるビタミン A の総量との比率として表した。ま ずビタミン A を含む O/W/O 型エマルションを 2,000 rpm にて 1 時間遠心分離を 行い、分離した微量の油分(外相)に含まれるビタミン A 量を HPLC にて定量 した。内包率は以下の式を用いて算出した。

Encapsulation percentage =
$$\frac{VA_T - VA_0}{VA_T}$$
 ×100 [1]

VAT はマルチプルエマルション全体に含まれるビタミン A の総量を示し、VAo は HPLC で定量した外相に含まれるビタミン A 量である。

5-2-3. 結果および考察 - 非イオン性界面活性剤を用いた安定性に優れた O/W/O型マルチプルエマルションの調整法-

5-2-3-1. 1 次乳化に用いる親水性界面活性剤の適正量

検討した処方を Table 2 に、また内相 O/W 型エマルションを調製する際に用い たポリオキシエチレン硬化ヒマシ油 (HCO60)の濃度を増やしたときの内油粒子 径と、調製される O/W/O 型マルチプルエマルションの粘度を調べた結果を Fig.6 に示す。外相の有機変性粘土鉱物としては、合成サポナイトを有機変性させたス メクトン DS-100(以下 OCDS と記載)を用いた。HCO60 濃度が増すほど調製さ れる O/W エマルション粒子径は小さくなり、O/W/O エマルションの粘度は HCO60 濃度 1%で極大点を持っていた。すなわち、HCO60 量が不十分(<0.5wt%) で O/W エマルション中の油滴が充分に小さくなりきれない場合は、内相の油分 が次の W/O 乳化の段階で水粒子内に取り込まれずに外油相に混合することとな り、結果として W/O エマルションの水相比が下がって O/W/O エマルションの粘 度は低くなる。過剰の HCO60(>2%)を配合した系では、系の HLB が崩れて安 定な W/O 乳化ができなくなるため、やはり内相油が外相油と混合が起こり、マ ルチプルエマルションの粘度が低くなる。HCO60 を適正量用いた O/W/O 型エマ ルションは、経時安定性に優れていることが確認された。

5-2-3-2.2 次乳化に用いる非イオン性界面活性剤および有機変性粘土鉱物の適正 量

次に、2 次乳化として W/O 型エマルションを調製する際に用いる非イオン性 界面活性剤(PEIS)と有機変性粘土鉱物(OCDS)の量を変えてマルチプルエマ ルションを調製した際の、エマルションの安定性を Fig.7 に示す。検討処方は Table 3 に示した。安定性は、50℃1 か月静置後の水相乳化粒子径の変化で評価 し、全く変化がなかった基剤を〇、マルチプルエマルションの形態を保っていた ものの、粒子径の増大が見られた基剤を△、調製直後に転相するなどの現象が起 き、マルチプルエマルションが調製されなかった基剤を×で示した。OCDS を含 まない処方では、たとえ PEIS を多く含んでも(1wt%)二次乳化の際に転相がお こり、マルチプルエマルションが調製されなかったことから、マルチプルエマル ションの調製には有機変性粘土鉱物が必須であることがわかった。また、OCDS の含有量が少ない系(~0.2w t %)では、PEIS を多く配合しても(0.6wt%)マ ルチプルエマルションは調製されたものの、経時でエマルション表面に油浮きが 見られた。一方で、PEIS を全く含まない系では安定なマルチプルエマルション は得られず、安定な W/O 型エマルションの調製には有機変性粘土鉱物と親油性 界面活性剤の併用が必要であるとした、山口らの研究 46 と一致した。十分な量の 有機変性粘土鉱物(1.5wt%)と非イオン性界面活性剤(0.6wt%)を外相に含むマ ルチプルエマルションは、50℃にて1か月静置しても安定であり、乳化粒子径の

増大や内相の抜け、油浮きなどの現象が見られなかった。このエマルションの調 製直後と 50℃1 か月後の顕微鏡写真(Fig.8(a),(b))、および調製 1 日後の Cryo-SEM 写真(Fig.9)に示す。中間相の粒子径は 2~10µm であり、内相の油滴の粒子 径は 1µm 以下であることが分かる。また、有機変性鉱物の含有量が少ない (0.2wt%) エマルションでは、中間相が合一しており、W/O 界面が弱いことが分 かった。山口らは、有機変性粘土鉱物を用いて調製した W/O 型エマルション中 では、有機変性粘土鉱物が油水界面に吸着していることを示している⁴⁷。すなわ ち、Fig.10 に示すように、W/O 界面に吸着した有機変性粘土鉱物が界面を強固に し、内相から外相への油相の移動と、水滴どうしの合一を防ぎ、マルチプルエマ ルションを安定化していると考えられた。

次に PEIS および OCDS 配合量がマルチプルエマルションの粘度に及ぼす影響 について調べた。PEIS 配合量が増加するに従って粘度は増加し、ある配合量で ほぼプラトーとなった (Fig.12)。中間相の乳化粒子径は、PEIS 配合量が増える に従って微細化しており、PEIS 増量による粘度増加は内相のラプラス圧が上昇 したためと考えられる。また、同じ PEIS 量で比較した場合、OCDS 配合量が多 いほどエマルション粘度は増大した。すなわち、PEIS 配合量を 0.2wt%に固定し た場合、OCDS 配合量が 0.75、1、2.wt%と増えるに従い、マルチプルエマルシ ョンの粘度は 316、350、389mPa・s と増大した。この際、水相の乳化粒子径に変 化はなかったことから、OCDS 増量による粘度増加は、外相オイルの増粘が原因 と考えられる。有機変性粘土鉱物のオイルゲル化能の研究から、粘土鉱物と親油 性界面活性剤の比率が 1:0.2 のときに、ゲル粘度が極大値をとることがわかっ ている ⁴⁸が、マルチプルエマルションの系では、明確な粘度の極大値は見られな かった。

OCDS と PEIS の配合比率を 1:0.2 に固定し、この総量を変化させたときのマ ルチプルエマルションの粘度変化を Fig.11 に示す(OCDS と PEIS 以外の成分の 配合量は Table 3 に示した処方)。OCDS+PEIS の総量が増えるほどエマルション 粘度は上昇しているが、これは外相粘度の上昇と、中間相である水粒子の粒子径 の減少が原因と考えられる。

