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ABSTRACT 
Linking habitat heterogeneity to genetic partitioning in the 


rocky subtidal using black surf perch (Embiotocajacksoni). 

by 


Scott Robert William Toews 

Masters of Science in Coastal and Watershed Science and 


Policy 

California State University Monterey Bay, 2012 


Habitat composition and complexity can play an important role in structuring 
populations of marine organisms. However, the interactions between the physical and 
biological landscape and their combined effect on marine population dynamics are not 
well understood. In this study, I explored the role of habitat complexity (three
dimensional habitat structure) on habitat composition (abundance and distribution of 
habitat types) and their combined role in structuring genetic variation in populations of 
the black surfperch Embiotocajacksoni, within Monterey Bay, California. Black 
surf perch have no pelagic larval stage, limited adult dispersal, and associate strongly with 
benthic habitat making them an excellent model system for this study. Structural 
complexity of subtidal habitat was calculated using digital elevation models of the sea 
floor. Habitat composition was estimated from photo quadrats of the subtidal benthos and 
collections of benthic algal samples, which were sampled for the surfperch's major prey 
sources in order to calculate prey biomass and distribution. Surfperch were collected for 
tissue samples and their stomach contents were analyzed for prey categorization (species 
and size distribution). We used 10 micro satellite markers to generate allele frequencies. 
GIS and spatial statistics were used to visualize and analyze the relationship between 
subtidal landscape variables and genetic diversity in black surf perch populations. This 
approach can provide rigorous quantitative estimates on the relationship between subtidal 
landscape complexity and genetic diversity in nearshore marine organisms. 
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1 INTRODUCTION 

The physical and biological habitats of many marine species, especially low 

mobility and sessile species can be discontinuous with high spatial variation in the 

complexity and composition of their habitat. This landscape heterogeneity may in tum 

lead to populations of a species becoming subdivided in sub-assemblies with differing 

population dynamics and selective pressures (Endler 1991). These differing selective 

pressures can in tum lead to genetic pools that are heterogeneous across their 

distributional range (Burton 1983; Reeb and Avise 1990; Borsa et al. 1997; Neigel 1997). 

The resulting genetic heterogeneity may be due to several non-random factors including; 

selection through local adaptation (Hedgecock 1986; Knowlton and Keller 1986), genetic 

drift through barriers to connectivity (Gaggiotti et a1. 2009; Galarza et aL 2009), or 

demography and life history (Hemmer-Hansen et aL 2007; Gaggiotti et aL 2009). 

Understanding genetic structuring of populations gives us insight into the processes 

involved in creating and maintaining genetic diversity. However, understanding the 

process and patterns of gene flow and local adaptation requires a greater understanding of 

landscape characteristics and how they might influence population structure. This 

understanding is critical for improving ecological knowledge of and improving 

management of genetic diversity of populations (Moritz 2002; Manel et aL 2003). 

Genetic diversity is defined as any measure that quantifies the magnitude of genetic 

variability within a population and is a fundamental source of biodiversity. Biodiversity 

has become an important measure of ecosystem health used by conservation and resource 

managers (Thompson and Starzomski 2007). There is accumulating evidence from 

terrestrial, freshwater, and marine systems to suggest that sustainable ecosystem services 

depend upon biodiversity (Mcgrady-Steed et al. 1997; Tilman et al. 2006; Worm et al. 

2006; Stachowicz et al. 2007; Hughes et aL 2008). Genetic diversity provides the raw 

material upon which evolution acts and is therefore crucial to a species' ability to adapt to 

its environment (Fisher 1930). Historically, research on genetic diversity has focused on 

its importance in evolutionary processes, though studies in evolutionary biology, 

agronomy and conservation biology indicate that genetic diversity can have important 
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ecological effects (Zhu et aL 2000; Leimu et al. 2006). Genetic diversity is closely linked 

to ecosystem function and evolution (Neuhauser et al. 2003; Hughes and Stachowicz 

2004; Hughes et al. 2008) and is an important means of estimating adaptive evolution and 

population persistence (Holderegger et al. 2006). However, we have a poor understanding 

of the role that both the physical and the biological habitats play in generating and 

maintaining genetic diversity. 

Understanding landscape effects on genetic structuring provides insights into 

fundamental ecological processes such as metapopulation dynamics, speciation, and 

ultimately the formation of species distributions (Keyghobadi et al. 1999; Roach et al. 

