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ABSTRACT 

Spin Lobster (Panulirus interruptus) Use of the Intertidal Zone 
at a Santa Catalina Island MPA in Southern California 

by 
Sean C. Windell 

Master of Science in Applied Marine and Watershed Science 
California State University Monterey Bay, 2015 

 
This study investigated spiny lobster (Panulirus interruptus) use of the intertidal habitat 
as an important and underappreciated foraging ground during the reproductive season, 
and the spatial scales over which lobsters interacted with this habitat at two locations off 
Santa Catalina Island, California.  At Bird Rock and Big Fisherman Cove, there were 
significantly higher densities of lobsters within the intertidal zone at night compared to 
the adjacent subtidal zone, as well as a higher density of reproductively active (egg-
carrying) females, suggesting the non-trivial use of this habitat.  Spiny lobster density, 
size, sex ratio (in favor of females), and reproductive condition were also higher at Bird 
Rock, reflecting differences in the underlying intertidal habitat composition between 
locations.  Percent cover of the California mussel (Mytilus californianus) exhibited a 
significant positive correlation with lobster density, and the elevated abundance of this 
preferred prey item might explain the enhanced lobster population metrics at Bird Rock.  
In addition, the spatial distribution of mussels on Bird Rock followed a clumped 
distribution with discrete patches at a sub-meter scale, which may influence the spatial 
scale of spiny lobster foraging behavior.  The results of this study highlight a critical new 
dimension of spiny lobster management throughout Southern California, encouraging the 
consideration of the intertidal zone and the effects of prey distributions on foraging 
behavior. 
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INTRODUCTION 
 Many organisms utilize multiple critical habitats throughout their life-cycle, either 

at different life-stages or for different behavioral purposes (foraging, reproduction, 

shelter, etc.) (Roberts 2000; Roberts et al. 2003).  Ontogenetic shifts in habitat use 

typically differ between juvenile and adult stages for many marine species.  For example, 

rearing juvenile flatfish occupy shallow coastal and estuarine nursery grounds while the 

adults reside in deeper offshore waters (Reichert and van der Veer 1991), and rearing 

juvenile tropical reef fish occupy seagrass beds or mangroves while adults reside on coral 

reefs (Cocheret et al. 2003).  Behavioral shifts in habitat use commonly occurs 

temporally and cyclically, such as the seasonal outmigration of juvenile Chinook salmon 

(Oncorhynchus tshawytscha) into the open ocean and the return of adults to freshwater to 

spawn (Williams 2006), and the migration of gray whales (Eschrichtius robustus) 

northwards in summer to forage in the Bering and Chukchi Seas and southwards in 

winter to calve offshore the west coast of Baja California (Rice et al. 1984).  In order for 

a species to persist temporally and spatially, each critical habitat needs to be in a suitable 

condition that can support that particular life-stage or behavior.  Temperate and tropical 

fish populations are harmed if nursery habitat is loss, Chinook salmon populations are 

negatively impacted if there is limited access to spawning grounds, and gray whale 

migratory patterns may change if their food source becomes unreliable.  Such spatial and 

temporal shifts in habitat use are triggered by a multitude of factors, such as climate 

driven changes within the environment, periodic access to critical habitat, the availability 

of food, or the need for protection and energy conservation during reproduction. 

 The movement of a species between distinct habitats provides cross-system 

subsidies that allows a population to persist at higher densities than possible if it were in 

an isolated habitat (Polis and Strong 1996; Polis et al. 1997).  This is particularly 

apparent in the movement of prey or consumers across habitats (Fagan et al. 1999).  Krill 

(Euphasea sp.) move annually offshore from the Antarctic ice shelf into the open ocean, 

subsidizing their diet of algae with zooplankton (Smetacek et al. 1990), while also acting 

as a subsidized food source for migrating whales.  In the West Indies, coral reef residing 
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parrotfishes (Scarus sp. and Sparisoma sp) and surgeonfishes (Acanthurus sp.) will 

subsidize their diet through foraging diurnally in adjacent sea grass beds (Randall 1965). 

These cross-system  movements  and  subsidies  can  maintain  a  species’  population  in  a  

habitat too small or unproductive on its own, or provide additional resources during 

periods of high energetic demand, such as when reproducing (Polis 1997).  

To comprehensively  understand  how  the  environment  is  influencing  a  species’  

behavior and distribution, it is important to consider the multiple spatial scales of species-

environment interactions within each of the multiple habitats a species utilizes throughout 

its life-cycle, especially in regards to management intended to protect that species 

(García-Charton et al. 2000; Airamé et al. 2003).  Depending on the characteristics of 

certain important habitat features, such as the distribution of prey or the physical 

complexity of the landscape, a species interacts with its surrounding habitat across 

multiple spatial scales (Poff 1997; Garza 2014).  The spatial scale of a particular habitat 

feature (or features) drives the spatial scale of a species’ response, and varies with 

differences between habitats and between patches within habitats (Finlayson et al. 2008). 

For example, medium-sized marsupials in Australia (such as the burrowing bettong, 

Bettongia lesueur, brush-tailed buttong, B. penicillata, greater bilby, Macrotis lagotis, 

and bridled nailtail wallaby, Onychogalea fraenata) were observed to preferentially 

select particular macrohabitats to rest in during the day, and the spatial scale of this 

available resting habitat likely influenced the magnitude of competition between these 

species (Finlayson et al. 2008).  Foraging habitat in particular influences  a  species’  

behavior through scale-dependent responses to the spatial distribution of its food source 

(Pinaud and Weimerskirch 2007).  In the Pacific Ocean, the distribution of jellyfish 

drives the distribution of leatherback turtles (Dermochelys criacea), where leatherbacks 

are attracted to consistent hotspots of jellyfish presence in space and time (Houghton et 

al. 2006).  Species can also respond to multiple habitat features within a particular 

environment in a hierarchical manner depending on the strength of influence of each 

feature.  Knegt et al. (2011) showed that African elephants (Loxodonta Africana) 

prioritized searching for water over foraging for food, with the search for water occurring 

at a relatively finer spatial scale, thus revealing a hierarchical and scale-dependent 

response to the surrounding environment. 
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    The California spiny lobster (Panulirus interruptus), though typically 

considered a subtidal species, will utilize multiple distinct habitats throughout its life-

cycle, potentially interacting with each of these habitats at multiple spatial scales.  