5-2-3-3. 内相比がマルチプルエマルション粘度に与える影響

検討した処方を Table 4 に示す。内相オイルと水相の比率は一定にし、外相の

処方は全て同じにした。内相比を変えて調製したマルチプルエマルションの粘度 変化を Fig.13 に示す。内相比が 0.1~0.3 では粘度変化はほとんど見られなかっ たが、0.4~0.5 では内相比が増加するに従い粘度が減少した。内相比 0.5 のマル チプルエマルションは 50℃に 1 か月静置後に、エマルション表面に油浮きが見 られたことから、内相比 0.4 以上では内相を取り込み切れず、結果的に外相の比 率が高まっているためではないかと考えている。

5-2-3-4. O/W エマルション比がマルチプルエマルション粘度に与える影響

O/W エマルション中の油/水比を固定し、外相に対する O/W エマルションの 比率が、マルチプルエマルション全体の粘度に与える影響について調べた。検討 処方を Table 5 に示す。中間相の乳化粒子径とエマルションの硬度測定値を Fig.14 に示した。O/W エマルション比が高まるほどマルチプルエマルションの粘度は 増大した。O/W エマルション比が 0.8 では、中間相の乳化粒子径にばらつきがあ り、全体的に大きくなっていた。高 O/W エマルション比 (0.7~) では 50℃1 か 月静置後、エマルジョン上部に微量の離水が見られ、一方で低 O/W エマルショ ン比 (0.5) では粘度が低く、50℃1 か月静置後に油うきが見られた。以上のこと から、この系においては、O/W エマルション比は 0.6 付近が最適であることがわ かった。

5-2-4. 結果および考察 - ビタミン A の安定化-

1-5 でも述べた通り、マルチプルエマルションの内相に不安定薬剤を配合して 安定化する研究は、主に薬学分野で広く行われている。酸素などの不安定化物質 から隔離して薬剤を安定化したり、内包された薬剤を徐々に外相へ移行させて徐 放化に応用したりする(薬剤の徐放化については既に臨床例もある⁴⁹)研究がな されており、内相から外相への薬剤の移行速度コントロールが研究の中心である。 内相から外相への薬剤の移行メカニズムとしては、Fig.2 のうち、①単純拡散 ② 界面活性剤によるミセルの形での移行③粒子破壊の 3 つが考えられる。①の単 純拡散による薬剤の移行速度に影響を及ぼす主な要因としては、中間相への薬剤 の溶解度(高いほど速い)、内相中の薬剤濃度(高いほど速い)、中間相の粘度(高 いほど遅い)等が挙げられる。②のミセルの形での移行速度に関しては、内相中 の薬剤濃度や中間相の粘度も①と同様な影響を及ぼすが、中間相中に溶解してい る界面活性剤量が大きく関わってくる^{29,30}。Table 5 に示すように、水への酸素

溶存率は油に比べて低いため、O/W/O 型マルチプルエマルションの内相に酸素 によって分解されやすい薬剤を閉じ込めることで、水相が酸素バリヤーとして機 能させ、安定化されることを期待し、前述の有機変性粘土鉱物を配合した O/W/O 型マルチプルエマルション(内相は D 相乳化法により調製)の内相に、熱、光、 酸素によって分解され易い、レチノール(ビタミン A アルコール)を閉じ込め、 経時での安定化を試みた。

5-2-4-1. エマルションタイプの影響

まず、各種エマルションの内相にレチノールを配合した際の、検討処方と50℃ 4週間後のレチノール残存率をTable 6に示す。流動パラフィンに溶解したレチ ノールは4週間後に全く残存していなかったが、エマルション基剤では残存して おり、その残存率はO/W/O、W/O、O/Wエマルションの順に高かった。外相にレ チノールを配合したW/Oエマルションで、比較的高いレチノール残存率が得ら れた理由として、次のように考えている。すなわち、界面活性剤のような両親媒 性物質は有機変性粘土鉱物に吸着することが分かっており⁵⁰、レチノールも同様 に粘土鉱物に吸着し、複合体を形成していると考えられる。粘土鉱物に吸着した レチノールは、バルク中に溶解しているレチノールとは性質が異なると考えられ、 これによりレチノールの安定性が向上していると考えている。しかしながら、有 機変性粘土鉱物と油分とレチノールとを混合させた水を含まない系ではレチノ ール残存率は低かったことから、有機変性粘土鉱物とレチノールとを共存させる だけではなく、これらの複合体が界面に存在することがレチノール安定性向上に 重要であることが示された。

5-2-4-2. 界面活性剤の過酸化値(POV)の影響

レチノールの分解・酸化劣化は過酸化物により促進されることが分かっている ^{51,52}。差を明確にするために、レチノールよりも酸化安定性に優れたビタミンA パルミテートを流動パラフィンに溶解、2-2-5 に記載の方法で酸化レベルを変え た親水性界面活性剤(HCO60)を用いて O/W型エマルションを調製し、50℃に て保存、17日後の残存率を測定した結果を Fig.16 に示す。ビタミンA パルミテ ートの残存量は、HCO60の POV 値が増加するとともに直線的に低下したことか ら、ビタミン A パルミテートの残存量は、エマルション基剤中に含まれる過酸 化物濃度に依存していることが示された。次に、W/O 乳化剤として用いた有機変 性年鉱物と非イオン性界面活性剤の影響を調べた。有機変性粘土鉱物として、天 然ベントナイトを 4 級アンモニウム型カチオン性界面活性剤で有機変性したべ ントン 38 と、合成スメクタイトを有機変性したスメクトン DS-100 を用いてい るが、天然粘土から作られるベントン 38 は、Fe²0³等の金属酸化物を多く含む。 鉄イオンは脂質の過酸化に対する効果的な触媒として機能することが知られて おり、ビタミンAパルミテートの安定性に悪影響を及ぼすと考えられる。一方、 合成粘土から作られるスメクトン DS-100 には鉄は含まれない。界面活性剤とし ては、疎水基としてイソステアリン酸を有する PEIS と、オレイン酸を有するポ リオキシエチレンジオレエート(エマレックス 600 di-O、日本エマルション)を 用いた。エマレックス 600 di-O の POV 値は 324 meg/kg であり、エマレックス 600 di-IS の POV 値は検出されなかった。これらを組み合わせ、O/W/O 型エマル ションを調製し、50℃で保存し経時でビタミン A パルミテートの残存率を測定 した。結果を Fig.17 に示す。スメクトン DS-100 とエマレックス 600di-IS の組み 合わせで調製したエマルションで、61.8%と最も高い値を示した。一方で、ベン トン 38 とエマレックス 600 di-O の組み合わせで調製したエマルションではビタ ミンAパルミテートの残存率は元も低く、14.4%であった。内相中に溶解したビ タミン A パルミテートの残存率に、外油相中に含まれる W/O 乳化剤も大きな影 響を及ぼすこと、また過酸化物や金属イオンの存在がビタミン Α パルミテート の酸化分解を促進することが示された。

