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ABSTRACT: State-of-the-art automatic speech and speaker recognition systems are often built with a pattern
matching framework that has proven to achieve low recognition error rates for a variety of resource-rich tasks when
the volume of speech and text examples to build statistical acoustic and language models is plentiful, and the speaker,
acoustics and language conditions follow a rigid protocol. However, because of the “blackbox” top-down knowledge
integration approach, such systems cannot easily leverage a rich set of knowledge sources already available in the lit-
erature on speech, acoustics and languages. In this paper, we present a bottom-up approach to knowledge integration,
called automatic speech attribute transcription (ASAT), which is intended to be “knowledge-rich”, so that new and
existing knowledge sources can be verified and integrated into current spoken language systems to improve recognition
accuracy and system robustness. Since the ASAT framework offers a “divide-and-conquer” strategy and a “plug-and-
play” game plan, it will facilitate a cooperative speech processing community that every researcher can contribute to,
with a view to improving speech processing capabilities which are currently not easily accessible to researchers in the
speech science community.
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RESUMEN: Una estrategia de procesamiento automático del habla basada en la detección de atributos.- Los sistemas
más novedosos de reconocimiento automático de habla y de locutor suelen basarse en un sistema de coincidencia de
patrones. Gracias a este modo de trabajo, se han obtenido unos bajos índices de error de reconocimiento para una va-
riedad de tareas ricas en recursos, cuando se aporta una cantidad abundante de ejemplos de habla y texto para el entre-
namiento estadístico de los modelos acústicos y de lenguaje, y siempre que el locutor y las condiciones acústicas y
lingüísticas sigan un protocolo estricto. Sin embargo, debido a su aplicación de un proceso ciego de integración del
conocimiento de arriba a abajo, dichos sistemas no pueden aprovechar fácilmente toda una serie de conocimientos ya
disponibles en la literatura sobre el habla, la acústica y las lenguas. En este artículo presentamos una aproximación de
abajo a arriba a la integración del conocimiento, llamada transcripción automática de atributos del habla (conocida en
inglés como automatic speech attribute transcription, ASAT). Dicho enfoque pretende ser “rico en conocimiento”,
con el fin de poder verificar las fuentes de conocimiento, tanto nuevas como ya existentes, e integrarlas en los actuales
sistemas de lengua hablada para mejorar la precisión del reconocimiento y la robustez del sistema. Dado que ASAT
ofrece una estrategia de tipo “divide y vencerás” y un plan de juego de “instalación y uso inmediato” (en inglés, plug-
and-play), esto facilitará una comunidad cooperativa de procesamiento del habla a la que todo investigador pueda
contribuir con vistas a mejorar la capacidad de procesamiento del habla, que en la actualidad no es fácilmente accesible
a los investigadores de la comunidad de las ciencias del habla.

PALABRAS CLAVE: detección de los atributos del habla; sistemas ricos en conocimientos; redes neuronales artificiales;
modelos ocultos de Markov
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1. INTRODUCTION

Automatic speech recognition (ASR) is commonly
addressed using data-driven approaches and a number
of fine textbooks and reference books have been pub-
lished on this topic (De Mori, 1998; Jelinek, 1997; Lee,
Soong, & Paliwal, 1996; O’Shaughnessy, 2000; Rabiner
& Juang, 1993). The key features of the conventional
approach are the use of a decoding strategy based on
dynamic programming (DP; e.g., Bellman, 1957; Bell-
man & Dreyfus, 1962; Ney & Ortmanns, 2000), along
with a Markov inference framework (Baker, 1975;
Baum, 1972; Baum & Petrie, 1966; Baum, Petrie,
Soules, & Weiss, 1970). The ease of learning speech
and language models from data has triggered, in the last
40 years, a wave of progress using fast technology for
ASR based on this integrated pattern modeling and de-
coding framework, later known as hidden Markov
models (HMMs; e.g., Lee&Huo, 2000; Rabiner, 1989).

However, in recent years, technological progress has
slowed down significantly andmost research groups are
searching for the next big wave to move ASR forward.
The fragile nature of ASR system design requires new
technological breakthroughs before conversation-based
systems really become a ubiquitous user interfacemode,
able to compete with conventional graphical user inter-
faces using a “point-’n’-click” device like a mouse, or
touch-sensitive screens.

It could be argued that the ASR problem is still too
difficult and that the community could not simply rely
on a single ASR decoding equation in the Shannon
channel modeling paradigm (Shannon, 1948) to provide
all the answers. Many speech researchers would agree
that the entry barrier to competitive ASR research today
is simply too high for most speech groups to be able to
make any significant impacts.

Moreover, we might want to divide up the big and
not-easy-to-solve ASR problem into a set of small and
manageable issues and conquer them one by one. The
“divide-and-conquer” strategy enables a “plug-and-play”
mode for small individual researchers to contribute their
best modules to the overall system through what was
called a “collaborative ASR community of the 21st
century” (Lee, 2003).