Previous studies have documented spiny lobsters utilizing the intertidal zone on Santa 

Catalina Island (Robles 1987; Robles and Robb 1993; Robles et al. 2001), revealing that 

spiny lobster intertidal abundance peaks during the breeding season.  These studies 

suggest that the intertidal may provide vital habitat to support the energetic requirements 

of lobster reproduction.  The intertidal habitat supports mussel beds and algal turf 

communities that provide prey for spiny lobsters (California mussels, Mytilus 

californianus, shore crabs, Pachygraspus crassipes, limpets, Collisella limatula and 

scabra, and chitons, Mopalia muscosa and Nuttallina californica), potentially serving as 

a critical foraging habitat within the life-cycle (Robles and Robb 1993; Robles et al. 

2001; Smith et al. 2008).  Gut content analyses and in situ lobster exclusion experiements 

have demonstrated that spiny lobsters preferentially feed on the California mussel when 

available  (Robles 1987; Robles et al. 2001), thereby acting as a keystone predator upon 

intertidal mussels at wave-exposed sites (Robles and Robb 1993).  The spatial 

distribution of mussels could be influencing the spatial scale at which spiny lobsters are 

interacting with the intertidal habitat as a result of this directed change in their foraging 

behavior.  Where mussels are absent in the intertidal, it is likely lobsters direct their 

foraging efforts towards their other prey source of algal turf communities, potentially 

producing a scale-dependent and hierarchical response depending on the distibution and 

availability of these habitat features.   

 The importance of the intertidal habitat and the role of scale in driving habitat 

utilization was explored through in situ observations of the California spiny lobster at two 

separate locations on Santa Catalina Island.  This study sought to characterize the extent 

to which lobsters utilized the intertidal zone, and to evaluate the scale at which lobsters 

interacted with particular habitat features at these two locations.  It was hypothesized that 

lobster density, size, sex ratio (in favor of females), and reproductive condition would be 

greater within the intertidal zone when compared to the adjacent subtidal zone, and this 

pattern would reflect underlying differences within the intertidal habiat.  The intertidal 

habitat composition was measured at a sub-meter scale resolution to quantify the 
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variability in percent cover of various habitat features (i.e. macroalgae, barnacles, bare 

rock, etc.), including potential prey sources (mussel beds, turf alage) between locations, 

and to estimate the scale at which lobsters were potentially interacting with those habitat 

features (sub-meter or greater).   

METHODS 

Study Area 

The study area was located on Santa Catalina Island, about 20 nautical miles 

offshore  of  Los  Angeles,  California,  at  Big  Fisherman  Cove  (33°26’37”  N,  118°29’05”  

W) and Bird Rock  (33°27’03”  N,  118°29’15”  W;;  Fig  1).    The  specific  sites  selected  were  

based on previous studies of the intertidal at Catalina and built upon previous data sets 

(Robles 1987; Robles and Robb 1993; Robles et al. 2001).  Big Fisherman Cove has been 

part of a marine reserve since 1988 and is home to the USC Wrigley Institute for 

Environmental Studies (WIES).  Big Fisherman Cove is largely protected from swell, 

leaving it relatively calm with little wave action.  Bird Rock, an islet located several 

hundred yards offshore, was open to fishing until the recently established Blue Cavern 

State  Marine  Conservation  Area  (SMCA)  was  designated  by  California’s  Marine  Life  

Protection Act in 2012, fully protecting it (CDFW 2015).  Three sites on Bird Rock were 

located on the west face and were more exposed to swell and wave action compared to 

the three sites located on the southern wall of Big Fisherman Cove (Fig 1).  The Bird 

Rock sites also fell along an exposure gradient that was greatest at the northwest end, and 

smallest at the southeast end (Robles et al. 2001).  Other potential sites within the reserve 

were considered, but these areas were ruled out due to the steep slope and narrow width 

of the intertidal bench, and were thus not comparable to the historically used sites. 

 Study Species 

The southernmost distribution of spiny lobsters is along the coast of Baja 

California and within the Gulf of California, and extends northward to San Luis Obispo 

Bay.  Multiple  habitats  are  utilized  throughout  the  spiny  lobster’s  life-cycle, each playing 

a role in the success of the next life stage.  Spiny lobsters spawn in deep water from 

December to March, and migrate into shallower waters inshore throughout April and 
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May, with female lobsters carrying anywhere between 50,000 to 800,000 eggs (Engle 

1979).  The e ggs then hatch into planktonic larvae by late August, where they spend up 

to 8 months in the water column before settling out onto shallow rocky reefs as juveniles 

(Iacchei et al. 2013).  Juvenile lobsters preferentially recruit into shallow nursery habitat 

that consists of thin-bladed, densely matted plant cover, such as surf grass (Phyllospadix 

scouleri), where they spend 2 to 3 years rearing before moving into deeper waters (Engle 

1979).  Spiny lobsters are an economically important fisheries species, both 

commercially and recreationally in Southern California, with a consistent commercial 

harvest weight of 660,000 lbs per season (Nielson 2011; Hackett et al. 2013). Spiny 

lobsters also hold an ecologically significant role within kelp forest communities as a 

keystone predator, predating upon and suppressing urchin populations, which allows kelp 

forests to thrive (Paine 1974; Dayton et al. 1998).   