5-2-4-3. エマルション組成の影響

次に、O/W/O エマルション中の内油相量を変えて同様の実験を行った。油相比 が 0.1~0.5 のレチノール配合 O/W エマルションを調製後、更にこれらの O/W エ マルションを用いて O/W/O エマルションを調製し、50℃2 週間後のレチノール 残存率を測定した。なお、横軸の内油相比φiは、O/W エマルションにおける内 油相の比率を表している。結果を Fig.18 に示す。O/W エマルションでは、レチ ノール残存率は油相比に依存せず、約 62%であった。一方、これを O/W/O エマ ルションとした場合には、O/W エマルション中の油相比が、0.1 から 0.5 に高ま るのに伴い、レチノールの残存率も 62%から 71%へと向上した。O/W/O エマル ションにおける内油相比とレチノール安定性の関係を考察するため、経時でのレ チノール内包率(全レチノール配合量に対する最内油相に含まれるレチノールの 比率:wt%)変化を測定した結果を Fig.19 に示す。調製直後のレチノール内法率 が 100% でないのは、O/W エマルションを外油相中に 2 次乳化する際の乳化粒子 の合一が原因と考えられる。oiが高いほど内包率が高い理由についてははっき りとはわからないが、仮に2次乳化の際に外油相に融合される内油滴の数が内油 相比によらず大体同じであると考えると、内油相比が高いほど同じ数の油滴に含 まれるレチノールの量は少なくなり、内法率は上昇する。2週間後のレチノール 内包率も内相比が高いほど高いが、その傾向は調製直後よりも顕著である。この 理由としては、内油相比が低いほど油相中のレチノール濃度が高まり、外油相へ のレチノールの移動(即ち内包率の低下)が促進されるためと考えられる。たと えば、Fig.20 に示すように、内油相が全体の 10wt%の基剤と、内油相が 20wt% の基剤を比較すると、内油相が 10wt%の基剤の内油相中のレチノール濃度は 2 倍高く、内油相中と外油相中のレチノール濃度の差(ΔC retinol)は高くなり、 レチノールの外油相への移行速度は速いと考えられる。φi=0.5 において、調製 2週間後の内法率が下がっているのは、O/W/O基剤自体の安定性の悪化が原因と 考えている。Fig.19 に示した 50℃、2 週間保存後のレチノール内包率と、Fig.18 に示したレチノール残存率は極めて相関が高く、O/W/Oエマルションにおいて、 不安定薬剤を安定化するためには、最内油相に薬剤を閉じ込めておく必要がある ことが分かった。また、Table 6 で、O/W よりも W/O 基剤中のレチノール残存率 が高かった理由として、有機変性粘土鉱物へのレチノール吸着を挙げたが、 O/W/O 基剤においても、W/O 界面に吸着した粘土鉱物が、内油相から外油相へ 移行するレチノールを吸着し、外油相中への溶解を抑制して、レチノールの安定 性を向上させていると考えている。

5-2-4-4. 抗酸化剤の影響

O/W/O エマルション中のレチノールの安定性を更に高めるため、親水性及び 親油性の抗酸化剤であるジブチルヒドロキシトルエン(BHT)0.05wt%、アスコ ルビン酸ナトリウム(AsANa)0.1wt%、および金属イオンキレート剤である EDTA・3Na(EDTA)0.1wt%を配合し、その影響を調べた。経時でのレチノール 残存率をFig.21に示す。抗酸化剤としては、油溶性であるBHTよりも、水溶性 のAsANaのほうが効果が高かった。EDTAでレチノール安定性が低下したのは、 EDTA配合によりO/W/Oエマルションが不安定化し、油浮きが見られたためと 考えられる。すべての抗酸化剤(BHT、AsANa、EDTA3Na)を配合した O/W/O エ マルション中の、50℃、4 週間後のレチノール残存率は約 77.1%であり、抗酸化 剤を含まないエマルションと比較して約 20%も向上した。

5-3. 特徴のある使用感触を有するマルチプルエマルション

5-3-1. 本研究の目的

5-2-4 では、W/O 界面を有機変性粘土鉱物のような固体で覆うことが、エマルシ ョンの安定性向上のみならず薬剤の安定化をもたらすことが分かった。W/O 界 面だけでなく O/W 界面も固化すると、何らかの特徴が発現するのではないかと 考え、クラフト点が比較的高いイオン性界面活性剤を用いて調製した O/W 型エ マルションを、有機変性粘土鉱物を含むシリコーン油中に再乳化することで、 O/W/O 型マルチプルエマルションを調製し、その特徴を調べたところ、非常に特 異的な使用感触を有することが分かった。化粧品ではその機能もさることながら、 使用感触も購買意欲につながる大きなファクターの一つである。マルチプルエマ ルションの多層構造、そこに二つの硬い界面をつくることで、単純エマルション とはダイナミックに異なるレオロジー特性を持たせ、化粧品へ応用した内容につ いて以下に述べる。

5-3-2. マルチプルエマルションのレオロジー測定に関する研究

マルチプルエマルションは複雑な系であるため、レオロジー的手法を用いてエ マルションの状態を議論するのは非常に困難であると言える。しかしながら、相 比、内・外相の粘度比の変化、シェア付加等に伴う粘弾性挙動の変化を調べ、マ ルチプルエマルションの安定性を評価するのに応用した研究例 ^{53,54} や、界面の 特性を調べた研究例 ⁵⁵ も見られる。単純エマルションとは異なるマルチプルエ マルションのレオロジー挙動は、内相の存在により、中間粒子内の流れが抑制さ れるために引き起こされると考えられるが、単純エマルションに適用される計算 式にあてはめる試みもなされている ⁵⁶。