It seems that the missing link between human speech
recognition (HSR) and ASR lies in designing a bank of
“perfect” feature detectors to serve as “cues” for further
processing. The automatic speech attribute transcription
(ASAT; Lee et al., 2007; Lee & Siniscalchi, 2013)
framework recently proposed is an attempt to bridge
this gap and address research issues in HSR. The key
idea is to design bottom-up speech attribute detection
followed by a stage-by-stage knowledge integration
paradigm. We will collectively refer to this set of view-
points as an “information extraction” perspective to ex-
tract useful acoustic and linguistic information for the
purposes of speech recognition and understanding. It
also facilitates a divide-and-conquer strategy so that re-
searchers from different corners of the world can collab-

orate by contributing their best detectors or knowledge
integration modules to plug-and-play in the overall
system design.

The rest of the paper is organized as follows. In
Section 2 we briefly review the automatic speech at-
tribute transcription (ASAT) framework. In Section 3
we highlight new ASAT capabilities to address the
technological limitations of the conventional ASR ap-
proach and demonstrate how the divide-and-conquer
ASAT approach can overcome some of these limitations.
In Section 4 we describe possible future work opportu-
nities within the ASAT framework by leveraging a plug-
and-play collaboration plan. Finally we summarize our
findings.

2. AUTOMATIC SPEECH ATTRIBUTE
TRANSCRIPTION

The speech signal contains a rich set of information
that facilitates human auditory perception and commu-
nication, beyond a simple linguistic interpretation of the
spoken input. In order to bridge the performance gap
between the ASR and HSR systems, the narrow notion
of speech-to-text in ASR has to be expanded to incorpo-
rate all the related information “embedded” in speech
utterances. This collection of information includes a set
of fundamental speech sounds with their linguistic inter-
pretations, a speaker profile encompassing gender, ac-
cent, emotional state and other speaker characteristics,
the speaking environment, etc. Collectively, we call this
superset of speech information the attributes of speech.
They are not only critical for high performance speech
recognition but also useful for many other applications,
such as speaker recognition, language identification,
speech perception, speech synthesis, etc. The human-
based model of speech processing suggests a candidate
framework for developing next generation speech pro-
cessing techniques that have the potential to go beyond
the current limitations of existing ASR systems.

Based on the above-mentioned set of speech at-
tributes, ASR can be extended to Automatic Speech
Attribute Transcription, or ASAT, a process that goes
beyond the current simple notion of word transcription
(Lee & Siniscalchi, 2013). ASAT therefore promises to
be knowledge-rich and capable of combining multiple
levels of information in the knowledge hierarchy into
attribute detection, evidence verification and integration,
as shown in Figure 1. The top panel illustrates the front-
end processing which consists of an ensemble of speech
analysis and parametrization modules. And the bottom
panel demonstrates a possible stage-by-stage back-end
knowledge integration process. These two key system
components will be described in more detail below.
Since speech processing in ASAT is highly parallel, a
collaborative community effort can be built around a
common sharable platform to enable a divide-and-con-
quer ASR paradigm that facilitates a tight coupling of
interdisciplinary studies of speech science and process-
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ing. Such a paradigm would eventually lower the entry
barrier to competitiveASR research, since speech groups
can specialize in a specific block displayed in Figure 1
and yet provide a significant impact.

In the following paragraphs, the ASAT frontend and
backend will be briefly reviewed. The interested reader
can refer to Lee and Siniscalchi (2013) for additional
details.

2.1. Front-end attribute detection

An event detector converts an input speech signal
x(t) into a time series which describes the level of pres-
ence (or level of activity) of a particular property of an
attribute, or event, in the input speech utterance over
time. This function can be computed as the a posteriori
probability of the particular attribute, given the speech
signal, within a proper time window, or the likelihood
ratio (which involves calculation of two likelihoods, one
pertaining to the target model and the other to the con-
trast model). The bank of detectors consists of a number
of such attribute detectors, each being individually and
optimally designed for the detection of a particular event.

2.2. Back-end knowledge integration

Another critical component in the ASAT paradigm
is the back-end processing. An event merger takes the
set of detected lower-level events as input and attempts
to infer the presence of higher-level units (e.g., a phone
or a word) which are then validated by the evidence
verifier to produce a refined and partially integrated
lattice of event hypotheses to be fed back for further
event merger and knowledge integration. This iterative
information fusion process always uses the original event
activity functions as the raw cues. A terminating strategy
can be instituted by utilizing all the supported attributes.

Tomakeuseof the featuresdetected,wemust combine
them inaway that enablesus toproducewordhypotheses.
In essence, this boils down to three problems: (i) combin-
ingmultipleestimatesof the sameevent tobuilda stronger
hypothesis; (ii) combining estimates of different events
to form a new, higher level event with similar time
boundaries;and(iii)combiningestimatesofeventssequen-
tially to form longer-term hypotheses. Note that these
problems are relatively independent of the level ofmodel-
ing: while the canonical bottom-up processing sequence
would be to combine multiple estimates of each feature,
and then combine the features into phones and thenwords
(and word sequences), we envision a highly parallel
paradigm that is flexible enough, for example, to combine
a feature-based phone detector with a directly-estimated
phone detector. In principle, a 20K-wordASR system can
be realized with a set of 20,000 single-keyword detectors
(Ma & Lee, 2007).

