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ABSTRACT 


Habitat Associations and Predictive Distribution Models of Commercially 

Important Rockfish Species Along California's Central Coast 


by 

Heather Marie Bolton 

Master of Science in 


Coastal and Watershed Science and Policy 

California State University Monterey Bay, 2014 


While commercially important, the red rockfish complex, Vermilion 
Rockfish (Sebastes miniatus), Canary Rockfish (Sebastes pinniger) and 
Yelloweye Rockfish (Sebastes ruberrimus), is emblematic of our limited 
knowledge of the distribution and habitat associations of ecologically and 
economically important fishes along California's central coast. We used 
videographic and photographic imagery from a remotely operated vehicle (ROV), 
coupled with high resolution multibeam derived maps of the seafloor to determine 
a) the fine scale habitat associations of red rockfishes along California's central 
coast, and b) the potential distribution of small Canary Rockfish (10-40 
centimeters TL) beyond surveyed areas using predictive species-specific 
distribution models. Across the study region, small Canary Rockfish were more 
frequently observed than Vermilion and Yelloweye Rockfishes, and the highest 
abundance of red rockfishes were observed in Bodega Bay, California. Nearly all 
of the Canary Rockfish observed were small, while Vermilion and Yelloweye 
Rockfishes were subadults and adults. At fine scales (meters), small Canary 
Rockfish switched their association from sand to rock as total length increased 
but remained close (12 to 24 meters) to rock-sand interfaces. Predictive models 
of small Canary Rockfish presence were 74-77% accurate, and bathymetry and 
distance from interface were important environmental predictor variables. The 
imagery-based analyses provided important ecological information about each 
species, while the predictive modeling allowed us to extrapolate beyond the 
relatively limited area transected by the ROV to the broader study region. This 
approach of combining methods is applicable to other species and geographies 
where we have to manage more than we can sample. 
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INTRODUCTION 


The spatial distribution, behavior and life history of rockfishes (Sebastes 

spp.) are all linked directly to attributes of the seafloor with which they associate 

(O'Connell & Carlile 1993, Johnson et al. 2003, Grober-Dunsmore et al. 2008), 

including physical substrates (Stein et al. 1992, Yoklavich et al. 2002, Johnson et 

al. 2003, Laidig et al. 2009) and biogenic structures (Auster et al. 2003, Auster 

2005, Tissot et al. 2006). However these fish-habitat associations tend to be 

species-specific (Richards 1986, Yoklavich et al. 2000, Love et a!. 2006) and can 

also change with life history (Overholtz & Tyler 1985, NOAA 1990, Auster et al. 

2003, Laidig et al. 2009). 

Along the west coast of North America, the red rockfish complex, 

comprised of Vermilion Rockfish (Sebastes miniatus), Canary Rockfish 

(Sebastes pinniger) and Yelloweye Rockfish (Sebastes ruberrimus), has 

overlapping depth and geographic ranges but behave differently within those 

ranges. Vermilion Rockfish are common from central California to Baja, while 

Yelloweye and Canary Rockfishes are most common from Alaska to central 

California (Love et al. 2002). Vermilion Rockfish, classified as demersal 

aggregators (Love & Yoklavich 2006), associate with high relief rocky substrate 

at depths of 50-150 meters (Love et al. 2002). Vermilion Rockfish are observed 

predominantly in deep crevice habitat (Love et al. 2006), rarely ascending more 

than a few meters off of the bottom (Love & Yoklavich 2006). Canary Rockfish 

are classified as midwater aggregators (Love & Yoklavich 2006), forming dense 

aggregations 0-30 meters above high relief rock and are most common at depths 

of 80-200 meters (Love et al. 2002). Yelloweye Rockfish are classified as 

demersal non-aggregators that associate with complex habitat and exist as 

solitary individuals close to the substrate (Love & Yoklavich 2006). Yelloweye 

Rockfish are most common at depths of 91 to 180 meters in high relief rocky 

areas, near caves or overhangs (Love et al. 2002). 
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Canary and Yelloweye Rock'fishes are both designated as threatened by 

the Endangered Species Act and monitored by the Pacific Fisheries 

Management Council and California Department of Wildlife (CDFW), while 

Vermilion Rockfish are vulnerable to overfishing or are currently overfished 

(Cope et al. 2011). Information on the distribution of these species is currently 

lacking but is needed to inform spatially explicit management strategies, 

including protected area analyses and stock assessments along the west coast 

(CDFG 2008, PFMC 2005). This study provides new information about the 

distribution of each species across the landscape, as well as their potential 

distribution relative to marine protected area boundaries. Spatial information is 

also beginning to be incorporated into stock assessments as a way to improve 

population abundance estimates (PFMC 2007). Trawling studies to collect 

distribution information have occurred since 1977 (Gunderson and Sample 

1980), however, little is known about the distribution of rockfishes over 

untrawlable habitat in California, especially for Canary Rockfishes (PFMC 2005). 

Knowing how rockfishes are distributed over untrawlable habitats near protected 

area boundaries will help inform rebuilding timelines, and stock replenishment in 

deeper areas to help overfished populations recover (PFMC Status 2007). 

Quantitative assessment of fish populations that live in deeper waters 

(greater than 30 meters) and associate with hard substrate has been difficult and 

imprecise using traditional sampling methods such as trawl and hook and line 

(Uzmann et al. 1977, Butler et al. 1991, O'Connell and Carlile 1994, Adams et al. 