5-3-3. 実験方法

5-3-3-1. O/W型エマルションの調製

比較的クラフト展の高い脂肪酸石鹸やアミノ酸系のアニオン界面活性剤を用い、高圧乳化法により調製された O/W 型エマルションは、乳化粒子径が数 100nm

程度の半透明な外観を有し、0~50℃の幅広い温度で長時間安定であることが分 かっている⁵⁷。N-ステアロイルグルタミン酸ナトリウム(アミソフト HS-11、味 の素)を含む水相に、高級アルコールと流動パラフィンを混合し、80℃にて高圧 乳化装置(ナノヴェイダ、吉田興業)により O/W 型エマルションを調製、室温 まで冷却後、有機変性粘土鉱物(ベントン 38、ズードケミー)、ポリエーテル変 性シリコーン(KF-6017、信越化学)を均一に混合した揮発性シリコーン油中に ホモミキサー(TK ホモミキサー、プライミクス)を用いて2次乳化し、O/W/O 型エマルションを調製した。処方を Table 5 に示す。このエマルションは、0~ 50℃の温度範囲において1か月後も粘度、乳化粒子径ともに変化がなく非常に安 定であった。これは、0~50℃の温度範囲において、親水性界面活性剤の水相へ の溶解度が低いために、W/O 乳化の不安定化への寄与が少ないためと考えられ る。

5-3-3-2. 新規レオロジー測定装置による使用感の評価

皮膚上での化粧品の状態変化を調べるためには、溶媒の揮発を考慮しつつ塗り 伸ばし時の応力変化を捉える装置が必要であるため、Fig.22 に示すような装置 (転相測定装置⁵⁸)を用い、開放系での測定を室温にて行った。平らな基板上に ポリイミド膜を貼り、その上にサンプル 50µ1を置いた。20gの荷重をかけなが ら、サンプルの上で応力センサ搭載チップを往復運動させ、塗り伸ばし時にかか る動摩擦係数の変化を測定した。

5-3-4. 結果および考察

Table 5 に示す処方で調製した W/O 型エマルションと内油相比を変えた O/W/O 型マルチプルエマルションの使用感触を転相測定装置を用いて比較した (Fig.23)。W/O型エマルションでは徐々に摩擦係数が上昇するのみであるのに 対し、O/W/O型エマルションでは、塗りのばし始めに摩擦係数が上昇し、その 後急激に低下し、最終的には再び上昇に転じるといった複雑なパターンを示して いた。

W/O、O/W/O 共に塗布始めに摩擦係数が上昇したが、これは外油相の揮発に伴い内相比が高まり、粘度が上昇していることを示していると考えられる。また、 O/W/O 型エマルションに特徴的な 2 回の変化は、内油相比が高いほど顕著であった。内油相比 8wt%のマルチプルエマルションを、水の粒子径を変えて調製し 同じく転相粘度計で測定した結果を Fig.24 に示す。水粒子径が大きいほど 1 回 目の変化が早く起きており、この変化が水粒子の破壊に関連する現象であること が示唆された。

マルチプルエマルションの複雑な摩擦係数変化の原因を調べるため、使用感触 の変化前後で乳化粒子を顕微鏡観察した(Fig.25)。球状であった粒子(a)が、摩擦 係数が急低下した後は合一して大きな粒子(b)になっており、再び上昇した後は 内油相中に含まれる高級アルコールなどの固形油分が析出している(c)様子が観 察された。これより、摩擦係数の急激な低下は水粒子の急激な破壊による離水、 最後の摩擦係数の上昇は水相の揮発に伴う内油中固形油分の皮膚への付着に起 因すると考えられる。W/O乳化の破壊である摩擦係数の急低下は、外油相に不揮 発性の油分を用いると起こらなくなること、また水相粒子が大きいほど、W/O乳 化剤が少ないほどが早く顕著であることなどの結果から、塗布によるシェアと外 油相の揮発による相比バランスの崩れにより引き起こされるものと考えられる。

Fig.26 に、Table 5 で示した処方の W/O エマルションと内油相比 12wt%の O/W/O 型マルチプルエマルションの外観を示す。内相比が同じでも内油相量が 多い方が基剤が硬い(塗布直後の摩擦係数が高い)こと、摩擦係数変化は内油相 量が多いほど顕著であることがわかった(図 10)。この原因として次のように考 えた。通常の W/O エマルションの場合、外油相の揮発に伴う粘度上昇、シェア による粒子破壊、ミクロに離水した水相の揮発が徐々に同時進行し、最終的に残 存成分の感触に達するまで急激な変化を感知することができない。一方マルチプ ルエマルションの場合、内油滴が多いほど水粒子の歪みが抑制されて基剤は硬く なり、シェアを加えると柔軟に変形できない水粒子が一気に壊れて離水現象を起 こし、これが伸びの変化として感知されるものと思われる。この特徴的な感触変 化をいかし、本研究はマッサージクリームに活用された ⁵⁹。

5-4. 結言

マルチプルエマルションにはいくつもの界面が存在し、いろいろな要素が互い にからみ合って一つの複雑な系を作り上げている。最内相は分散相のさらに内側 に存在するため、特にその界面についての研究は困難である。今回特に、特徴的 な使感触について詳しく述べたが、単純エマルションとの比較から推察するとい
ったような、比較的間接的な手法に偏ったきらいがある。今後もマルチプルエマ ルションについての基礎的な知見が得られることを期待する。

5-5. 参考文献

1) S. Goto, K. Nakata, T. Miyakawa, W. Zhang, T. Uchida, (1991) Yakugaku Zasshi, <u>111</u>, 702-708.