It is clear that we have a long way to go before we
can develop a complete ASAT-based ASR system that
is competitive in performance with state-of-the-art sys-
tems. However, we believe that, through incorporating
knowledge sources into speechmodeling and processing,
the set of recognized attribute sequences, event lattices,
and evidence for decisions provides an instructive col-
lection of diagnostic information, potentially beneficial
to improving our understanding of speech, as well as
enhancing ASR accuracy. As an example, we found that
“knowledge scores” computedwith detectors for manner
and place of articulation offered a collection of comple-
mentary information that can be combined with HMM
frame likelihoods to reduce phone and word errors in
rescoring (Li, Tsao, & Lee, 2005; Siniscalchi & Lee,
2009; Siniscalchi, Li, & Lee, 2006).

2.3. Event and evidence verification

Verification of patterns is often formulated as a sta-
tistical hypothesis testing problem (Lehmann, 1959) as
follows: given a test pattern X, we want to test the null
hypothesis, H0, against the alternative hypothesis, H1,
where H0 assumes that X is generated from the source,
S0, and H1 assumes that X is generated from another
source, S1. Event verification, a critical ASAT compo-
nent, can be formulated in a similar way. There are
plenty of techniques available in literature in designing
optimal tests if P (X|H0) and P (X|H1) are known exactly.
However, for most practical verification problems we
face in real-world speech and language modeling, we
use a set of training examples to estimate the parameters
of the distributions of the null and alternative hypothe-
ses. The two competing hypotheses and their overlap
indicating the two error types are illustrated in Figure
2. The use of generalized log likelihood ratio (GLLR)
was recently proposed as a way to measure separation
between competing hypotheses (Tsao, Li, & Lee, 2005).
GLLR plots are similar to what is shown in Figure 2 for
measuring separation between speech events.
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Figure 1: Automatic speech attribute transcription (ASAT). Top
panel: speech analysis ensemble followed by a bank of attribute
detectors to produce an attribute lattice. Bottom panel: stage-by-
stage knowledge integration from speech attributes to recognized

sentences.
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Two types of errors thus exist. The type I error, or
false rejection or miss detection rate, is shown in the
blue area of Region I in Figure 2, and the type II error,
or false acceptance rate, is shown in the magenta area
of Region II in Figure 2. The verification performance
is often evaluated as a combination of Type I and Type
II errors. The related topic of confidence measure (CM)
has also been intensively studied by many researchers
recently. This is due to an increasing number of dialogue
applications being developed and deployed in the past
few years. In order to have intelligent or human-like
interactions in these dialogue applications, it is important
to attach to each event a number value that indicates
how confident the ASR system is about accepting the
recognized event. This number, often referred to as a
CM, serves as a reference guide for the dialogue system
to provide an appropriate response to its users, just as
an intelligent human being is expected to do when inter-
acting with other people. This also demonstrates a clear
advantage in HSR: human beings build up their recog-
nition results bottom-up using some forms of confidence
measure of events in both the acoustic and linguistic
domains.

A few word-level confidence measures have been
studied in Kawahara, Lee, & Juang (1998) to improve
the rejection of out-of-grammar and out-of-task speech
segments for ill-formed utterances often encountered in
spontaneous speech. For short and confusable events,
such as phones and place of articulation, more research
in CM is needed (Sukkar & Lee, 1996). However for
some of the events, such as manner of articulation, they
exhibit the characteristics of “islands of reliability” with
high confidence levels, especially in clean conditions
and in human spectrogram reading experiments.

To compare verifiers and detectors, we can plot the
receiver operating characteristic (ROC) curves. The ar-
eas of Regions I and II in Figure 2 can be estimated,
depending on the thresholds used in performing the
verification tests. An example is illustrated in Figure 3,

in which two systems are compared for detecting the
phone /n/ in the first panel. Three operating points for
each ROC curve are also indicated. It is clear that the
detector producing the left ROC curve performs better
than the detector on the right. The ROC curves for de-
tecting the three phones, /w/, /ah /, /n/, respectively, and
the word “one”, are shown in the second panel of Figure
3, using the corresponding Gaussian density pairs. It
can be clearly seen that a 3-phone word “one” is better
detected than any of the single phones in the word.

2.4. Attribute detector design

Attribute detectors should be stochastic in nature and
designed with data-driven modeling techniques. The
goal of each detector is to analyze a speech segment and
produce a confidence score or a posterior probability
that pertains to some acoustic-phonetic attribute. Gener-
ally speaking, both frame- and segment-based data-
driven techniques can be used for speech event detection.
Frame-based detectors can be realized in several ways,
e.g., with artificial neural networks (ANNs), Gaussian
mixture models (GMMs), support vector machines
(SVM), etc. One of the advantages with ANN-based
detectors is that the output scores can simulate the pos-
terior probabilities of an attribute, given the speech sig-
nal. On the other hand, segment-based detectors are
more reliable in spotting segments of speech (Li & Lee,
2005).