1995). Since the 1980s, ROV and human-occupied submersibles have been 

used to study fine scale habitat distribution and association patterns of 

rockfishes, behavior of rockfishes, and for studies over rock or cobble where 

trawling is difficult (Stein et al. 1992, Auster et al. 2003, Busby et al. 2005, 

Wakefield et al. 2005). On Heceta Bank, Oregon, the abundance and habitat 

associations of schooling and non-schooling rockfishes were quantified (Stein et 

al. 1992). In Stellwagen Bank National Marine Sanctuary, juvenile Sebastes 
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fasciatus were observed over boulder reefs, while adults were observed in 

adjacent cerianthid habitat (Auster et al. 2003). Studies in shallower waters have 

illustrated that species-specific responses to habitat features at different spatial 

scales is important in management decisions to protect the species (Kendall et 

al. 2003, Grober-Dunsmore et al. 2008). However, few underwater visual 

surveys in deeper waters (greater than 30 meters) have investigated the 

response of rockfishes to habitat at multiple spatial scales (Anderson & Y oklavich 

2007, Pittman &Brown 2011). 

Coupling imagery-derived data with acoustic mapping methods greatly 

improves the extrapolation of data collected on distribution, abundance and fish­

habitat associations at a relatively fine scale (meters) to the scale of kilometers 

(Nasby-Lucas et al. 2002, Whitmire et al. 2007, lampietro et at 2008, Moore et 

al. 2010, Young et al. 2010). Nasby-Lucas et al. (2002) introduced a method of 

segmenting transects by areas of similar habitat or patches and correlating these 

direct habitat observations with sonar data. Observational habitat data and 

calculated fish densities were combined with sonar data to assess fish 

abundances in adjacent areas. Young et al. (2010) created species-specific 

habitat models from fine scale sonar data to predict presence over a broad 

geographic range. Predictive species-specific models could be used to estimate 

the percentage of predicted area encompassed by protected areas over a broad 

area, a valuable assessment tool for managers. 

In the present study we sought to determine a) the fine scale habitat 

associations of red rockfishes along California's central coast, and b) the 

potential distribution of small Canary Rockfish (10-40 centimeters TL) beyond 

surveyed areas using predictive species-specific distribution models. 
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METHODS 

Study Region 

This research was conducted at four locations along the west coast of 

California, from the Farallon Islands to Point Arena, in 2010-2011 (Figure 1). 

Overall, the study region is composed of approximately 94% unconsolidated 

sediment and 6% rock (Davis et al. 2013) with granitic rock dominating to the 

north of Point Reyes, and sedimentary rock to the south (CDFG 2007). Three 

treatment areas were identified at each of the four locations: inside protected 

areas (state marine reserves and conservation areas), outside protected areas 

and an unprotected reference site. 

Imagery Collection 

Underwater surveys were conducted at each location in the study region 

using the Vector M4 ROV (owned by The Nature Conservancy and operated by 

Marine Applied Research and Exploration), from 20-116 meters water depth 

(Table 1). The ROV was equipped with forward-looking video and HD, down­

looking video and digital still, rear facing video, two Quartz halogen and HMI 

lights, paired forward- and down-looking lasers, and a strobe for still photos. The 

ROV was also equipped witl, an altimeter, forward-facing multibeam sonar, and a 

CTD. The ROV was flown at a mean altitude of 0.2 meters above the substrate 

and at a speed of 0.5 to 0.75 knots. The position of the ROV relative to the 

vessel was monitored using a Trackpoint III system with an angular accuracy of 

0.1 degrees. 

Data Extraction 

All observations of Vermilion, Canary and Yelloweye Rockfishes were 

collected from non-overlapping forward-looking video "quadrats", including 

species name, number observed, and total length using paired lasers for fishes 
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greater than or equal to 10 centimeters in total length. A complex category 

contained Vermilion, Canary and Yelloweye Rockfishes that could not be 

distinguished from each other in ROV video. 

Substrate type directly below each fish was recorded using a four 

character code that represented primary (50%) and secondary (20%) substrate 

type within a frame (Stein et al. 1992). Substrate type was based on grain size, 

including four categories: sand, small rock, large rock and continuous rock 

(Greene et al. 1999). Sand was defined as unconsolidated substrate with 

undistinguishable grains less than six centimeters. Small and large rock were 

defined as loose, individual rocks with grain size less than 20 centimeters and 

greater than 20 centimeters, respectively. Continuous rock was defined as an 

outcropping or bed of solid rock. 

Analyses 

The location and size class (total length}, as well as fine scale habitat 

directly below each rockfish observation, was plotted against observation counts 

and visual comparisons were made between each species. Additional fine scale 

analyses were conducted for Canary Rockfish, plotting size class (total length} 

versus the proportion of fish associated with rock or sand. We tested the null 

hypothesis that there was no difference in the proportion of fish of different size 

classes over rock or sand. 

We expected distance from the rock-sand interface to serve as a good 

environmental predictor variable for Canary Rockfish presence after repeatedly 

observing Canary Rockfish at rock-sand interfaces in ROV video. Several 

terrestrial and marine studies have used distance from rock or edge as an 

environmental predictor variable (Pereira & Itami 1991, Friedlander & Parrish 

1998, Pittman et al. 2004, Dorenbosch et al. 2005, Pittman et al. 2007, Young et 

al. 2010). Distance from rock, however, measures only one direction and we 

were interested in whether there was a difference in the number of Canary 
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Rockfish in any direction around an interface. We normalized the count of small 

Canary Rockfish by the effort spent in each two-meter distance zone. We tested 

the null hypothesis that there was no difference in the number of Canary 

Rockfish adjacent to the rock-sand interface. Our expectation, based on video 

observations, was that there was a difference in the proportion of Canary 

Rockfish adjacent to the rock-sand interface. If there was a difference we also 

wanted to know whether the distribution of Canary Rockfish spread further over 

rough or smooth substrate. High resolution (two meter) vector ruggedness 

measure (VRM) and hillshade rasters enabled us to differentiate rough and 

smooth substrate, identify the rock-sand interfaces and finally to generate a 

distance from interface raster to sample at georeferenced fish locations 

(Figure 2). 