 Intertidal/Subtidal Spiny Lobster Surveys 

 Intertidal and subtidal surveys of spiny lobsters were used to quantify (1) density, 

size, sex ratio, and reproductive condition (the presence or absence of eggs on females) in 

the intertidal zone relative to the subtidal, and (2) density, size, sex ratio, and 

reproductive condition (collectively referred to as population metrics from hereafter) 

between Big Fisherman Cove and Bird Rock.  Surveys consisted of abundance counts 

and hand-collections during the peak of spring high tides, with two samples collected in 

2012 and one sample collected in 2013.  Each location consisted of 3 sites (A, B, and C) 

containing two fixed 20 m band transects; one positioned in the intertidal approximately 

1.2 m above mean lower low water (MLLW), and the other in the adjacent subtidal at an 

approximate depth of 3 m.  All surveys were conducted on SCUBA, with count surveys 

occurring within a 24 hour cycle for day and night comparisons, and hand collections 

occurring only at night when the lobsters were active.  The width of each intertidal 

transect was determined by the high water mark and the edge where turf algae meets 

understory algae, an approximate width of 4 m, which was also the approximate width for 

each subtidal transect.  Count surveys yielded lobster measurements of density, and hand 

collection surveys yielded measurements of size, sex, and reproductive condition.  

Samples were collected in June and July as previous work revealed that peak lobster 

foraging activity within the intertidal took place during the late spring and summer 
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months (Robles 1987; Robles and Robb 1993; Robles et al. 2001).  Lobsters were 

assumed to be foraging within the intertidal due to evidence from previous studies 

confirming the consumption of intertidal prey through gut content analysis and in situ 

lobster exclusion experiments (Robles 1987; Robles and Robb 1993; Robles et al. 2001).  

Surveys were conducted during the night and day, to confirm that lobster activity 

occurred only at night due to their nocturnal behavior (Robles 1987).   

Intertidal Habitat Composition Surveys 

 Intertidal habitat surveys were conducted to determine what benthic habitat 

features (biotic or abiotic characteristics) influenced lobster abundance, and the spatial 

scale at which these habitat features occurred.  Intertidal habitat composition was 

classified and measured for both study years using digital photographic transects.  

Photographic transects were 20 m in length taken at an approximate height of 1.2 m 

above MLLW, the estimated upper limit of Mytilus californianus (Robles 1987).  Each 

photograph within a transect consisted of a 1 m2 quadrat delineated by four cones at each 

corner, taken approximately 1.5 m above the ground.  A Total Station laser surveyor 

(TOPCON©) measured the X, Y, and Z coordinates of each cone of each quadrat (control 

points), thereby georeferencing each photograph to create a photographic representation 

of each intertidal transect within ArcMap 10.1.  Cover type and species were classified at 

a resolution of 5 cm, as well as the percent cover of each classification.  Mussels (Mytilus 

californianus), barnacles (Tetraclita rubescens, Chthamalus fissus) and macroaglage 

(Silvetia compressa, Phyllospadix scouleri) were classified down to species, and all algae 

that were under 5 cm tall were labeled as Turf.  The use of photo transects within a 

Geographic Information System (GIS) allowed for the capability to capture more data at 

a high spatial resolution and shorter timeframe than traditional in situ approaches.  This 

was especially beneficial considering the time constraints associated with conducting 

work in the intertidal zone.  The use of GIS was also beneficial for the identification of 

spatial scales lobsters were potentially interacting with the intertidal habitat through the 

use of spatial statistic tools.   

Traditional physical quadrats measured in situ were also conducted during 2013 

to groundtruth what was identified within the photo transects and provided a comparison 
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in the measurements of each methodology.  In situ quadrats were 121 cm2 and percent 

cover of benthic taxa were recorded at every meter along each transect, giving a total of 

20 quadrats per transect.  Percent cover was estimated visually within each quadrat.   

Vector Ruggedness Measure 

Terrain ruggedness at the meter scale was measured for each photographic 

transect in ArcMap using the Vector Ruggedness Measure (VRM) tool.  Terrain 

ruggedness is a measure of variation in the three-dimensional orientation of the grid cells 

within a specified neighborhood.  The VRM tool captured the variability of aspect and 

slope into a single measure, allowing for the quantification of landscape ruggedness 

(Sappington et al. 2007).  The Inverse Distance Weighted (IDW) tool was first used in 

ArcMap to interpolate the elevation values of the control points across the rest of the 

transect space at a resolution of 10 cm.  The VRM tool was then run with a 

Neighborhood size of 3.  These VRM values were averaged for each photo transect in 

order to be used as a predictor variable in the subsequent statistical analyses. 

 Statistical Analyses: 

Spiny Lobster Migration, Use of Intertidal Zone, Density, Size, Sex Ratio, and 

Reproductive Condition 

 It was predicted that lobsters in the subtidal zone were migrating relatively short 

distances to forage in the adjacent intertidal zone.  A two-way ANOVA tested for 

differences in lobster density between Time (Day vs Night) and Zone (Intertidal vs 

Subtidal), capturing when lobsters were most active and whether densities were 

comparable between Time or Zones.  

 Lobster use of the intertidal zone was determined by calculating the percent time 

available to forage in the intertidal habitat within a calendar year, during the breeding 

season (May through August), and when nocturnally active during the breeding season 

(between sunset and sunrise from May through August).  Lobsters were considered to 

have access to the intertidal habitat during the period when a spring high tide cycle was 

between 1 m and 1.5 m or greater.  Lobster access into the intertidal habitat was assumed 

to be restricted between sunset and sunrise since lobsters are nocturnal and actively 
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foraging at night.  The total amount of time within these conditions was calculated using 

tide tables for the year 2013, which was then divided by the total time of one year, the 

length of the breeding season (all days between May and August), and the total time of 

the breeding season between only sunrise and sunset to yield percent use for these various 

periods of time. 