Segment-based detectors can be built by combining
frame-based detectors, or with segment models, such as
HMMs, which have already been shown to be effective
for ASR (Rabiner, 1989). Time-delay neural networks
(TDNN) were also shown to be effective in designing
segment-based attribute classifiers (Hou, Rabiner, &
Dusan, 2007). The reader is referred to a recent PhD
thesis (Hou, 2009) detailing the process of building
highly accurate TDNN-based classifiers for all the at-
tribute features of interest.

2.5. Back-end merger design

There exist several methods to generate evidence at
a sub-word level from articulatory events. For example,
starting with manner and place of articulation, a product
lattice of degree two may be generated, and a “con-
strained” search may be performed over this lattice to
generate phone level information (Hacioglu, Pellom, &
Ward, 2004). Conditional random fields were used in
Morris and Folser-Lussier (2006) to generate phone se-
quences by combining articulatory features.

In our framework, all of the detector outputs are
combined with a non-linear function that maps all of
the scores between zero and one and at the same time
generates phone level information. The non-linear
function is realized by a feed-forwardmultilayer percep-
tron (MLP) which has a single hidden layer. In more
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Figure 2: Separation and overlap between competing events with
indication of the two error types.



Figure 3: ROC curves to compare detectors. (Upper) ROC curves comparing two /n/ detectors. (Lower) ROC curves detecting the
word and the three phones in “one”.

recent work, we have demonstrated that phone accura-
cies can be boosted using a deep neural network (Deng
& Yu, 2011; Mohamed, Dahl, & Hinton, 2009; Seide,
Li, & Yu, 2011), as shown in Yu, Siniscalchi, Deng,
and Lee (2012). By merging the attribute detector out-
puts and feeding them into the ANN-based attribute-to-
phone mapping merger, we can produce frame-based
posterior probabilities, one for each phone of interest,
and form a posterior probability feature vector, one for
each form being processed. These posteriors can be used
as building blocks of language-universal units (e.g.,
Siniscalchi, Lyu, Svendsen, & Lee, 2012).

3. NEW ASAT PROCESSING CAPABILITIES

With the proposed ASAT paradigm, a set of new
speech processing capabilities not easily available or
accessible in the state-of-the-art, top-down knowledge
integration paradigm can now be explored in the follow-
ing sections.

An example of visible speech analysis that goes be-
yond the conventional spectrogram plots is given out in
section 3.1. A bottom-up large vocabulary continuous
speech recognition (LVCSR) system is described in
Section 3.2. Acoustic-phonetic, articulatory, supraseg-
mental and long-span linguistic constraints can be im-
posed at different stages of the bottom-up processing to
reduce the possibility of inconsistent brute-force decod-
ing results and improve recognition accuracy as
demonstrated in Section 3.3.

As for modeling of fundamental speech units, we can
now explore units that are clearly defined according to
acoustic descriptions, such as nasality and frication, and
articulatory description, such as back tongue position or
dental sounds. These units or cues are now characterized
with statistical models and trained with speech examples.
However, if they can be detected with signal processing

techniques(Rabiner&Schafer,2011),anenhancedrobust-
ness can be expected. The use of speech attributes, such
as manner and place of articulation, to serve as language-
universal speech units is discussed in Section 3.4. Spoken
language recognition (SLR) can now be accomplished by
a set of such units to act as tokenizers, as shown in at-
tribute-based SLR (Siniscalchi, Reed, Svendsen, & Lee,
2013). Cross-lingual properties (Siniscalchi et al., 2012)
can also be utilized tomodel speech units in one language
and apply them to other languages.

As for speechanalysis and feature extraction, the time-
synchronous process is a dominant practice: for example,
short-time Fourier analysis is often performed at every
10-20 msec on a windowed speech segment of 30-45
msec. This is required in the current decoding paradigm
inorder tocompare likelihoodscoresona frame-by-frame
basis. However, some speech features, such as pitch and
duration, require a longer time frame to process, while
features such as voice onset time (VOT) often require a
shorter time to process. Within the ASAT framework,
asynchronous speech analysis is a key advantage. This
will bediscussed inSection3.5.Biologically-inspiredand
physiologically- motivated speech features can also be
explored.Different speechparameters can thusbe extract-
edtodesignvariousspeechattributedetectors.This impor-
tant concept will also be illustrated. Pitch and duration
information, which is hard to integrate into state-of-the-
art speech processing systems, will be shown to improve
speech recognition accuracy in Section 3.6.