We used generalized linear models (GLMs) to predict the occurrence of 

Canary Rockfish outside of surveyed areas. Seven environmental predictor 

variables were selected as good predictors of Canary Rockfish presence based 

on scientific literature (Love et al. 2002, Love & Yoklavich 2006), similar stUdies 

(Iampietro et al. 2005, Young et al. 2010) and from observations of ROV video. 

We tested the null hypothesis that there was no relationship between the 

environmental predictor variables and the response variables. A high resolution 

(two meter) bathymetric digital elevation model was downloaded from the 

California Seafloor Mapping Project Library and topographic position index (TPI), 

slope, north ness, eastness, vector ruggedness measure (VRM) rasters were 

derived from it. 

An equal number of absence points to presence points were generated in 

ArcGIS from one second navigation data (X and Y coordinates were recorded 

every second along transects). Ten sets of randomly selected absence points 

were paired with presence points in an attempt to detect variability in model 

performance. The marine geospatial ecology tool (MGET) was used to split the 

data, fit the GLM, test the model and create a predictive raster (Roberts et al. 
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2010). Eighty percent of the combined presence and absence points were used 

to fit the model and twenty percent were reserved for testing the model since our 

sample size was relatively small. Histograms and a correlation scatterplot were 

created to determine which environmental predictor variables were potentially 

important predictors of Canary Rockfish presence. Environmental predictor 

variables that were correlated at 0.6 or higher were not included in models 

together. 

The overall accuracy, Cohen's kappa and area under the receiver 

operator characteristic (ROC) curve were generated to aid in the assessment of 

model performance. Guidelines for values of Cohen's kappa are K < 0.40 is poor 

agreement, 0.41 > K> 0.60 is moderate agreement, 0.61 > K > 0.80 is 

substantial agreement (Landis & Koch 1977). An area under the curve value of 

0.5 meant there was no discrimination between presence and absence, whereas 

a value of 1 meant there was perfect discrimination. We wanted to maximize 

true positives and minimize false positives and false negatives, so agreement 

among all three tests should suggest a strong model. The GLM equation and 

ROC cutoff value were used to create a binary prediction model of Canary 

Rockfish presence and absence across Bodega Bay, California. 

RESULTS 

Broad Scale Distribution 

The overall abundance of red rockfishes was highest in Bodega Bay, 

followed by the Farallon Islands, Point Arena and Point Reyes (Table 2). Canary 

Rockfish were observed most frequently across the study region, followed by 

Vermilion and Yelloweye Rockfishes (Table 2). 

A majority of the Canary Rockfish observed in this study were small 

Uuveniles and subadults could not be distinguished from ROV video alone) 

based on fifty percent maturity estimates of 39-43 centimeters (Echeverria 1987; 
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Figure 3). In contrast, the size distribution of Vermilion Rockfish was normally 

distributed. It is possible that some Vermilion Rockfish in this study were adults 

based on fifty percent maturity estimates of 37-38 centimeters (Echeverria 1987; 

Figure 4). The size distribution for the ten Yelloweye Rockfish was also normally 

distributed (1 x 10-15, 1 x 15-20, 2 x 20-25,3 x 30-35, 1 x 35-40,2 x 40-45 

centimeters). It is unlikely that the Yelloweye Rockfish in this study were adults 

based on fifty percent maturity estimates of 46-54 centimeters (Echeverria 1987). 

Fine Scale Fish-Habitat Associations 

Small Canary Rockfish associated with rock and sand, whereas Vermilion 

and Yelloweye Rockfish associated primarily with rock (Figure 5). In a 

comparison of size class versus substrate type, small Canary Rockfish 

associated with sand and switched to rock as total length increased (Figure 6). 

Pearsons Chi-square analysis and the post-hoc Marascuilo test were used to 

evaluate differences in counts and multiple proportions (Marascuilo 1966, Zwick 

& Marascuilo 1984, Levine 2000). Not all counts were equal (Chi-square p value 

= 4.445 x 10-9
) and significant differences were found between size classes 10­

15 and >30 centimeters for sand and rock (Marascuilo p value < 0.05). 

The majority of small Canary Rockfish were associated with the rock-sand 

interface. We used Fisher's Exact test to evaluate where the significant 

breakpoints, or changes in the number of small Canary Rockfish, were relative to 

the interface, at each location. In Bodega Bay there was a significant difference 

in the count per unit effort of fishes 24 meters from the interface (p value = 
0.02335), in the Farallones the breakpoint was 22 meters (p value =0.03694), in 

Point Arena the breakpoint was 12 meters (p value =1.167 x 10-1°) and in Point 

Reyes there was no breakpOint. Small Canary Rockfish were distributed further 

from the interface over smooth substrate. 
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Potential Distribution Using Predictive Models 

Two predictive models were developed for small Canary Rockfish based 

on the partitioning of sand and rock by size class (10-15 vs. greater than 15 

centimeters TL; Figure 6). In ten trials of each model, bathymetry and distance 

from interface were significant predictors of small Canary Rockfish presence in 

19 of 20 trials. The three highest performing trials for Canary Rockfish 10-15 

centimeters TL each included bathymetry, distance from interface and 

topographic position index, while the trials for Canary Rockfish greater than 15 

centimeters TL included bathymetry, distance from interface and either slope, 

eastness or both variables (Table 3). The majority of trials showed agreement in 

model performance, and several trials of each model showed strong agreement 

among all three accuracy statistics. Trials 2,5,8, and 10 for the 10-15 

centimeters TL distribution model and Trials 2, 5 and 9 for the>15 centimeters 

TL distribution model (bolded in Table 4) all showed greater than 80% overall 

accuracy, substantial agreement and good overall fit with the data. The 10-15 

centimeters TL distribution model was on average 74% accurate, while the 

greater than 15 centimeters TL distribution model was on average 77% accurate 

(Figure 7). 