- 2) Y. Sela, S. Magdassi, N. Garti, (1995) J. Controlled Release, <u>33</u>, 1-12.
- 3) W. Zhang, T. Miyakawa, T. Uchida, S. Goto, (1992) Yakugaku Zasshi, <u>112</u>, 73-80.
- 4) C. Laugel, A. Baillet, D. Ferrier, (1998) Int. J. Cosmet. Sci., <u>20</u>, 183-191.
- 5) G. H. Dahms, (1996) J. Cosmet. Sci, 47(4), 278.
- 6) T. Takahashi, (1980) J. Cinic. Sci., <u>16</u>, 1493-1499.
- 7) S. Nakhare, S. P. Vyas, J. (1996) Microencapsulation <u>13</u>, 281-292.
- 8) A. F. Brodin, S. G. Frank, (1978) Acta Pharm. Sci., <u>15</u>, 111-118.
- 9) A. F. Brodin, A. F.. Kavaliunas, S. G. Frank, ibid, 1-8

10) J. K. Pandit, B. Mishira, Y. Krishinaswamy, and D. N. Mishira, (1988) Indian J. Pham. Sci., 50, 274-275.

11) S. Singh, R. Singh, S. P. Vyas, (1995) Development and Characterization, <u>112</u>, 609-615.

12) R. Denine, Jager-Lezer Grossiord, H. Puisieux, M. Seiller, (1996) Int. J. Cosmet. Sci., <u>18</u>, 103-122.

- 13) 高橋康之、(1990) 調理科学、 <u>23</u>、12-23.
- 14) 浜川弘茂、特開平 9-140350
- 15) N. N. Li., (1971) A. I. Chem. J., <u>17</u>, 459-463.
- 16) A. K. Chakravarti, S. B. Chowdhury, D. C. Mulherjee, (2000) Colloid. Surf. A, <u>166</u>, 7.
- 17) 中野薫、(1993) 分離技術、<u>23</u>、335-342
- 18) M. H. Lee et. al., (2001) J. Colloid. Int. Sci., <u>240</u>, 83.
- 19) M. Fujiwara, (2004), Chem. Mater., <u>16</u>, 5420.
- 20) S. Matsumoto, (1985) J. Dispersion Sci. Technol., <u>6</u>, 507.
- 21) S. Matsumoto, (1983) J. Colloid. Int. Sci., <u>94</u>, 362.

- 22) 平井義和、(1993) フレグランスジャーナル、4,34.
- 23) 岡本亨、(2005) フレグランスジャーナル、<u>19</u>、52.
- 24) J. Allouche, (2003) Ind. Eng. Chem. Res., <u>42</u>, 3982.
- 25) S. Okushima, (2004) Langmuir, <u>20</u>, 9905.
- 26) De M. Luca, C. Vaution, J. M. Medard, J. L. Grossiord, (1990) Cosmet. Toiletries, 105, 65.
- 27) A. A. -Elbary et. al. (1984) Pharm. Ind. <u>46</u>, 964.
- 28) P. Hameyer, (1995) Cosmet. Toiletries, <u>111</u>, 39.
- 29) S. Matsumoto, (1976) J. Colloid. Int. Sci., 57, 353.
- 30) S. Matsumoto, (1989) J. Dispersion Sci. Technol., <u>10</u>, 455.
- 31) K. Pays, (2001) Langmuir, <u>17</u>, 7758.
- 32) 特許第 3440437 号
- 33) A. Baillet, (1994) Int. J. Cosmet. Sci., <u>16</u>, 1.
- 34) 鈴木啓、特許第 1517241 号
- 35) S. Raynal, (1994) Collid. Sruf. A, <u>91</u>, 191.
- 36) M. Hai, (2004) Langmuir, <u>20</u>, 2081.
- 37) R. Pal, (1996) Langmuir, <u>12</u>, 2220.
- 38) C. Py, (1994) Collid. Sruf. A, <u>91</u>, 215.
- 39) S. Kang, E.A. Duell, G.J. Fisher, S.C. Datta, Z. Wang, A.P Reddy, A. Tavakkol,

J.Y. Yi, C.E.M. Griffiths, J.T. Elder, and J.J. Voorhees, (1995) J. Invest. Dermatol., <u>105</u>, 549-556.

40) X. Tan, N. Meltzer, and S. Lindenbaum, (1993) J. Pharm. Biomed. Anal., <u>11</u>, 817-822.

- 41) A. R. Oyler, M.G. Motto, R.E. Naldi, K.L. Facchine, P.F. Ham- burg, D.J. Burinsky, R. Dunphy, M.L. Cotter, (1989) Tetrahedron, <u>45</u>, 7679.
- 42) M. C. Allwood, J.H. Plane, (1986) Inf. J. Pharm., <u>31</u>, 1.
- 43) 鈴木喬、(1993) フレグランスジャーナル、<u>7</u>、25.
- 44) S. Hara, O. Washisu, and Y. Totani, (1982) J. Jpn. Oil Chem. Soc., <u>31</u>, 1004-1008.
- 45) Kang, W.-W., and S. Matsumoto, (1989) Ibid., <u>38</u>, 165-169.
- 46) 山口道廣、熊野可丸、戸辺信治、(1991) 油化学、<u>40</u>, 491.

- 47) 山口道廣、(1997) 表面, <u>35</u>, 1.
- 48) 山口道廣、熊野可丸、戸辺信治、(1990) 油化学、39,100.
- 49) 東秀史, (2002) 機能性エマルションの技術・評価とその応用(シーエムシー 出版) P.151.
- 50) 山口道廣、(1991) 油化学、39,95.
- 51) Hayashi, S., and Y. Nishii, (1971) Vitamins, 28, 269-273.
- 52) Tsukida, K., M. Ito, and F. Ikeda, (1971) Int. J. Vif. Nutr. Res., <u>41</u>, 158-170.
- 53) T. F. Tadras, (1992) Int. J. Cosmet. Sci., 14, 93.
- 54) P. Stroeve, (1984) J. Colloid. Int. Sci., 99, 360.
- 55) F. Michaut, (2004) Langmuir, 20, 8576.
- 56) V. Muguet, (2000) J. Rheology, 44, 379.
- 57) 特許第 4553607 号
- 58) 草苅健, 松崎文昭, 梁木利男, 黒沢麻里, 福井寛, 伊達宗宏, (1999) 油化学 討論会要旨
- 59) 特許第 4039542 号