3.1. Visible speech analysis through attribute
detection

We now analyze detection score plots more closely.
Figure 4 displays a longer sentence. It is interesting to
notice that the correct transcript can still be read out by
following the evolution of the event detection process
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Figure 4:Detection curves of manner of articulation for the sentence numbered 440c20t (RATES FELLON SHORT TERMTREASURY
BILLS) of the SI-84 data set (Paul & Baker, 1992). The correct transcript can still be read out by following the time evolution of detection

of the attribute events.

over time. This outcome is also in line with spectrogram
reading by trained experts based on knowledge in
acoustic-phonetics (e.g. Zue, 1981). The detector scores
here were normalized between 0 and 1, ranging from
an absence of an acoustic property to the full presence
of a speech cue. The value of these detection scores is
a good indication of the activity levels for the speech
events of interest. It therefore provides a new visualiza-
tion tool in addition to the conventional spectrogram
plot shown in the top panel of Figure 4.

Error analysis has always played a crucial role in
providing diagnostic information to improve ASR algo-
rithms in the history of ASR technology development.
With the extracted speech cue information revealed in
the new visualization tool, insight can also be developed
in understanding human speech. It also provides a good
tool for educating a new generation of speech students.

For example, we can see sound transition behavior
clearlydisplayed in the region fromSegment6 toSegment
8, going from phone /eh/ to /aa/ with rising activity from
the preceding vowel into the approximant sound /l/ in
Segment 7 then falling away into the following vowel.
We can also observe an overlapping nature of nasalized
vowel at the ending of Segment 8 and the beginning of
Segment 9. The double stop sound regions in Segments
13 and 14 are also interesting to notice. The large overlap-
ping region for the two-candidate Segment 21 indicates
that the approximant sound /ɹ/ heavily influences articula-
tion in the surrounding phones, with a low level vowel
activity showing up between Segments 21 and 22 on the
detector plot for vowel manner.

It is clear the detector score plots displayed in Figure
4 provide a rich set of information not commonly
available to researchers that are not expert-trained in
spectrogram reading. It also reinforces additional advan-
tages we intend to exploit in the information-extraction
perspective we have highlighted throughout this paper.

3.2. Bottom-up LVCSR

The conventional top-down integrated decoding
framework often hampers the definition of generic
knowledge sources (e.g., Gauvain & Lamel, 2000; Ney
& Ortmanns, 2000) that can be used in different do-
mains. Therefore applications for a new knowledge do-
main need to be built almost from scratch. Furthermore,
the effectiveness of the integrated search diminishes
when dealingwith unconstrained and possibly ill-formed
speech inputs, since more complex language models are
needed for handling spontaneous speech phenomena
along with much larger lexicons. On the other hand, in
the modular approach (Siniscalchi et al., 2013) the rec-
ognized sentence can be obtained by performing unit
matching, lexical matching, and syntactic and semantic
analysis in a stage-by-stage, sequential manner. As long
as the interface between the adjacent decoding modules
can be completely specified, each module can be de-
signed and tested separately.

Our first attempt to implement a bottom-up detec-
tion-based LVCSR (Siniscalchi, Svendsen, & Lee, 2011)
using weighted finite-state machines (WFSMs; Mohri,
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1997) is now presented. ASR is accomplished in a bot-
tom-up fashion by performing back-end lexical access
and syntax knowledge integration over the output of our
detection-based frontend, which generates frame-level
speech attribute detection scores and phone posterior
probabilities. Decoupled recognition is made possible
by two main factors: (i) high-accuracy detection of
acoustic information in order to generate high-quality
lattices at every stage of the acoustic and linguistic in-
formation processing; and (ii) low-error pruning of the
generated lattices in order to reduce search errors likely
to occur when trying to minimize the possibility of
memory overflow in using the AT&T WFSM tool.

Figure 5 shows how the decoupled approach is im-
plemented in practice using WFSMs. The original fea-
ture acceptor F is pruned and composed with the dura-
tion transducer D to generate a recognition network
(lattice) at the phone-level phoneRN. Therefore, the next
combination is phoneRN o L, which gives a word level
recognition network by integrating lexical knowledge.
After pruning, this word-level network is composed
with Gbigram to integrate bigram language model (LM)
information. The final grammar-constrained word-level
dRN is thus generated and sent to the trigram LM
rescoring module to re-order the decoding paths embed-
ded in dRN. The output of this step is a word-level lattice
over which either the best path or the N-best list is
computed and delivered.

3.3. Knowledge-based constraints to limit nonsense
recognition results

Let us consider inconsistency with acoustic-phonetic
evidence in the integrated search. In the Wall Street

Journal (WSJ) task (Paul & Baker, 1992), we had ob-
served that a conventional ASR system often confused
the word “Safra”, with the phrase “Stock for”.
Nonetheless, to recognize the word stock it requires the
presence of two stop phones, /t/ and /k/, in the region
of a vowel. This can be checked by visually inspecting
the spectrogram in the upper panel of Figure 6, which
did not show the presence of stop sounds before and
after the middle vowel.