 A two-way ANOVA tested for differences in lobster density between the 

intertidal and subtidal zones and between the locations Big Fisherman Cove and Bird 

Rock.  Kolmogorov-Smirnov (KS) two-sample tests tested for differences in lobster size-

frequency between locations and between the zones for each location, resulting in a total 

of three tests.  Chi-Square analyses of 2 x 2 contingency tables tested sex-ratio (male vs 

female) and reproductive condition (presence vs absence of eggs on females) between 

locations and between zones for each location, resulting in a total of six tests.  If the 

expected cell frequencies were less than  5,  a  Fisher’s  exact  test  was  used.   

 Intertidal Habitat Composition 

 Photographic transects were summarized and statistically compared with in situ 

121 cm2 quadrats  using  a  Student’s  t-Test to assess the benefit of using geographically 

referenced photographs in the place of traditional physical quadrats.  The magnitude of 

differences between methodologies shed light into the level of accuracy of intertidal 

habitat representation of each technique. 

A non-metric multidimensional scaling (nMDS) analysis of the photographic 

transects tested for differences in intertidal benthic habitat composition between 

locations, providing interpretation of any differences within lobster population metrics 

between locations.  The data were square-root transformed and then underwent a 

Wisconsin double standardization before the stress value was tested.   

A linear mixed effects model tested which intertidal habitat cover types 

influenced intertidal lobster density, providing evidence for which cover types were 

driving differences within lobster population metrics between locations.  The sites at each 

location were spatially close, and thus percent cover estimates were likely autocorrelated.  

Therefore, site was incorporated into the statistical models as a random factor to account 
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for any spatial autocorrelation that may have existed.  The predictor variables used were 

percent cover of Turf Algae, Mytilus californianus, Tetraclita rubescens, Chthamalus 

fissus, Silvetia compressa, Foliose Red Algae, Bare Rock, and VRM.  Each predictor was 

measured as percent cover and Arcsine transformed (except for VRM, which was 

averaged  across  each  transect).    Akaike’s  Information  Criterion  (AIC)  then  determined  

which model was the best fit to the data (Burnham and Anderson 2002).  The value of 

AICc (AIC corrected for finite sample sizes) was used to determine the best fit model by 

selecting the AICc with the lowest value amongst all the models.  Models that had a 

ΔAIC  value  ≥  2  were  considered  significantly  different  from  each  other,  and  models that 

had a ΔAIC value < 2 were considered statistically indistinguishable. This analysis was 

conducted at a spatial scale of 80 m2.  

 A Hot Spot analysis was performed within ArcMap 10.1 for parameters 

significantly correlated with lobster abundance to estimate whether lobsters were 

interacting with these habitat features at a sub-meter scale or greater, and if lobsters were 

interacting with the intertidal habitat at multiple spatial scales.   The Getis-Ord Gi* 

statistic with a Threshold Distance of 10 cm was calculated within ArcMap 10.1 for each 

significant habitat feature to determine if it exhibited any spatial clustering at a sub-meter 

scale, thereby informing the scale of lobster interaction with that habitat feature (sub-

meter or greater).  This analysis was paired with the results of a complimentary study 

determining the trophic interactions of the same lobsters using stable isotope analysis, 

providing inference into the potential spatial scale lobsters were interacting with 

particular prey items.   

 All statistical analyses were conducted using R statistical software (R Core Team 

2012).  All p-values were calculated with a significance threshold  of  α  =  0.05. 

RESULTS 

Spiny Lobster Migration 

 Lobster densities did not show a consistent trend for density in relation to time of 

day and zone (Table 1).  During the day lobsters did not occur in the intertidal zone and 
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were found to only occupy the subtidal zone, often sheltering within the cracks and 

crevices of rocky habitat.  In contrast, lobsters were active during the night in the 

intertidal and subtidal zones (Fig 2a).  Lobsters were completely exposed from rocky 

sheltering habitat when active in the intertidal zone, and were generally foraging 

underneath macroalgae (surf grass, Phyllospadix scoulery, southern sea palm Eisenia 

arboreaI, and the invasive Sargassum horneri) when active in the subtidal zone.  Subtidal 

lobster density decreased by 44% from day to night, while the intertidal zone experienced 

a large influx of lobsters.  At night, intertidal lobster density was 26% greater than 

subtidal lobster density, and was 75% of the density of daytime subtidal lobsters.    

Lobster use of Intertidal Zone 

 Intertidal habitat availability for lobster use, based on the conditions that access 

was possible when a tide cycle was between 1 m and 1.5 m or greater at night, was 

calculated in relation to an entire calendar year, the duration of the breeding season (May 

through August), and the duration of the breeding season between only sunset and 

sunrise.  Lobsters had access to the intertidal zone for approximately 2.7% of the time of 

a calendar year, 7.9% of the time throughout the breeding season, and 46.6% of the time 

throughout the breeding season when focusing between sunrise and sunset.  Considering 

all times of the day, the potential use of the intertidal zone was relatively small 

throughout the entire year and breeding season.  When focusing the availability of the 

intertidal habitat to when lobsters were likely foraging during the breeding season (at 

night), the potential use of this habitat increased dramatically (46.6%). 

Lobster Density 

 Lobster density at night was significantly higher within the intertidal zone 

compared to the subtidal zone at both locations (Table 2, Fig 2b).  There were 48% more 

lobsters in the intertidal zone compared to the subtidal zone at Big Fisherman Cove, and 

55% more lobsters in the intertidal zone compared to the subtidal zone at Bird Rock.  

This pattern was more pronounced at Bird Rock than in Big Fisherman Cove (Table 2, 

Fig 2b), revealing a significantly higher density of lobsters at this location.  Lobster 

density within the intertidal zone was 67% higher at Bird Rock compared to Big 

Fisherman Cove, and total lobster density for both zones was 66% higher at Bird Rock.   
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Lobster Size  

Lobster size distributions between locations were significantly different from each 

other, due to Bird Rock containing larger lobsters (2-sample KS test, D = 0.23, p = 0.03; 

Fig 2c).  Lobsters at Bird Rock had an average carapace length of 8.83cm, while lobsters 

at Big Fisherman Cove had an average carapace length of 8.17 cm.  Lobsters at Bird 

Rock were on average .66 cm larger in carapace length.  Lobster size distributions were 

not significantly different between the intertidal and subtidal zones within each location.    