Fig.1 Schematic illustration of multiple emulsion

Fig.2 Process of destabilization of multiple emulsion

Fig.3 Schematic representation of a O/W/O multiple emulsion

Fig.4 Schematic Illustration of interfaces of multiple emulsions

Fig. 5 Chemical Formula of All-trance Retinol

Table 1 Condition of HLPC measurement

	Measured material	condition
Reversed-phase HPLC column	Vitamin A	Vydac 201TP 104 C18, 4.6 x 250 mm (The Separations Group, Hesperia , CA)
	Vitamin A palmitate	Capcellpak UG 120 C18, 4.6 x 150 mm (Shiseido)
mobile phase	Vitamin A	10 mmol/L potassium phosphate monobasic and 2 mmol/L potassium phosphate dibasic solution/acetonitrile (4:6)
	Vitamin A palmitate	methanol
flow rate	Vitamin A	1.0 mL/min
	Vitamin A palmitate	2.0 mL/min
detection		325nm
column oven temperature		40°C

	Material	Content (wt%)
Inner oil phase	Liquid Paraffin	20
Water phase	1,3-butylen glycol PEG60 caster oil (HCO60) Water	10 A 40-A
Outer oil phase	Liquid paraffin Organoclay (OCDS) PEG14 Di-isostearate (PEIS)	27 0.4 2

Table 2 Formula of O/W/O emulsion for varying concentration of hydrophilic surfactant

Fig.6 Effect of the concentration of the hydrophilic surfactant on the diameter of internal oil droplets (\bigcirc), and the viscosity of O/W/O emulsion (\blacksquare). The concentration means wt% to the whole O/W/O emulsion weight (all of the following graphs are the same). The solid line are connected and data points.

Table 3 Formula of O/W/O emulsion for varying concentration of lipophilic surfactant and organoclay

	Material	Content (wt%)
Inner oil phase	Liquid Paraffin	20
Water phase	1,3-butylen glycol PEG60 caster oil (HCO60) Water	10 1 39
Outer oil phase	Liquid paraffin Organoclay (OCDS) PEG14 Di-isostearate (PEIS)	30-A-B A B

Fig.7 Phase diagram of OCDS / PEIS system for O/W/O emulsion. The open circle (O) represents the stable state of O/W/O emulsion, the open triangle (Δ), unstable at 50°C for 1 month, cross (×), no O/W/O emulsion obtained.

Fig.8 Optical photomicrographs for O/W/O emulsions; 1 Initial condition of O/W/O emulsion for OCDS/PEIS (1.5 / 0.6 %), (a) right after preparation, (b) stored 1 month at 50° C.

Fig.9 Cryo-SEM for O/W/O emulsion with organoclay

Fig.10 Schematic depiction of effect of W/O interface on O/W/O emulsion system; (a) rigid interfacial membrane with organoclay prevents the internal oil droplets from coalescence with the external oil phase, (b) the internal oil droplets are more likely to be absorbed by external oil phase without organoclay.

Fig.11 Effect of lipophilic non-ionic surfactant concentrations of on the viscosity of O/W/O emulsions. The open circle (O) represents the O/W/O emulsion using 0.75% of lipophilic non-ionic surfactant, the open square (\Box), 1%, the open triangle (Δ), 2%.

Fig.12 Effect of inclusion compound concentration on the viscosity of O/W/O emulsion. Weight ratio of OCDS to PEIS is fixed at 0.2.

	ΦO/W					
	Components	0.1	0.2	0.3	0.4	0.5
Inner oil phase	Liquid Paraffin	7	14	21	28	35
	water	52.6	45.2	37.8	30.4	23
water	1,3-butylen glycol	10	10	10	10	10
pildse	HCO60	0.4	0.8	1.2	1.6	2
Outer oil	Liquid paraffin	2				
	OCDS	0.4				
	PEIS			27.6		

Table 4 Formula of O/W/O emulsion for varying weight fraction of inner oil phase ratio

Table 5 Formula of O/W/O emulsion for varying

	Φ(O/W)/O					
	Components	0.5	0.6	0.65	0.7	0.8
Inner oil phase	Liquid Paraffin	15	18	19.5	21	24
Water phase	water 1,3-butylen glycol HCO60	24.29 10 0.71	29.14 12 0.86	31.57 13 0.93	34 14 1	38.8 6 15 1.14
Outer oil phase	Liquid paraffin OCDS PEIS	46 3.33 0.67	36.8 2.67 0.53	32.32 2.33 0.47	27.6 2 0.4	18.4 1.33 0.27

Fig.13 Effect of weight fraction of internal oil (ϕ O/W) (as measured by the ratio of internal oil weight to the whole internal O/W phase weight) viscosity of O/W/O emulsion. The open circle (O) represents that the stable O/W/O emulsion was obtained, the cross (×), unstable state (oil float was observed).

Weight fraction of O/W phase

Fig.14 Effect of weight fraction of O/W phase on the diameter of water droplets and the hardness of O/W/O emulsion. The open circle (O) represents that the stable O/W/O emulsion was obtained, the open triangle (Δ), slightly oil floated or water separation was observed, (×) not obtained.

Fig.15 Schematic depiction of retinol stabilization in O/W/O emulsion.

Table 5Solubility of oxygen to solvent

solvent	Solubility* X10 ⁻² •cm ³ /cm ³ (25°C)
Water	2.8
Ethanol	4~6
ester oils	around 10
Hydro carbons	around 20
Silicone oils	around 30

	Components	LP* soluti	on O/W	W/O	O/W/O
Inner oil phase	Liquid paraffin	99.9	10		10
	Retinol	0.1	0.1		0.1
Water phase	1,3-Butanediol		5	5	5
	Glycerine		5	5	5
	PEG60 caster oil		1		1
	Carbomer		0.1		
	Methylparaben		0.1	0.1	0.1
	Ion-exchanged wa	ater	to 100	to 100	to 100
Outer oil phase	Liquid paraffin			27.6	27.6
	Smecton DS-100			2	2
	PEG14 Di-isostea	arate		0.4	0.4
	Retinol			0.1	
Remaining percent at 50 °C after	tage of Retinol 4 week	0	32.3	45.7	59.6

Table 6 Formulas (%) of Emulsions and Retinol Stability

* LP; Liquid paraffin:

Fig. 16 Effect of peroxide in an O/W emulsifier (Nikkol HCO-60) on the stability of Vitamin A palmitate (VA-pal); the remaining percentage of VA-pal at 50°C after 17 day. POV, peroxide value;

Fig. 17 Ffect of organophilic clay minerals and O/W emulsifiers on retinol stability; the remaining percentage of retinol at 50 °C, with (\bigcirc) Smecton DS100 and Emulex 600 di-IS, (\blacktriangle)Smecton DS100 and Emulex 600 di-O, (\blacklozenge) Benton 38 and Emulex di-IS, (\blacksquare) Benton 38 and Emulex di-O.