Moreover the time evolution of the output posterior
probabilities for each unit in each frame, known as a
posteriogram (Fousek & Hermansky, 2006), generated
by a bank of ANN-based detectors for manner of articu-
lation, displayed in the lower panel of Figure 6, clearly
indicated that there were no stop events in the area where
the mistake occurred, and it also signaled the presence
of an approximant (/ɹ/ in this case) followed by a vowel
at the end of the time-span under analysis. If this infor-
mation could be properly extracted and included in the
integrated search, these errors could have been avoided.

Another example is given in Figure 7 to show the
effectiveness of the cross-language attribute detector.
The correct word sequence excerpted from part of the
utterance numbered NCKUf0606020 in the TCC300 test
(Chiang, Siniscalchi, Wang, Chen, & Lee, 2012) set is:
“(超級, chao1-ji2, super) (大, da4, large) (縣, xian4,
county) (臺北縣, tai2-bei3-xian4, the Taipei County)
(其, qi2, its) (縣長, xian4zhang3, County Magistrate)
(寶座, bao3-zuo4, post)”. The baseline system generated
an erroneous word sequence of “(及, ji2, and) (市長,
shi4-zhang3, Major)”. When applying the attribute
scores in rescoring, the word “(市長, shi4-zhang3, Ma-
jor)” can be corrected. Figure 7 displays the posterior
probabilities of the related attributes for the base-syllable
“xian4”, which is misrecognized as “shi4”. Note that
the attribute sequence for “xian4” is fricative-vowel-
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Figure 5: Decoupled, bottom-up, detection based LVCSR with
a bigram language model (LM).

Figure 6: Spectrogram (upper panel) and posteriogram (lower
panel) for the sentence numbered 446c0210 of the Nov92 test set
with focus on the area of the errors occurring. A conventional
LVCSR system missrecognizes the word “Safra,” and generates
the transcription “Stock for.” In the second panel, the time evolu-
tion of the posterior probabilities, i.e. the posteriogram, of manner
of articulation shows that there are no plosive events in the time
span under analysis. Furthermore, wrong word recognition is
delivered, although correct manner or articulation detection can

be performed.



nasal while that for “shi4” is fricative-vowel. It can be
seen that the posterior probabilities of the vowel at the
end of the syllable were much lower than those of the
nasal attribute. Therefore, the wrong base-syllable hy-
pothesis of “shi4” with no nasal sound was penalized
by the syllable structure verifier in favor of the base-
syllable of “xian4” with a nasal sound (Chiang et al.,
2012).

TheASATdetector frontendhas beenused success-
fully as a key component for several speech applica-
tions, namely: lattice rescoring (Siniscalchi & Lee,
2009; Siniscalchi, Svendsen, & Lee, 2009), language-
universal phone recognition (Siniscalchi et al., 2012)
and spoken language identification systems (Sinis-
calchi et al., 2013). In this paper, we review the ASAT
automatic spoken language recognition (LRE) system
and show how better detectors allow for better system
performance. The reader is referred to Lee and Sinis-
calchi (2013) for a review of all the other ASAT appli-
cations.

3.4. Defining and modeling of language-universal
acoustic units

Designing good ASR systems with little or no
language-specific speech data for resource-limited
languages is a challenging research topic. As a conse-
quence, there has been increasing interest in exploring
knowledge sharing among a large number of lan-
guages, so that a universal set of acoustic phone units
can be defined to work for multiple or even for all
languages. In Siniscalchi et al. (2012), we have shown
that ASAT can play a key role in designing language-
universal acoustic models by sharing speech units
among all target languages at the acoustic phonetic
attribute level. Indeed, it was shown that good cross-
language attribute detection and continuous phone
recognition performance can be accomplished for
“unseen” languages using minimal training data from
the target languages to be recognized.

One of the key research challenges that is yet to be
addressed in ASR is to build a language universal ASR
system for all spoken languages. One way to reach the
ultimate goal is to first design language-universal at-
tribute detectors that work for all attributes of interest.
In Figure 8, place of articulation detectors trained on
the read-English WSJ0 speech data are tested on an
Italian utterance from a completely unknown corpus
and the detection result is displayed. It is interesting to
note that most of the speech attributes were detected
with considerable accuracy, except for the combination
of /b/ and /r/ at the beginning of the utterance because
of the high speed of delivery.

The idea of having a set of universal acoustic units
that can be sharable across languageswas further exploit-
ed in the spoken language recognition (SLR) context.
Our aim was to describe a spoken language with a set
of speech attributes that can be defined “universally”
across all spoken languages (Siniscalchi et al., 2013).
The set of universal attributes used in our investigation
was defined using manner and place of articulation
classes. The silence unit was also taken into account to
indicate the absence of an articulation activity. A vector
space modeling (VSM) approach to SLR was adopted
to accomplish the recognition task, where a spoken ut-
terance is first decoded into a sequence of attributes,
independently of its language. The SLR system used in
our experiments is shown in Figure 9. It consists of two
main blocks: a frontend, shown in the left-hand panel,
and a backend, shown in the right-hand panel. The
frontend implemented a universal attribute recognizer
(UAR) that decodes a spoken utterance into two parallel
sequences of manner and place attributes, which have
the useful property of being sharable across all spoken
languages. The string of attribute symbols mapped spo-
ken utterances into spoken documents. The backend
delivered the final SLR decision through a VSM ap-
proach in two steps. First, a vector representation of the
spoken document is obtained using latent semantic
analysis (LSA) (Bellegarda, 2000).