Lobster Sex Ratio and Reproductive Condition 

 Lobster sex-ratio was more skewed towards females at Bird Rock compared to 

Big Fisherman Cove (Chi-squared test, X2 = 17.36, p < 0.001; Fig 3a).  Of the lobsters 

collected at Bird Rock 77% were female, while at Big Fisherman Cove 44% of lobsters 

collected were female.  Lobster reproductive condition was also greater at Bird Rock 

compared to Big Fisherman  Cove  (Fisher’s  exact  test,  X2 = 0.09, p = 0.01; Fig 3b).  Of 

the collected female lobsters at Bird Rock 97% were carrying eggs, while at Big 

Fisherman Cove 78% of female lobsters were carrying eggs.  Lobster sex ratio and 

reproductive condition were consistent between the intertidal and subtidal zones at both 

Bird Rock and Big Fisherman Cove.  However, there was a higher abundance of total 

lobsters collected in the intertidal at both locations. 

Intertidal Habitat Composition 

 When comparing the accuracy of the in situ quadrats with the photographic 

transects, the in situ quadrats underestimated the presence of algae (Turf, p = 0.004 and 

Silvetia compressa, p = 0.088), and overestimated the cover of bare rock (p 0.047).  The 

higher resolution and greater spatial coverage of the photographic transects was also able 

to capture a higher percent cover of Mytilus californianus (4.2%) compared to the in situ 

quadrats (1%; Fig 4a), which only occurred on transect C of Bird Rock.  Due to the small 

or non-existent cover of Mytilus californianus for each transect at both locations, there 

was not a statistically significant difference in percent cover estimates between 

photographic transects and in situ quadrats (p = 0.46).  However, the broader coverage of 

the photographic transects was able to pick up the small Mytilus californianus cover 

while the in situ quadrats did not.  On Bird Rock, the in situ quadrats underestimated turf 
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by 58%, and overestimated bare rock by 68% (Fig 4a).  On Big Fisherman Cove, the in 

situ transects underestimated turf by 81% and Silvetia by 71%, and overestimated bare 

rock by 90% (Fig 4b).   

 The intertidal habitat cover types from the photographic transects were compared 

between Big Fisherman Cove and Bird Rock, revealing significantly distinct benthic 

compositions (nMDS, stress = 0.064; Fig. 5a).  The intertidal assemblage at Big 

Fisherman Cove was composed more of macroalgae (Silvetia compressa and red foliose 

algae) and Tetraclita rubescens, whereas Bird Rock had a higher percent cover of turf 

algae, bare rock, and Mytilus californianus (Fig. 5b).  Bird Rock contained 49% more turf 

algae and 62% more bare rock than Big Fisherman Cove, while Big Fisherman Cove 

contained 78% more Silvetia and 65% more Tetraclita than Bird Rock.  Bird Rock was 

the only location to contain mussels at a cover of 4.2%. 

 A significant positive relationship between lobster density and the habitat feature 

Mytilus californianus (AICc = 97.26,  ΔAIC  =  0,  df  = 4, t = 6.78, p = 0.002) and a near 

significant negative relationship between lobster density and the Vector Ruggedness 

Measure (VRM) (AICc = 0.317,  ΔAIC  =  0,  df  = 4, t = -2.51, p = 0.066) were observed in 

the best fit model of the AIC test (Table 3).  Lobsters were strongly positively correlated 

with Mytilus californianus on Bird Rock, with lobster density increasing with the 

presence of mussels (Fig 6). Lobsters were weakly negatively correlated with VRM, with 

lobster density increasing when terrain ruggedness (the variability of aspect and slope) 

decreased.  Observationally, the intertidal bench at Big Fisherman Cove was steeper than 

Bird Rock.   

The best fit model was statistically indistinguishable (ΔAIC ≤  2)  from  two  other  

models that had slightly higher AICc values (Table 3).  One model contained a 

significant positive relationship with the variable Mytilus clifornianus (AICc = 98.21, 

ΔAIC  =  0.95, df = 4, t = 7.32, p = 0.002), while the other model also contained a 

significant positive relationship with Mytilus californianus (AICc = 0.302,  ΔAIC  =  0.09, 

df = 5, t = 6.88, p = 0.003) and a weak negative relationship with turf algae (AICc = 

98.21,  ΔAIC  =  0.95, df = 4, t = 2.27, p = 0.086).  Of all three indistinguishable models, 
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all of them contained a significant relationship with Mytilus californianus, and weak non-

significant relationships if other variables were present (i.e. VRM and turf algae).    

 The spatial scale of the distribution of Mytilus californianus at Bird Rock was 

determined due to its significant strong positive correlation with lobster density.  Mytilus 

californianus exhibited significant clustering at a sub-meter scale (Hot Spot Analysis, -

2.02 > Gi z-score > -8.22, p < 0.004; Fig 7), existing at fine-scale patches on the intertidal 

bench. Other habitat features, such as Tetracliata rubescens, Chthamalus fissus, and bare 

rock also exhibited fine-scale clustering, however none of these habitat features were 

significantly correlated with lobster density.  Turf algae and Silvetia compressa did not 

display any clustering at a fine-scale distribution, but were evenly distributed across the 

entire  length  of  each  transect  (at  a  scale  of  10’s  of  meters).     