The predicted area encompassed by the State Marine Reserve (SMR) and 

State Marine Conservation Area (SMCA) for Canary Rockfish 10-15 centimeters 

TL was 58% (Figure 8) and 75% for Canary Rockfish greater than 15 centimeters 

TL (Figure 9). 

DISCUSSION 

The combination of fine scale fish-habitat associations observed in ROV 

video and high resolution multibeam maps of the seafloor, demonstrated that 

small Canary Rockfish Ouveniles and subadults) switched habitats as they 
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increased in total length but remained close to rock-sand interfaces. Depth and 

distance from interface were most significant to small Canary Rockfish 

distribution, and useful when we extrapolated across a broad region to identify 

areas with a high probability of occurrence. Canary specific predictive 

distribution models were accurate (74-77%) and predicted that a high percentage 

of potential Canary Rockfish habitat was currently protected in state reserves and 

conservation areas. We also discovered that there was a high degree of 

interspecific variability in size class distributions, abundance and habitat 

associations between small Canary, Vermilion and Yelloweye Rockfishes along 

the central coast of California. 

Our finding, that Canary Rockfish 10-15 centimeters in TL associated with 

sand and Canary Rockfish greater than 15 centimeters in TL associated with 

rock, fills a gap in their life history. No studies to our knowledge have focused on 

the fine scale habitat associations of juvenile Canary Rockfish, however, similar 

studies have found differences in rockfish habitat associations depending on life 

history stage (NOAA 1990, Auster et al. 2003, Grober-Dunsmore et al. 2008). 

Our results make sense in context of what is known about young of the year and 

adult Canary Rockfish and the ontogenetic shift that most rockfishes complete 

(Love et al. 1991). Young of the year Canary Rockfish have been observed on 

SCUBA at the rock-sand interface at the edge of kelp forests and were also 

found to be nocturnally active, moving out over sand (Anderson 1983). A second 

study found significant numbers of young of the year Canary Rockfish from 15-30 

meters deep in rippled scour depressions, depressions of coarser unconsolidated 

sediment that are distinct from surrounding areas. The authors suggested that 

these depressions may serve as a nursery to young of the year Canary Rockfish 

(Hallenbeck et al. 2012). Adult Canary Rockfish have been observed repeatedly 

over rock and high relief rock from 80 to 200 meters depth (Love et al. 2002, 

Love & Yoklavich 2006). The wider implication of our research is a more 

complete understanding of the ontogenetic shift for Canary Rockfish, moving 
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from shallow unconsolidated substrates, towards intermediate depths with 

transitional substrates, ending in deep rocky substrates. 

Small Uuvenile and subadult) Canary Rockfish were found to associate 

with rock-sand interfaces delineated using multibeam maps, which confirmed our 

initial ROV video observations. Their relative closeness to interfaces (24 meters 

in Bodega Bay, 22 meters in the Farallones and 12 meters in Point Arena) 

indicates that small Canary Rockfish respond to these structural features in the 

environment. Many studies have been conducted in terrestrial ecology on edge 

effects and a review by Ries et al. (2004) suggested four possible mechanisms 

for increases in abundance near edges: ecological flows (materials, organisms, 

energy), access (resources that exist in different habitats), resource mapping 

(organisms are tracking with their resources) and species interactions (e.g. 

predator-prey). One marine study found the abundance and diversity of fishes to 

be highest at reef edges and speculated that this could be due to increased 

water movement, prey, predators, migrators and spawners (Friedlander & Parrish 

1998). The most plausible explanations for our results may be ecological flows 

and species interactions. Krill in the water column in 2010-2011 could have kept 

small Canary Rockfish near high-flow interfaces. In addition, smaller Canary 

Rockfish may venture out over the sand at night to avoid predators or larger 

rockfishes. From a management standpoint, the association of small Canary 

Rockfish with rock-sand interfaces has implications for the accuracy of stock 

assessments, used to set recovery timelines and catch levels. Traditionally, 

trawlers collecting stock assessment data avoid rocky areas for fear of snags, 

thus, they may be recording lower abundances of small Canary Rockfish than 

are actually present. 

Our two predictive models, partitioned based on Canary Rockfish TL (10­

15 versus greater than 15 centimeters) because of their switch from sand to rock 

substrates, were moderately strong models. Model results appeared to be 

somewhat dependent on the random location of absence points, which is 
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understandable given the transitional substrate in Bodega Bay, CA. However, 

the ten trials we ran of each model and agreement of three accuracy statistics 

substantiated our confidence in model strength. In practice, models with 75-85% 

predictive accuracy have been presented to management for use in decision 

making (Congalton et al. 1999, Zabel et al. 2002). This supports the utility of our 

predictive models to regional and federal fishery and conservation managers. 

Ecologically, our results elevate the importance of rock-sand interface habitats 

from 20-116 meters deep for small Canary spatial distribution. The combination 

of videographic data and high resolution multibeam maps can be used to 

generate presence predictions for managers who want to maximize the 

conservation benefit or improve the design of protected areas where no data 

currently exist. In geographies where we manage more than we can sample, or 

for other species, this approach is broadly applicable. To minimize model 

uncertainty, avoid extrapolating across ecological thresholds (Miller et al. 2004), 

include resource and direct environmental predictor variables when available that 

can discriminate presence and absence over a broad region (Guisan & 

Zimmerman 2000, lampietro et al. 2008, Murray et al. 2011), and ensure 

representative habitats are sampled (Turner 1989). 

Our recommendation to those developing predictive models at similar 

scales for small Canary Rockfish is to include at a minimum, bathymetry and 

distance from interface as environmental predictor variables in their models. 

Future research would benefit from higher rockfish abundance across a broader 

spatial scale, as well as surveys at night. Rasters of direct environmental 

variables such as temperature or water currents and resource gradients such as 

krill presence could improve model results. 