In our SLR studies, the key intuition was that a bag-
of-attributes model could universally characterize any
spoken language. Furthermore, we observed that error
rates decrease with improvements in the attribute reso-
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Figure 7: Recognition results with and without constraints. This
example is part of the study presented in Chiang, Siniscalchi,

Wang, Chen, and Lee (2012).

Figure 8: Language-universal attribute detection of an Italian
sentence. This figure is taken from Lee and Siniscalchi (2013).
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lution of the proposed system. We believe that better
results can be attained by designing ad-hoc features for
each speech attribute, and expert knowledge could play
a critical role here.

3.5. Asynchronous speech analysis and detector
design

Biologically-inspired and perception- motivated
signal analysis are considered as promising parameter
extraction directions (Jeon & Juang, 2007; Shamma,
2001) because the ASAT paradigm supports parameter
extraction at different frame rates for designing a range
of speech attribute detectors. Once a collection of speech
parameters, F(t), are obtained, they can be used to per-
form attribute detection which is a critical component
in the ASAT paradigm, as shown in the upper panel of
Figure 1. Attributes can be used as cues or landmarks
in speech (Hasegawa-Johnson et al., 2005; Liu, 1996)
in order to identify the “islands of reliability” for making
local acoustic and linguistic decisions, such as energy
concentration regions and phrase boundaries, without
extensive speech modeling.

An attribute detection example was demonstrated in
Niyogi, Mitra, and Sondhi (1998) to discriminate voiced
and unvoiced stops using voice onset time (VOT) for
two-pass English letter recognition as shown in the
lower half of Figure 10. In the first stage, a conventional
recognizer was used to produce a list of multiple candi-
dates. To further discriminate some of the minimum
pairs, such as the English /d/ and /t/, a VOT-based detec-
tor (Niyogi, Mitra, & Sondhi, 1998), can be used in the
second stage to provide a detailed discrimination as il-
lustrated in the upper half of Figure 10, where we plot
a pair of competing distributions of the likelihood ratio
for /d/ and /t/ based on 39 cepstral parameters and for a
single VOT, respectively. Clearly, the VOT temporal
feature produces a pair of curves with better discrimina-
tion (i.e., with more separation between them) than those
obtained with spectral features alone. By reordering
candidates according to VOT, the two stage recognizer

gave an error rate of 50% less than that obtained in a
state-of-the-art ASR system (Ramesh & Niyogi, 1998).
The same notion has been applied to natural number
recognition in which resolving the “teen-ty” confusion
using a high performance nasal detector is critical.

3.6. Integration of suprasegmental information

The proposed knowledge-assisted ASRwas evaluat-
ed on a large Mandarin read speech corpus TCC300
(Association for Computational Linguistics and Chinese
Language Processing [ACLCLP], 2013a). The acoustic
feature vector used here consists of 38 components (12
MFCC parameters, their first and second order time
derivatives, one delta energy and one delta-delta energy)
analyzed at a 10-msec frame rate with a 30-msec Ham-
ming window. HMM parameters of the 411 8-state syl-
lableswere estimatedwithmaximummutual information
(MMI; Bahl, Brown, de Souza, & Mercer, 1986) using
part of the TCC300 training data (274 speakers, about
23 hours). A test set was formed selecting utterances
from 19 speakers (about 2 hours) among the TCC300
test data. All test data were paragraph utterances with
an average length of 32 seconds.

The SRILM (Stolcke, 2002) toolkit was used to
train the factoredLMwith several text corpora, includ-
ing (i) Sinorama (Group, 2013): a newsmagazine with
9.87 million words; (ii) CIRB030 (LIPS & Labs,
2013): a test bench for information retrieval consisting
of several domains with 124.4 million words; and (iii)
SinicaCorpus (ACLCLP, 2013b): a general text corpus
collected for language analysiswith 4.8millionwords.
A conditional random field (CRF)-based tagger
(Huang, Chiang, Wang, Yu, & Chen, 2010; Lafferty,
McCallum,&Pereira, 2001)was employed to segment
the corpus into word/part of speech (POS) sequences.
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Figure 9: Block diagram of the SLR system with UAR-frontend
and VSM-backend. Figure 10: (Upper) A single VOT parameter is better than 39

cepstral features in discriminating voiced /d/ against unvoiced
stop /t/; (Lower) A two-stage speech recognizer incorporating

sound-specific event detectors.



A 60k-word lexicon was also constructed based on
the word frequency.