Fig. 18 Effect of inner oil phase ratio (φ i) on the stability of retionol; the remaining percentage of retinol at 50 °C after 2 weeks, (\bullet) in O/W/O, and (\blacksquare) in O/W.

Fig. 19 Effect of inner oil phase ratio (φ i) on encapsulation percentage (the ratio of retinol in inner oil phase to the total amount of O/W/O emulsion); (O) day 0, (\bigcirc) 2 weeks at 50°C.

Fig. 20 Schematic depiction of retinol distribution in O/W/O emulsions at the same concentration of retinol; (A) $\varphi i = 0.1$, (B) $\varphi i = 0.2$. The difference of retinol concentrations between the inner and outer oil phase (ΔC retinol) induces retinol to migrate from the inner oil phase to the outer oil phase, resulting in a decrease of encapsulation percentage.

Fig.21 Effect of antioxidants on retinol stability in O/W/O emulsions; the remaining percentage of retinol at 50°C, (\bigcirc)control, (O) 0.05% Buthylhydroxytoluene (BHT), (\Box) 0.1 sodium ascorbate (AsANa), (\diamondsuit) 0.1% EDTA3Na, (\bigtriangleup) mixture (0.05% BHT, 0.1%, 0.1% EDTA).

Fig.22 Phase inversion measurement system

Table 5	Formulation for	inbestigation
---------	-----------------	---------------

	Material	W/O	O/W/O
Inner oil phase	Liquid paraffin	-	5~10wt%
	Higher alcohol	-	3
Water phase	Glycerine	5	5
	Sodium Stearoyl glutamic acid	-	1
	preservatives	0.1	0.1
	Ion exchanged water	100 – conter	t of other materials
Outer oil phase	Volatile silicone oil	20	20
	Organophilic clay	2	2
	PEG-10 Dimethicone	1	1

Fig.23 Changes of frictional coefficient during applying, the inner oil phase ratio for O/W/O emulsion is (a) 12wt%, (b) 8wt%, (c) 5wt%, (d) 0wt% (=W/O emulsion), respectively

Fig.24 Changes of frictional coefficient during applying, the average water droplet size is (a) $30\mu m$, (b) $15\mu m$, (c) $5\mu m$, respectively

Fig.25 Microphotograph of the O/W/O observed (a) before drastic change for the first time (b) during the friction decreasing (c) after the second change

Fig.26 Appearance of (a) W/O emulsion with 90% water phase ratio (b) O/W/O emulsion with 87% inner phase ratio

6章 結言

地球を代表する鉱物である粘土は千の用途を持つ素材といわれ、利用法も多岐 にわたっている。化粧品においては、粘土鉱物は皮膚に対して安全で、低価格で あり、かつ滑らかな使用感触と艶やかな外観を与える原料として非常に有用であ る。ファンデーションなどの粉末製品には多く配合されているが、粘土鉱物の主 な機能であるゲル化機能と界面への吸着機能については十分に利用されていな い。この理由が、粘土ゲルのエージング現象による経時変化と、安定な乳化物調 製に多量の界面活性剤の併用が必要であることと考え、これらを改善することで スキンケア製品のゲル化剤、乳化剤としての粘土鉱物の活用を試みた。

6-1. スメクタイト-PEG 複合体の流動特性とエージング挙動

粘土ゲルの短所であった離水と経時での粘度変化を抑制するために、分子量の 異なる PEG との複合体分散液について研究した。その結果、分子量 4000 以上の 高分子 PEG は粘土鉱物粒子に吸着し、粘土鉱物粒子の再配列に伴うエージング 現象を遅らせた。さらに中性付近に調整したスメクタイト単独分散液では調製1 日後に離水するが、高分子 PEG 配合配合により少なくとも1年は離水しない状 態を保つことができた。これは、高分子 PEG が粘土鉱物粒子の構造変化を緩和 すること,粘土鉱物を構成する二価陽イオン(金属イオン)の溶出を抑制するこ とが要因であると考えられた。

これらの結果から、粘土鉱物粒子の心地よい感触を損なうことなく、水系基剤におけるゲル化剤としてスメクタイトを利用できる可能性が示唆された。

6-2. 塩およびカチオン性ポリマーを含むスメクタイト分散液の粘度変化と乳化 能に関する研究

スメクタイト分散液に、スメクタイト粒子が凝集・沈殿する程度の濃度まで塩 を添加すると、安定な乳化物が調製できることが分かった。また、スメクタイト と種々カチオン性ポリマーとの複合体について、粘度挙動と乳化能について調べ た。種々カチオン化ポリマーとの複合体は NaCl を 3wt%含む水中でも増粘効果 があり(耐塩性増粘効果)、かつ乳化剤として機能することが分かった。特にカ チオン化セルロースとの複合体は、耐塩性および乳化能が高く、スメクタイト 3st%に対しポリマーを 0.05wt%配合するのみで、NaCl を 3wt%配合しても増粘効 果を有し、また油分 50wt%を安定に乳化できた。

6-3. 有機変性粘土鉱物を用いたW/O 乳化製剤の調製方法とスキンケア製剤への活用

有機変性粘土鉱物によるイソヘキサデカンのゲル化メカニズムと、そのオイル ゲルから得られるW/O型乳化製剤について研究を行った。有機変性粘土鉱物の形 成するオイルゲルの粘度は、界面活性剤の添加量増大に従い、層間拡大(粘度変 化なし)→粘土鉱物どうしのネットワーク形成(増粘)→ネットワーク破壊(減 粘)の過程を経ていることがわかった。これより、安定なW/O型エマルションを 調製するために必要な最小の界面活性剤量が明らかとなり、結果として従来のシ リコーン系乳化製剤よりもべたつきが少なく、肌なじみも良い製剤が調製できた。