The variability in red rockfish species size distributions and abundances 

observed along the central coast is likely a result of differences in depth and 

water temperature at the four locations sampled, and reduced sampling effort in 

Point Arena. Adult Canary Rockfish are commonly observed from 80-200 meters 
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and adult Yelloweye Rockfish from 91 to 180 meters deep, so it makes sense 

that very few adults would be observed in our study, conducted from 20 to 116 

meters deep. In addition, adult Vermilion Rockfish are commonly found at 50 to 

150 meters deep, but may be observed much shallower north of Point 

Conception (Burge & Shultz 1973, Love et al. 2006). Fewer transects were 

attempted due to severe weather in Point Arena in 2011, and this may have 

contributed to very low abundances of adult Canary and Yelloweye Rockfishes 

observed in the study. A secondary explanation for the high abundance of small 

Canary Rockfish in Bodega Bay might be optimal environmental conditions, for 

instance premium habitat, increased food availability etc. The available habitat 

along surveyed transects did not explain the observed fish-habitat associations. 

According to multibeam sonar data, the majority of available habitat in all four 

locations within the study region was sand (52% in Bodega Bay, 67% in the 

Farallon Islands, 70% in Point Arena and 87% in Point Reyes). These results 

provide a baseline of broad scale size class distribution, as well as abundances 

and habitat associations for comparison with future stUdies. 

CONCLUSION 

Only by coupling direct observations from ROV video with high resolution 

multibeam maps, were we able to distinguish fine scale habitat associations of 

small Guvenile and subadult) Canary Rockfishes. Distance from interface was 

also developed as a new and significant environmental predictor variable for 

predicting the potential distribution of small Canary Rockfish. At a broad scale, 

we found a high degree of interspecific variability in size class distributions and 

abundance between small Canary. Vermilion and Yelloweye Rockfishes along 

the central coast of California. Distribution and abundance information for these 

threatened (Canary and Yelloweye Rockfishes) and potentially overfished 

species (Vermilion Rockfish) will be useful to state and federal fishery managers. 
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Results of this study will inform the first adaptive management review of marine 

protected areas for this region, and provide an approach for studying the 

distributions of other species across coastal habitats. 

14 




REFERENCES 

Adams PB, Butler JL, Baxter CH, Laidig TE, Dahlin KA, Wakefield WN. 1995. 
Population estimates of Pacific coast groundfishes from video transects and 
swept-area trawls. Fishery Bulletin 93:446-455. 

Anderson T J, Yoklavich MM. 2007. Multiscale habitat associations of deepwater 
demersal fishes off central California. Fishery Bulletin 105:168-179. 

Anderson TW. 1983. Identification and development of nearshore juvenile 
rockfishes (Genus Sebastes) in Central California kelp forests [MA Biology 
thesis]. Fresno (CA): California State University, Fresno. 187 p. 

Auster PJ, Lindholm J, Valentine PC. 2003. Variation in habitat use by juvenile 
Acadian redfish, Sebastes fasciatus. Environmental Biology of Fishes 68:381­
189. 

Auster PJ. 2005. Are deep-water corals important habitats for fishes? In: A 
Freiwald and JM Roberts, editor. Cold-water corals and ecosystems. Berlin: 
Springer-Verlag; p. 747-760. 

Burge RT, Schultz SA. 1973. The marine environment in the vicinity of Diablo 
Cove with special reference to abalones and bony fishes [Manuscript]. Marine 
Resources Technical Report No.19. 429 p [Internet]. [cited 2012 August 12J. 
Available from: 
http://aquaticcommons.orgI755/1/TechnicaLReport_1973_No._19Y..pdf. 

Busby MS, Mier KL, Brodeur RD. 2005. Habitat associations of demersal fishes 
and crabs in the Pribilof Islands region of the Bering Sea. Fisheries Research 75: 
15-28. 

Butler JL, Wakefield WN, Adams PB, Robison BH, Baxter CH. 1991. Application 
of line transect methods to surveying demersal communities with ROVs and 
manned submersibles [Internet]. [cited on 2012 March 3]. Available from: 
http://swfsc.noaa.gov/publications/CRl1991/9119.pdf. 

[CDFG] California Department of Fish and Game. 2007 September 28. California 
MLPA Master Plan Science Advisory Team Draft Work Group Responses to 
Science Questions Posed by the NCCRSG at its July 10-11, 2007 Meeting 
[Internet]. [cited 2012 August 12]. Available from: 
http://www.dfg.ca.gov/mlpa/pdfs/agenda_1001 07b.pdf. 

15 


http://www.dfg.ca.gov/mlpa/pdfs/agenda_1001
http://swfsc.noaa.gov/publications/CRl1991/9119.pdf
http://aquaticcommons.orgI755/1/TechnicaLReport_1973_No._19Y..pdf


[CDFG] California Department of Fish and Game. 2008. California Marine Life 
Protection Act. Master plan for protected areas [Internet]. [cited 2012 August 12]. 
Available from: http://www.dfg.ca.gov/marine/pdfs/revisedmp0108.pdf. 

Cope JM, DeVore J, Dick EJ, Ames K, Budrick J, Erickson DL, Grebel J, 
Hanshew G, Jones R, Mattes L, Niles C, Williams S. 2011. An approach to 
defining stock complexes for US west coast groundfishes using vulnerabilities 
and ecological distributions. North American Journal of Fisheries Management 
31 (4):589-604. 

Congalton RG, Green K. 1999. Assessing the Accuracy of Remotely Sensed 
Data: Principles and Practices. New York: Lewis Publishers. 

Davis ACD, Kvitek RG, Mueller CBA, Young MA, Storlazzi CD, Phillips EL. 2013. 
Distribution and abundance of rippled scour depressions along the California 
coast. Continental Shelf Research Volume 69:88-100. 