The prosodic models were trained using data from
164 speakers (about 8.3 hours) extracted from the
TCC300 training set by a sequential optimization algo-
rithm. A subset of the TCC300 training set was adopted
as development set in order to determine the weighting
vector for model combination. This development set
covered utterances by 33 speakers and with a minimum
length of 18 minutes. The parameters of the attribute
detectors were estimated using part of the SI-84 set of
the Wall Street Journal Corpus (WSJ0; Paul & Baker,
1992) with 7,077 utterances by 84 speakers, or 15.3
hours of speech. A cross-validation (CV) set was gener-
ated by extracting 200 sentences out of the SI84 training
set. The CV set accounts for about 3% of the SI-84 set
and was used to terminate the training. The remaining
6,877 SI-84 sentences were used as training material.
The word lattices for rescoring were generated by HTK
3.4.1 with the tri-gram LM and MMI-trained syllable
models. The word coverage rate of the lattice was
93.75%, which is in the top band of performance for the
proposed approach to attain.

Experimental results are listed in Table 1, from
which it can be seen that the baseline performance can
be improved by incorporating knowledge sources. The
best performance for word, character and syllable
recognition can be achieved by combining scores of
manner (+M), break type (+B), and prosodic state infor-
mation (+P). Generally, the break-type information alone
could provide a better improvement onWER/CER/SER
than the manner attribute.

Table 1: Comparison of word, character and syllable error rates
(in %; WER, CER and SER, respectively) in Mandarin speech
recognition by adding various knowledge sources, including
manner (+M), break type (+B) and prosodic states (+P) to the
baseline ASR system.

SERCERWER
7.7910.5613.75Baseline
7.4410.2013.45+M
7.419.8112.57+B
6.909.3612.43+M+B
4.738.9312.26+B+P
6.638.5512.24+M+B+P

The relatively limited enhancement obtained with
the manner information was mainly due to the fact that
only cross-language attribute detectors were used. The
lack of exact phone boundaries within a syllable also
negatively affects the attribute accuracy.

4. CONCLUSION: CHALLENGES TO THE
SPEECH SCIENCE COMMUNITY

The design of state-of-the-art top-downASR systems
is based on large amounts of language-specific, quality-
controlled data and pronunciation dictionaries that rep-

resent words as sequences of pre-defined sound units.
As previously mentioned, this conventional approach
fails whenever a new application must be developed
when speakers with a non-native accent or with some
speech impairment must be recognized, or when speech
that was produced in a noisy environment must be rec-
ognized.

It can be argued that humans do not need enormous
amounts of training data to be able to understand new
speakers or cope with new acoustic backgrounds. Thus,
the conventional top-down ASR approach that relies on
training generative models on the basis of enormously
large amounts of data misses essential aspects of the
structure of speech signals that allow humans to substan-
tially outperform automatic systems with only a fraction
of the training data. Furthermore, attempts to train lan-
guage-independent ASR models using such top-down
approaches have failed to adequately capture variability
in speech. In this paper, we have argued that the missing
piece of the puzzle lies in designing a bank of “perfect”
feature detectors. These speech detectors should be
stochastic in nature, and the data-driven modeling tech-
niques in state-of-the-art systems can be extended to a
bottom-up detection approach to ASR in which speech
feature detection and linguistic knowledge integration
play key roles. We have referred to this bottom-up ap-
proach as ASAT.

ASAT is by design a collaborative research frame-
work that proposes a radical departure from traditional
top-down ASR and proposes a bottom-up data-driven
approach with the goal of closing the gap between HSR
and ASR. An important aspect of the detection-based
ASAT paradigm is that it gives the opportunity to better
understand the flaws in the ASR recognizer. For exam-
ple, if the /p/ sound is systematically confused with the
/b/ sound, this may show that the voicing detector needs
to be improved.Moreover, the detection-based approach-
es inherently provide a platform in which expert
knowledge of linguistic and acoustic phonetics can be
methodically incorporated into the system. The collec-
tion of information includes a set of fundamental speech
sounds and their linguistic interpretations, a speaker
profile that encompasses gender, accent and other
speaker characteristics, the speaking environment that
describes the interaction between speech and acoustics,
and many other speech characterizations.

ASAT would allow different groups working on
different components of the system to improve the
overall system performance, because there are many
pieces of information, or acoustic cues, to be extracted
and utilized. In the meantime modular approaches are
usually more computationally tractable than integrated
approaches. Furthermore, in contrast to the model-based
pattern matching approach to extracting information
from speech, a collection of signal-based algorithms
needs to be developed in order to detect acoustic land-
marks, such as vowels, glides and fricatives, in adverse
conditions. They could prove useful for selecting good
data segments and designing signal-specific speech en-
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hancement, feature compensation, andmodel adaptation
algorithms for reliable information extraction.

In summary, it may be noted that the performance
in the ASAT system is “additive”, i.e., a better module
for a feature will produce better performance for the
individual module for other modules related to this at-
tribute, and probably for the overall system. Everyone
is welcome to participate in this effort. We hope to
eventually obtain a collection of “best” modules collec-
tively provided by the speech community for a wide
range of features, so that they can be collectively incor-
porated into the “best” overall next generation speech
processing system.
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