DISCUSSION 
 The intertidal habitat functioned as an important foraging ground for California 

spiny lobsters residing in the adjacent subtidal during their breeding season (May through 

August) on Santa Catalina Island, California.  Spiny lobsters preferentially fed on the 

intertidal California mussel when present, likely subsidizing their diet through this cross-

system migration to support the higher energetic demands of reproduction.  Moving 

across systems to forage is common amongst marine species.  The American lobster 

(Homarus americanus) migrates seasonally from deep offshore waters to shallower 

inshore waters in late spring (Childress and Jury 2009), where it then exhibits a similar 

diel pattern of moving from the subtidal to the adjacent intertidal to forage (Jones and 

Shulman 2008). Other common patterns of cross-system use are of nocturnally active 

grunts (Haemulidae sp.) and snappers (Lutjanidae sp.) that shelter in mangroves by day 

and forage in adjacent seagrass beds by night in the Caribbean (Verweij et al. 2006), and 

landlocked Arctic charr that migrate during spring to smaller, more productive lakes , 

growing  faster  and  reaching  maturity  sooner  than  those  that  don’t  (Näslund  1990). 

 Spiny lobsters migrated short distances from the adjacent subtidal into the 

intertidal at night to forage.  Although previous studies have documented that lobsters 

were capable of traveling long distances (at the scale of 100s of meters to kilometers; 
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Hovel and Lowe 2007), lobsters were also documented to move short distances 

depending on their surrounding habitat (Engle 1979; Stull 1991; Withy-Allen 2013).  On 

Santa Catalina Island, lobsters were observed to have high site fidelity and short home 

ranges (Stull 1991), and would home to the same area for shelter (Engle 1979).  Within 

the La Jolla Ecological Reserve in San Diego, Southern California, lobster movement 

patterns were directly dependent on habitat availability, with most lobsters traveling only 

a few meters from sheltering to foraging habitat (Withy-Allen 2013).  On the New 

England Coast, American lobsters exhibited a similar migration pattern; after moving into 

shallow water during their breeding season, American lobsters were observed traveling 

short distances into the adjacent intertidal zone to forage on prey (Jones and Shulman 

2008).  The benefit of migrating short distances into the intertidal zone can allow spiny 

lobsters to conserve energy when foraging while simultaneously avoiding predators that 

have limited or no access to the intertidal habitat (such as leopard sharks and giant sea 

bass).   

 Spiny lobster access into the intertidal habitat was available for a small portion of 

time throughout a single calendar year (2.7%), initially seeming negligible.  However, 

when focusing the availability of intertidal habitat for lobster foraging to the duration of 

the breeding season (May through August) and when lobsters were active (between 

sunset and sunrise), the proportion of potential use of this habitat increased dramatically 

(46.6%) and was likely crucial during this seasonal event.  Despite access to the intertidal 

habitat being ephemeral and seasonally episodic, it plays a vital role as a prey source 

during the energetically demanding breeding season.     

The non-triviality of spiny lobster utilization of the intertidal habitat was 

illustrated through the significantly higher density of lobsters occupying the intertidal 

zone at night compared to the adjacent subtidal at both locations.  At Bird Rock, lobster 

size, sex ratio (in favor of females), and reproductive condition were significantly higher 

compared to Big Fisherman Cove, and this difference in population metrics was likely 

influenced by the differences in intertidal habitat composition between locations.  The 

California mussel (Mytilus californianus) was the only habitat feature to exhibit a 

significantly strong positive correlation with lobster density and were significantly more 
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abundant at Bird Rock.  Lobsters are historically known to preferentially feed on mussels 

at Bird Rock (Robles 1987; Robles et al. 2001) and their availability as a food source was 

potentially supporting the higher population metrics observed.  The presence of mussels 

on Bird Rock and their absence within Big Fisherman Cove was likely a result of higher 

wave exposure and wave velocity facilitating mussel recruitment (Robles and Desharnais 

2002).   

A partnered study conducted on the same lobsters within the same locations and 

timeframe provided further supportive evidence that lobsters preferentially fed on 

mussels.  McCormick (2015) used stable isotope analysis to determine the gut 

composition of intertidal and adjacent subtidal lobsters at Bird Rock and Big Fisherman 

Cove, observing lobster diet on Bird Rock to be comprised largely of mussels (75% or 

greater).  A Manly selectivity analysis revealed that when mussels were available lobsters 

would selectively prey upon them.  Mussels also contained a higher C:N ratio within their 

muscle tissue, a proxy for lipid content, when compared to other prey types such as 

limpits (Collisella limatula and C. scabra) and shorecrabs (Pachygraspus crassipes), and 

therefore were likely higher in nutrition and more energetically beneficial.  At Bird Rock, 

77% of lobsters observed were female and 97% of those females were carrying eggs, 

whereas at Big Fisherman Cove 44% of lobsters observed were female and 78% of those 

females were carrying eggs.  This higher reproductive potential at Bird Rock was likely 

supported by the availability of mussels as a prey source.  

The spatial distribution of mussels on Bird Rock existed as discrete patches at a 

sub-meter scale, and was potentially directly influencing the scale of spiny lobster 

foraging behavior.  The occurrence of small-scale hotspots, such as the clustering of 

preferred prey, can drive the behavior of a predatory species that feed upon them 

(Houghton et al. 2006; Piatt et al. 2006; Finlayson et al. 2008).  Lobsters on Bird Rock 

were likely targeting mussels as their preferred prey source, and therefore were directed 

by  the  mussel’s  fine-scale distribution within the intertidal zone.  It was also possible that 

lobsters were interacting with the intertidal habitat at various spatial scales depending on 

the availability of mussels and other prey types within algal turf communities.  

Depending on the characteristics and distribution of certain habitat features, such as 
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various prey types, a species may interact with its surrounding habitat in a scale 

dependent and hierarchical manner (Knegt et al. 2011).  When mussels were unavailable, 

lobsters likely foraged within algal turf communities (the other primary intertidal prey 

source; Robles 1987), which existed at a much broader spatial distribution (10s of 

meters), thereby directing lobster foraging behavior at a broader spatial scale.  However, 

this study did not directly evaluate the spatial scale of lobster foraging activity and it is 

worth further investigation to determine the potential scale-dependent and hierarchical 

influence mussels and algal turf communities may have on lobster foraging behavior.   