Dorenbosch M, Grol MGG, Nagelkerken I, van derVelde G. 2005. Distribution of 
coral reef fishes along a coral reef-seagrass gradient: edge effects and habitat 
segregation. Marine Ecology Progress Series 299:277-288. 

Echeverria TW. 1987. Thirty-four species of California Rockfishes: maturity and 
seasonality of reproduction. Fishery Bulletin 88 (2):229-250. 

Friedlander AM, Parrish JD. 1998. Habitat characteristics affecting fish 
assemblages on a Hawaiian coral reef. Journal of Experimental Marine Biology 
and Ecology 224:1-30. 

Greene HG, Yoklavich MM, Starr RM, O'Connell VM, Wakefield VVW, Sullivan 
DE, McRea Jr. JE, Cailliet GM. 1999. A classification scheme for deep seafloor 
habitats. Oceanologica Acta 22(6):663-678. 

Grober-Dunsmore R, Frazer TK, Beets JP, Lindberg WJ, Wick P, Funicelli NA. 
2008. Influence of landscape structure on reef fish assemblages. Landscape 
Ecology 23:37-53. 

Guisan A, Zimmermann NE. 2000. Predictive habitat distribution models in 
ecology. Ecological Modelling 135:147-186. 
Gunderson DR, Sample TM. 1980. Distribution and abundance of rockfish off 
Washington, Oregon, and California during 1977. Marine Fisheries Review 42 (3­
4):2-16. 

16 


http://www.dfg.ca.gov/marine/pdfs/revisedmp0108.pdf


Hallenbeck TR. Kvitek RG, Lindholm J. 2012. Rippled scour depressions add 

ecologically significant heterogeneity to soft-bottom habitats on the continental 

shelf. Marine Ecology Progress Series 468: 11 9-133. 


lampietro PJ, Young MA, Kvitek RG. 2008. Multivariate Prediction of Rockfish 

Habitat Suitability in Cordell Bank National Marine Sanctuary and Del Monte 

Shalebeds, California, USA. Marine Geodesy 31 (4):359-371. 


Johnson SW, Murphy ML, Csepp DJ. 2003. Distribution, habitat, and behavior of 

rockfishes, Sebastes spp., in nearshore waters of southeastern Alaska: 

observations from a remotely operated vehicle. Environmental Biology of Fishes 

66:259-270. 


Kendall MS, Christensen JD, Hillis-Starr Z. 2003. Multi-scale data used to 

analyze the spatial distribution of French grunts, Haemulon flavolineatum, 

relative to hard and soft bottom in a benthic landscape. Environmental Biology of 

Fishes 66:19-26. 


Laidig TE, Watters DL, Yoklavich MM. 2009. Demersal fish and habitat 

associations from visual surveys on the central California shelf. Estuarine, 

Coastal and Shelf Science 83(4):629-637. 


Landis JR, Koch GG. 1977. The measurement of observer agreement for 

categorical data. Biometrics 33: 159-174. 


Levine DM 2000. Chi-Square Tests and Nonparametric Tests [Internet]. [cited 

2014 March 9]. Available from: 

http://www.prenhall.com/behindthebook/0136149901/pdf/Levine_CH12.pdf. 


Love MS, Carr MH, Haldorson LJ. 1991. The ecology of substrate-associated 

juveniles of the genus Sebastes. Environmental Biology of Fishes 30:225-243. 


Love MS, Yoklavich M, Thorstinson L, editors. 2002. The rockfishes of the 

northeast Pacific. Berkeley, Los Angeles or London: University of California 

Press. 


Love MS, Schroeder DM, Lenarz B, Cochrane GR. 2006. Gimme shelter: The 

importance of crevices to some fish species inhabiting a deeper-water rocky 

outcrop in southern California. California Cooperative Ocean Fishing 

Investigation Report 47:119-126. 


17 


http://www.prenhall.com/behindthebook/0136149901/pdf/Levine_CH12.pdf


love MS, Yoklavich M. 2006. Deep Rock Habitats. In: Allen lG, Pondella OJ, 
Horn MH, editors. The Ecology of Marine Fishes, California and Adjacent Waters. 
Berkeley and los Angeles: University of California Press; p. 253-266. 

Marascuilo LA. 1966. large-sample multiple comparison. Psychological Bulletin 
65:280-290. 

Miller JR, Turner MG, Smithwick EAH, Dent, Cl, Stanley EH. 2004. Spatial 
Extrapolation: the science of predicting ecological patterns and processes. 
BioScience 54(4):310-320. 

Moore CG, Harvey ES, Van Niel K. 2010. The application of predicted habitat 
models to investigate the spatial ecology of demersal fish assemblages. Marine 
Biology 157:2717-2729. 

Murray JV, low Choy S, Mcalpine CA, Possingham HP, Goldizen AW. 2011. 
Evaluating model transferability for a threatened species to adjacent areas: 
implications for rock-wallaby conservation. Austral Ecology 36:76-89. 

Nasby-lucas N, Embley B, Hixon MA, Merle SG, Tissot BN, Wright OJ. 2002. 
Integration of submersible transect data and high-resolution multibeam sonar 
imagery for a habitat-based groundfish assessment of Heceta Bank, Oregon. 
Fishery Bulletin 100:739-751. 

[NOAA] National Oceanic and Atmospheric Administration. 1990. Life history 
aspects of 19 rockfish species (Scorpaenidae: Sebastes) from the Southern 
California Bight [Internet]. [cited 2012 August 12]. Available from: 
http://spo.nwr.noaa.gov/tr87.pdf. 

O'Connell VM, Carlile OW. 1993. Habitat-specific density of adult yelloweye 
rockfish Sebastes ruberrimus in the Eastern Gulf of Alaska. Fishery Bulletin 
91 :304-309. 

O'Connell VM, Carlile OW. 1994. Comparison of a remotely operated vehicle and 
a submersible for estimating abundance of demersal shelf rockfishes in the 
Eastern Gulf of Alaska. North American Journal of Fisheries Management 
14:196-201. 