6-4. O/W/O 型マルチプルエマルションの調製とその化粧品への応用

有機変性粘土鉱物の形成するオイルゲルに O/W エマルションを再乳化する ことで、界面活性剤では実現困難である安定な O/W/O 型エマルションを調製す ることができた。このマルチプルエマルションの内油相中に配合したビタミン A アルコールは、同じ組成の O/W 型または W/O 型エマルションの油相中に添加し たビタミン A アルコールの残存率と比較して顕著に高かった。粘土鉱物による 界面膜の固化が、乳化物の経時安定性向上と、不安定化薬剤の安定化に寄与して いることが明らかとなった。

さらに、内油相に高級アルコールとアニオン性界面活性剤を配合し、W/O界面のみならず O/W 界面をも固化することで、塗布中に2回の感触変化をもたらすマルチプルエマルションが調製できた。これは、乳化粒子の合一や固形物どうしの凝集が原因であることが分かった。この感触変化は内油相比や乳化粒子径によってコントロール可能であった。

127

本研究を行うにあたり、長年にわたり温かい励ましとご指導、ご鞭撻を賜りま した東京理科大学理工学部工業化学科湯浅真先生に心から感謝の意を表します。 途中で何回か辛い時期がございましたが、ここに論文を完成することができまし たのも、ひとえに先生の励ましと支えのお蔭と思っております。ありがとうござ いました。

また、大変有益なご討論を頂きました、東京理科大学理工学部工業化学科 郡 司天博先生、有光晃二先生、坂井教郎先生、同学部経営工学科 大和田勇人先生、 同学部機械工学科 早瀬仁則先生ならびに始終励ましを頂いた秘書の柴田さんに 感謝申し上げます。

本論文発表の機会を与えていただきました、(株)資生堂の野田章氏、岡本亨 氏をはじめとする上司および、同僚のみなさまに深く感謝申し上げます。

最後となりましたが、本研究を遂行することができましたのも、(株)資生堂 のみなさまや知人、友人の多大なるご助言、励まし、そして何より家族の絶え間 ない温かい励ましと支えがあったからに他なりません。母であり妻でありながら、 本論文の作成に多くの時間を費やして参りました。両親と義母、夫潔、そして公 聴会にも足を運んでくれた長男慶輝と長女舞優花に深く感謝します。

128

主論文を構成する論文

 A Novel Method for Preparing Oil-in-Water-in-Oil Type Multiple Emulsions Using Organophilic Montmorillonite Clay Mineral (有機変性粘土鉱物を用いた O/W/O 型マルチプルエマルションの新しい調 製法) Tomoko Sekine, Katsunori Yoshida, Fumiaki Matsuzaki, Toshio Yanaki, and Michihiro Yamaguchi

Journal of Surfactants and Detergents, Vol.2, No.3, 309-315, (July 1999)

 有機変性粘土鉱物を用いた W/O 乳化製剤の調製方法とスキンケア製剤への 活用

佐々木 一貴、北島 正樹、西居 加奈、関根 知子、渡辺 啓、大村 孝之 日本化粧品技術者会誌 Vol.47, No.1, 19-25, 2013.

塩およびカチオン性ポリマーを含むスメクタイト分散液の粘度変化と
 乳化能に関する研究

関根知子、粘土科学、第54巻、第1号、1-8、2015

4.スメクタイト-PEG 複合体の流動特性とエージング挙動
 関根知子、高橋勉、粘土科学、第 53 巻、第 3 号、94-102、2015

参考論文

- Stability of Vitamin A in Oil-in-Water-in-Oil-Type Multiple Emulsions (O/W/O 型マルチプルエマルションにおけるビタミン A の安定性) Katsunori Yoshida, Tomoko Sekine, Fumiaki Matsuzaki, Toshio Yanaki, and Michihiro Yamaguchi Journal of the American Oil Chemists' Society Vol.76, No.2, 195-200, 1999
- マルチプルエマルションの調製と特徴 関根知子 オレオサイエンス、第1巻第3号、229-236、2001
- Unique emulsions based on biotechnically produced hydrophobins (ハイドロフォビンタンパクで調製したユニークなエマルション)

Martin Reger, Tomoko Sekine, Tohru Okamoto and Heinz Hoffmann Soft Matter, Vol.7, 8248-8257, 2011

4. Pickering emulsions stabilized by novel clay-hydrophobin synergism
 (粘土鉱物・ハイドロフォビンタンパクの相乗効果により安定化された
 ピッカリングエマルション)

Martin Reger, Tomoko Sekine, Tohru Okamoto, Kei Watanabe and Heinz Hoffmann Soft Matter, Vol.7, 11021-11030, 2011

5. Pickering emulsions stabilized by amphiphile covered clays
 (両親媒性物質で処理された粘土で安定化されたピッカリングエマルション)

Martin Reger, Tomoko Sekine, Heinz Hoffmann Colloids and Surfaces A : Physicochemical Engineering Aspects, Vol.413, No.5, 25-32, 2012

6. Boosting the stability of protein emulsions by the synergistic use of proteins and clays

(粘土の併用によるタンパク質乳化基剤の安定化)

Martin Reger, Tomoko Sekine, Heinz Hoffmann Colloid and Polymer Science, Vol.290, 631-640, 2012

7. Dry oil powders and oil foams stabilised by fluorinated clay platelet particles

(フッ素処理セリサイトで安定化されたドライオイルおよびオイルフォ ーム)

Bernard. P. Binks, Tomoko Sekine and Andrerw. T. Tyowua, Soft matter, Vol.10, 578-589, 2014

- 8. 有機変性粘土鉱物を用いた乳化物の調製および化粧品への応用
 関根知子
 粘土科学、第52巻、第3号、100-103、2014
- 9. Particles at Oil-Air Surfaces: Powdered Oil, Liquid Oil Marbles, and Oil Foam
 (油/気界面に吸着した粒子:ドライオイル、オイルリキッドマーブル、
 オイルフォーム)

Bernard P. Binks,^{1,*} Shaun K. Johnston,¹ Tomoko Sekine² and Andrew T. Tyowua¹

ACS Appl. Mater. Interfaces, Vol.7, 14328-14337, 2015