Mussels are a common intertidal prey source and influence the upshore movement 

of certain subtidal species that prey upon them.  The American lobster on the Atlantic 

coast of the United States exhibits a similar behavior as the California spiny lobster, 

moving into the intertidal zone from adjacent subtidal habitat to forage mainly on blue 

mussels (Mytilus edulis) and the shorecrab Carcinus maenasi (Jones and Schulman 

2008).  The seastar Pisaster ochraceus is considered an intertidal keystone predator upon 

California mussels within the Pacific Northwest (Paine 1969), and foraging behavior has 

been positively correlated with mussel  recruitment,  revealing  the  seastar’s preference for 

mussels as a prey source (Robles et al. 1995).  Subtidal predatory fish, such as the banded 

wrasse (Notolabrus fucicola) and spotted wrasse (Notolabrus celidotus), were observed 

to feed heavily on small intertidal mussels (Mytilus galloprovincialis and Xenostrobus 

pulex) in New Zealand, so much so that the level of predation intensity accounted for 

much of the variation in intertidal mussel recruitment (Rilov and Schiel 2011).  California 

spiny lobsters have also been observed to feed upon the invasive Asian mussel 

Musculista senhousia) in Mission Bay, California, and were considered one of the 

primary factors of resistance  of  the  mussel’s  establishment  (Cheng  and  Hovel  2010).    The  

importance of mussels as an intertidal prey source for subtidal species is apparent from 

these studies, but is an area that is still currently understudied.   

Historically, mussel density was much higher on Bird Rock.  Over the last several 

decades, mussel density has decreased dramatically to the remnant sub-meter patches that 

existed at the time of this study.  The loss of mussels was potentially influenced by the El 

Niño events of 1987-1988 and 1997-1998 (C. Robles and C. Garza, personal 
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communication).  El Niño weather patterns may have reduced upwelling and increased 

water temperatures, therefore decreasing productivity and planktonic food sources for 

mussels.  The decline of mussels on Bird Rock may have also been exacerbated by the 

preferential predation of spiny lobsters.  Continued monitoring of Bird Rock in 2014 has 

revealed that the remnant population of mussels is now completely gone (C. Garza and 

M. McCormick, personal communication) and further study would provide valuable 

insight into how lobster foraging behavior and the population may change with the recent 

absence of this prey source.   

Researching other habitat features, such as the distribution of subtidal rocky 

habitat and surfgrass, is necessary to provide a more comprehensive understanding of the 

spiny  lobster’s  interaction  with  the  intertidal  habitat  and  is  recommended  for  future  

studies at Bird Rock and Big Fisherman Cove.  The condition and abundance of adjacent 

subtidal habitat may be important in determining the strength of intertidal-subtidal 

trophic interactions (Rilov and Schiel 2006).  It was visually apparent that Bird Rock 

contained more adjacent subtidal habitat than Big Fisherman Cove, and may contribute to 

the higher population metrics observed there.  The abundance of surfgrass, which acts as 

a nursery habitat for juvenile lobsters (Engle 1979), may also influence lobster density 

within the intertidal, and a higher abundance of this habitat feature was also observed at 

Bird Rock.  Future studies should incorporate the linkages and influences of the adjacent 

subtidal habitat upon lobster interactions with the intertidal habitat.   

The use of the intertidal habitat as an important foraging ground by subtidal 

species is an understudied topic, and an increased understanding could benefit protective 

management practices that target certain subtidal species.  Around the world marine 

protected areas (MPAs) have shown to be an effective management tool towards the 

protection and recovery of lobsters (Cox and Hunt 2005; Shears et al. 2006; Babcock et 

al. 2007), including Southern California (Iacchei et al. 2005; Kay et al. 2012).  However, 

the incorporation of the intertidal zone and the habitat features that provide a valuable 

prey source (mussel beds and algal turf communities) could strengthen the efficacy of an 

MPA that targets lobsters in California.  The use of the intertidal habitat is directly linked 

to  the  lobsters’  reproductive  life-stage, and deserves to be considered within the range of 
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critical habitats that require representation within management that targets this species.  

The intertidal habitat in relation to other subtidal species, such as the American lobster of 

New England and certain fishes (such as the banded and spotted wrasses of New 

Zealand), warrants consideration as well, potentially being an important linkage for 

subtidal communities and fisheries around the world.  

It is becoming well recognized that for an MPA to be effective, the range of 

multiple habitats a targeted species utilizes throughout its life-cycle, as well as the 

multiple spatial scales that species interacts within each of those habitats, needs to be 

considered and incorporated into the design process (García-Charton et al.2000; Halpern 

2003; Gerber and Heppell 2004; Pilkitch et al. 2004; Deither and Schloch 2005; Leslie 

2005).  Typically, species-habitat interactions were looked at over broad spatial scales, 

such as the distribution of kelp forests or coral reefs (Jones 2002; Friedlander et al. 2003), 

and was likely due to a targeted species being mobile with wide coverages of distance, or 

the jurisdictional scale of management driving the classification of habitat 

representativeness (Jones et al. 1992; Stevens 2002).  However, species often interact 

with their habitat at relatively finer scales than their distribution as a result of the 

distribution of their food source or other habitat features (Houghton et al. 2006; Pinaud 

and Weimerskirch 2007; Scott et al. 2012), and these interactions can often be 

overlooked in the management process (de Roos et al. 1998; Fauchald et al. 2000).  It is 

important to understand the variability of the spatial scale of influence a particular habitat 

has upon the behavior of a species that utilizes it, and how these interactions change over 

time when designating an area for protective management.   

This study illustrated the value of using contemporary innovative technologies, 

such as surveying total stations, digital photography, and GIS for intertidal sampling.  