Overholtz WJ, Tyler AV. 1985. long-term responses of the demersal fish 
assemblages of Georges Bank. Fishery Bulletin 83(4):507-520. 

Pereira JMC, Itami RM. 1991. GIS-based habitat modeling using logistic multiple 
regression: a study of the Mt. Graham Red Squirrel. Photogrammetric 
Engineering and Remote Sensing 57(11):1475-1486. 

18 


http://spo.nwr.noaa.gov/tr87.pdf


[PFMCJ Pacific Fishery Management Council. 2005. Canary Rockfish, STAR 
Panel Report. [lnternetJ. [cited on April 12, 2014J. Available from: 
http://www.pcouncil.org/wp-contentluploads/Canary_Mopup_STAR.pdf. 

[PFMC] Pacific Fishery Management Council. 2007. Status of cowcod, Sebastes 
levis, in the Southern California Bight. [Internet]. [cited on April 12, 2014]. 
Available from: http://www.pcouncil.org/wp­
contentluploads/certified_cowcod_Dec_2007.pdf. 

[PFMC] Pacific Fishery Management Council. 2007. Status of the U.S. canary 
rockfish resource in 2007. In Status of the Pacific coast groundfish fishery 
through 2008, stock assessment and fishery evaluation: stock assessments, 
STAR panel reports, and rebuilding analyses [Internet]. [cited on 2014 August 
18]. Available from: http://swfsc.noaa.gov/publications/CRl2008/2008Mac1.pdf. 

Pittman SJ, McAlpine CA, Pittman KM. 2004. Linking fish and prawns to their 
environment: a hierarchial landscape approach. Marine Ecology Progress Series 
283:233-254. 

Pittman SJ, Brown KA. 2011. Multi-Scale approach for predicting fish species 
distributions across coral reef seascapes. PLoSONE 6(5):1-12. 

Pittman SJ, Christensen JD, Caldow C, Menza C, Monaco ME. 2007. Predictive 
mapping of 'fish species richness across shallow-water seascapes in the 
Caribbean. Ecological Modelling 204:9-21. 

Richards L. 1986. Depth and habitat distributions of three species of rockfish 
(Sebastes) in British Columbia: observations from the submersible PISCES IV. 
Environmental Biology of Fishes 17(1):13-21. 

Ries L, Fletcher RJ Jr., Battin J, Sisk TD. 2004. Ecological responses to habitat 
edges: mechanisms, models, and variability explained. Annual Review of 
Ecological and Evolutionary Systems 35:491-522. 

Roberts JJ, Best BD, Dunn DC, Treml EA, Halpin PN. 2010. Marine geospatial 
ecology tools: an integrated framework for ecological geoprocessing with ArcGIS, 
Python, R, MATLAB, and C++. Environ Model Software 25:1197-1207. 
Stein DL, Tissot BN, Hixon MA, Barss W. 1992. Fish-habitat associations on a 
deep reef at the edge of the Oregon continental shelf. Fishery Bulletin 90(3):540­
551. 

Tissot BN, Yoklavich MM, Love MS, York K, and Amend M. 2006. Benthic 
invertebrates that form habitat on deep banks off southern California, with special 
reference to deep sea coral. Fishery Bulletin 104:167-181. 

19 

http://swfsc.noaa.gov/publications/CRl2008/2008Mac1.pdf
http://www.pcouncil.org/wp
http://www.pcouncil.org/wp-contentluploads/Canary_Mopup


Turner MG. 1989. Landscape Ecology: the effect of pattern on process. Annual 
Review of Ecology and Systematics 20:171-197. 

Uzmann JR, Cooper RA, Theroux RB, Wigley RL. 1977. Synoptic comparison of 
three sampling techniques for estimating abundance and distribution of selected 
megafauna: submersible vs camera sled vs otter trawl. Marine Fisheries Review 
39(12):11-19. 

Wakefield WW, Whitmiren CE, Clemons JER, Tissot BN. 2005. Fish habitat 
studies: combining high-resolution. American Fisheries Society Symposium 
41 : 119-138. 

Whitmire CE, Ernbley RW, Wakefield WW, Merle SG, Tissot BN. 2007. A 
quantitative approach for using multibeam sonar data to map benthic habitats. In 
Todd BJ and Greene HG, editors. Mapping the Seafloor for Habitat 
Characterization: Geological Association of Canada, Special Paper 47, p. 111­
126. 

Young MA, lampietro PJ, Kvitek RG, Garza CD. 2010. Multivariate bathymetry­
derived generalized linear model accurately predicts rockfish distribution on 
Cordell Bank, California, USA. Marine Ecology Progress Series 415:247-261. 

Yoklavich MM, Greene GH, Caillet GM, Sullivan DE, Lea RN, Love MS. 2000. 
Habitat associations of deep-water rockfishes in a submarine canyon: an 
example of a natural refuge. Fishery Bulletin 98:625-641. 

Yoklavich M, Cailliet G, Lea RN, Greene GH, Starr R, de Marignac J, Field J. 
2002. Deepwater habitat and fish resources associated with the Big Creek 
Marine Ecological Reserve. Reports of California Cooperative Oceanic Fisheries 
Investigations 43:120-140. 

Zabel CJ, Dunk JR, Stauffer HB, Roberts LM, Mulder as, Wright A. 2003. 
Northern Spotted Owl habitat models for research and management application 
in California. Ecological Applications 13(4):1027-1040. 

Zwick R, Marascuilo LA. 1984. Selection of pairwise multiple comparison 
procedures for parametric and nonparametric analysis of variance models. 
Psychological Bulletin 95(1): 148-155. 

20 




APPENDIX A. TABLES AND CAPTIONS 

Table 1. ROV dives conducted in 2010-2011 at four locations along California 's 
central coast. 