This methodology measured the benthic intertidal habitat composition of the entire 

transect, as opposed to sub-sampled estimates of standard in situ quadrats.  The total 

census coverage, in combination with the high resolution of the photographs, detected the 

subtle differences in mussel abundance between locations and the significant positive 

relationship between mussels and lobsters.  This crucial relationship would not have been 

identified if the study solely relied on in situ quadrat estimates of percent cover.  Another 
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benefit of this methodology was the relative rapidity in data collection and the ability to 

post-process the data within a GIS with spatial statistical capabilities.  It is encouraged 

for future intertidal research to consider utilizing such innovative technologies to improve 

upon data collection and analysis. 

 The concept of multiple scales of use across multiple habitats within a species 

life-cycle has largely focused on vertebrate organisms, and this study provided one of the 

first examples applying this concept to a mobile invertebrate.  The intertidal habitat was 

an important foraging ground for breeding spiny lobsters within Big Fisherman Cove and 

Bird Rock, providing prey subsidies to the adjacent subtidal habitat.  The difference 

within the composition of the intertidal habitat between locations was also likely 

influencing the density and spatial scale at which lobsters interacted with it.  This study 

can help inform lobster management within Southern California, as well as other subtidal 

species across the world, through encouraging the consideration of the intertidal zone and 

the habitat linkages associated with it, as well as the effects of prey distribution on 

predator foraging behavior.  
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APPENDIX A: FIGURES AND TABLES 

 

Table 1. Two-way ANOVA; Zone tested the Intertidal vs Subtidal, and Time tested Day vs 
Night with lobster density as the response variable. 

  Source df SS MS F P   

 
Zone 1 0.992 0.992 14.98 <0.001* 

 
 

Time 1 0.117 0.117 1.76 0.189 
 

 
Zone x Time 1 2.503 2.503 37.80 <0.001* 

 
 

Residuals 68 4.503 0.066 
     Total 71 8.115         

 

 

 

Table 2. Two-way ANOVA; Zone tested the Intertidal vs. the Subtidal, and Location tested 
Big Fisherman Cove vs. Bird Rock with lobster density as the response variable. 

  Source df SS MS F P   

 
Zone 1 0.172 0.172 8.07 0.008* 

 
 

Location 1 0.464 0.464 21.79 <0.001* 
 

 

Interaction x 
Zone 1 0.042 0.042 2.00 0.167 

 
 

Residuals 32 0.681 0.021 
     Total 35 1.36         
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Table 3. AIC table showing the best fit model with lobster density as the response variable.  
The  best  fit  model  (model  5)  contained  the  parameters  ‘mussel’  and  ‘VRM’.    ‘Mussel’  was  
significantly positively correlated with lobster density (p = .002) and VRM was weakly 
negatively  related  to  lobster  density  (p  =  0.066).    Models  with  a  ΔAIC  less  than 2 were 
statistically indistinguishable.  All models indistinguishable with the best fit model 
contained  a  significant  positive  relationship  with  the  parameter  ‘mussel’  (model  1,  p  =  
0.002; model 3, p = 0.002; model 4, p= 0.003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model # Model K AIC AICc ΔAIC AICw
1 m(1) 1 91.63 97.35 0.09 3.02E-01 1 Mytilus californianus
2 m(2) 1 108.63 114.58 17.32 5.49E-05 2 turf algae
3 m(3) 1 106.85 112.57 15.31 1.50E-04 3 VRM
4 m(1+2) 2 88.21 98.21 0.95 1.97E-01 4 Tetraclita rubescens
5 m(1+3)* 2 87.25 97.26 0 3.17E-01 5 Chthamalus fissus
6 m(1+4) 2 91.96 101.96 4.7 3.01E-02 6 Silvetia compressa 
7 m(1+5) 2 92.31 102.31 5.06 2.53E-02 7 red foiliose algae
8 m(1+6) 2 90.38 100.38 9.13 6.64E-02 8 bare rock
9 m(1+7) 2 91.36 101.36 4.1 4.07E-02

10 m(1+8) 2 93.44 103.44 6.18 1.44E-02
11 m(1+2+3) 3 88.64 105.44 8.18 5.30E-03
12 m(1+2+3+6) 4 90.63 118.64 21.38 7.22E-06
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Figure 1. Map of study area on Santa Catalina Island.  The points depict the study sites and 
the black line indicates the border of the WIES MPA. 
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Figure 2. a) Mean lobster density by Zone and Time of Day. b) Mean lobster density by 
Zone and Location. c) Size frequency of Big Fisherman Cove vs. Bird Rock.  

A. 

B. 

C. 
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Figure 3. a) Proportional comparison of sex between Bird Rock and Big Fisherman Cove. 
B) Proportional comparison of reproductive condition (presence or absence of eggs on 
females) between Bird Rock and Big Fisherman Cove. 
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Figure 4. a) In situ quadrat surveys vs. photographic transect percent cover measurements 
for Big Fisherman Cove, b) In situ quadrat surveys vs. photographic transect percent cover 
measurements for Bird Rock. 
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Figure 5. a) Non-metric multidimensional scaling analysis revealing significantly distinct 
intertidal compositions between Big Fisherman Cove and Bird Rock (Note: Mytilus 
californianus and Bare Rock are overlapping). b) Mean percent cover of habitat features 
for Big Fisherman Cove and Bird Rock.   
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Figure 6. Lobster density was strongly correlated with mussel presence (note: this figure 
does not represent the best fit model, but shows the direct relationship between mussels and 
lobster density. 
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Figure 7. North and south terminuses of transect Bird Rock C showing where Mytilus 
californianus is  significantly  clustered  (p  ≤  0.05)  at  a  sub-meter scale as a result of the Hot 
Spot Analysis tool in Arcmap 10.1.   

 

Bird Rock C - north Bird Rock C - south 
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