-. 

II Bodega Bay Farallon Islands Point Arena Point Reyes 

2010 8 11 7 0 

2011 11 10 2 13 

Table 2. Relative abundance of red rockfishes across four locations along 
California's central coast. The complex category includes Vermilion, Canary and 
Yelloweye Rockfishes that could not be distinguished from ROV video. 

r= 
Canary 

Bodega Bay Farallon Islands Point Arena Point Reyes Total 

216 119 84 83 502 

Vermilion 6 40 27 12 85 

Complex 4 13 10 5 32 

Yelloweye 2 2 5 1 10 

Total 228 177 126 101 629 
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Table 3. Two predictive distribution models were tested for small Uuvenile and 
subadult) Canary Rockfish, and ten trials were run for each model. The three 
highest performing trials for Canary Rockfish 10-15 centimeters TL each included 
bathymetry (bat), distance from interface (int) and topographic position index 
(tpi), while the trials for Canary Rockfish greater than 15 centimeters TL included 
bathymetry (bat), distance from interface (int) and either slope (slo) , eastness 
(eas) or both variables. An asterisk denotes Significance at the specified alpha 
level. 

C anary Rockf - tIS h 10 15 cen Ime ers f TL 
Variable II CoefficientTrial # P Value 
intercept -2 .91 <0 .01 * 

tpi -1.64 >0.05 
2 

int -0 .0168 >0.05 
-0 .0627 <0.01 *bat 

intercept -2.73 <0.05* 
tpi -17.2 >0.05 

5 0.516eas >0.05 
int -0.0227 <0.05* 
bat <0.01 *-0 .0687 

intercept -5 .25 <0.01 * 
-2 .60 tpi <0.05* 

10 int -0.0178 <0.01 * 
slo <0.05*0.191 
bat -0 .0998 <0.001 * 
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Canary Rockfish >15 centimeters TL 
Trial # Variable Coefficient P Value 

2 

intercept -5.67 <0 .001 * 
nor 0.556 <0 .05* 
int -0 .00944 <0 .05* 

<0 .05* slo 0.126 
bat -0.106 <0.001 * 

5 

intercept -3 .71 <0 .001 * 
eas 0.423 >0.05 
int -0 .0152 <0.001 * 
bat -0 .0811 <0.001 * 

9 

intercept -3.69 <0.001 * 
tpi -0 .652 >0.05 
eas 0.363 >0.05 
int -0.0188 <0 .001 * 
slo 0.0835 >0.05 
bat -0.0768 <0 .001 * 
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Table 4. Two predictive distribution models were tested for small Uuvenile and 
subadult) Canary Rockfish . The highest performing trials for each model are 
balded, indicating strong agreement between three model accuracy statistics, 
overall accuracy, Cohen's Kappa and area under the curve. Acc =overall 
accuracy, K =Cohen's Kappa, AUC =area under the curve. 

Canary R kfISh 10 15 f toc - cen Ime ers TL 
AUC 

--, 

'Trial # Acc K 
1 0.750 0.8190.500 
2 0.821 0.632 0.792 
3 0.571 0.226 0.561 
4 0.750 0.505 0.749 
5 0.821 0.639 0.846 
6 0.679 0.357 0.633 
7 0.690 0.359 0.659 
8 0.815 0.8350.630 
9 0.679 0.417 0.783 
10 0.821 0.650 0.877 

Canary RockfIS h >15 r t TLcen Ime ers 
Trial # Acc K AUC 

1 0.754 0.496 0.753 
2 0.836 0.643 0.860 
3 0.732 0.464 0.681 
4 0.789 0.573 0.811 
5 0.804 0.607 0.837 
6 0.679 0.357 0.723 
7 0.782 0.552 

0.539 
0.809 
0.763 8 0.768 

9 0.804 0.607 0.839 
10 0.789 0.580 0.858 
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APPENDIX B. FIGURES AND CAPTIONS 
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Figure 1. Map of the four locations sampled using the ROV, showing boundaries 
of the State Marine Reserves and State Marine Conservation Areas as well as 
the three-mile limit demarcating state waters. 
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Figure 2. Simplified map (25 meter resolution) showing distance from rock-sand 
interfaces in Bodega Bay, California . 
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Figure 3. Right-skewed size distributions (centimeters TL) of Canary Rockfish 
across four locations along California's central coast. 
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Figure 4. Normal size distributions (centimeters TL) of Vermilion Rockfish across 
four locations along California's central coast. 
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Figure 5. Fine scale habitat associations of small Uuvenile and subadult) Canary 
Rockfish (top), Vermilion Rockfish (middle) , and Yelloweye Rockfish (bottom) 
across four locations along California's central coast. These fish-habitat 
observations were made from ROV video. 
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Figure 6. Small Uuvenile and subadult) Canary Rockfish associated with sand 
but switched to association with rock as their total length increased. There were 
significant differences found between size classes 10-15 and >30 centimeters for 
sand and rock. 
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Figure 7. Average overall accuracy for the 10-15 centimeter TL distribution 
model (74%) was slightly lower than for the greater than 15 centimeter TL 
distribution model (77%) 
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Figure 8. Nine percent and forty-nine percent of the predicted area for Canary 
Rockfish 10-15 centimeters TL was contained within the State Marine Reserve 
and State Marine Conservation Area respectively. 

30 




'5 Q'n Canary Predl!;t.on Afea 

c:::J Stal!! Mi"ne R.ese.r\le 


r:==J Stale t.tarine onservation Area 


= CAr ~&rllime j1m1 

o 0 5 ' 2 Kilomelers 

I • I J 


Figure 9. Four percent and seventy-one percent of the predicted area for 
Canary Rockfish greater than 15 centimeters TL was contained within the State 
Marine Reserve and State Marine Conservation Area respectively. 
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