2001; Manel et al. 2003; Storfer et al. 2006), each of which are important in the 

development of conservation, fisheries, and spatial management strategies. With an 

increasing emphasis on ecosystem-based management, better tools are required to 

quantify biodiversity and assess linkages to environmental drivers that may increase or 

decrease biodiversity (Arkema et al. 2006). To do this a landscape approach to ecological 

relationships between organisms and the environment may help determine inf1uences of 

habitat on the distribution of genetic variation in a species. 

The field oflandscape ecology has advanced our understanding of how landscape 

heterogeneity affects ecological processes (Turner 1989) and provides a spatially explicit 

framework for understanding the relationships between ecological patterns and processes 

that can be applied across a range of scales (Turner 2005). More specifically, landscape 

ecology examines the development and dynamics of spatial heterogeneity, interactions 

across heterogeneous landscapes, the influence of spatial heterogeneity on biotic and 

abiotic processes, and the management of spatial heterogeneity. The structure of a 

landscape can be described by the composition and spatial arrangement of the habitat 

patches that make up ecosystems (Turner 1989). This structure has been quantified using 

a number of metrics (O'neill et al. 1988) including composite indices (e.g., habitat 

diversity) and measures of configuration (e.g., patch size) and context (size, spatial 

arrangement and composition of surrounding habitat patches) (Turner 1989). 

Understanding how landscape structure may influence the creation and maintenance of 

genetic diversity is critical for understanding ecosystem level functions. 
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Landscape genetics (ManeI et aL 2003) seeks to understand the influence of 

ecological processes (Turner 1989) on genetic variation by quantifying the relationship 

between landscape variables, population genetic structure, and genetic variation. 

Landscape genetics has provided a framework for examining how the physical landscape 

affects genetic characteristics of populations. Understanding how landscape 

heterogeneity influences genetic diversity and popUlations structure requires the 

combination of high-resolution genetic markers and population genetic theory with 

spatial data and a variety of statistical methods (Storfer et al. 2006). 

Traditionally, popUlation genetic studies have been limited to tests of isolation-by

distance for making spatial inferences to estimate genetic structure (i.e., how genetic 

variation is distributed in space) and gene flow. Gene flow is a measure of organismal 

dispersal or the movement of genes alone and can provide a direct measurement of 

functional connectivity among popUlations (Holderegger et al. 2007). Landscape genetics 

provides a framework for examining the relative influence of landscape and 

environmental variables on gene flow, genetic discontinuities, and genetic population 

structure (Manel et al. 2003; Holderegger and Wagner 2006). One of the drivers for the 

growing theoretical and empirical interest in landscape genetic analyses is a shift by 

ecologists and conservation biologists to landscape scale analyses (Stork & Waits, 20 I 0). 

Landscape genetics has been used in a range of systems using different landscape 

parameters to predict genetic structuring, including plant cover type (Spear et aL 2005), 

habitat fragmentation (Spear and Storfer 2008), stream distance (Roach et al. 2001), and 

water flow rates (Michels et aL 2001). While landscape genetic approaches have been 

increasingly applied to examining the impact of environmental heterogeneity on the 

population structure of terrestrial and aquatic organisms, there has been limited 

application of landscape genetics in marine systems. Those studies that have focused on 

marine systems have generally focused at the scale of the seascape by examining the 

influence of ocean currents on population dynamics (Galindo et al. 2006; Hansen and 

Hemmer-Hansen 2007; Selkoe et aL 2008; Galindo et al. 2010). These studies assess the 

role that large-scale oceanographic variables play in structuring populations and measure 

connectivity as a function of larval dispersal (Selkoe et al. 2008). However, these large

scale approaches ignore the potential impact of fine scale, landscape based factors, which 
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may in fact fragment populations of low mobility marine populations and subsequently 

increase genetic variation. Furthermore, diversity as measured at a local scale may in fact 

arise from environmental factors that range across multiple scales (Garza 2008). An 

underlying assumption of seascape scale studies is that with increasing pelagic larval 

duration (PLD), connectivity will increase and there will be a concurrent decrease in 

population structuring. However, Weersing and Toonen's (2009) meta-analysis of the 

effect of PLD on genetic connectivity demonstrated only a weak relationship between the 

two variables. Similarly, previous studies of marine species with relatively low dispersal 

have shown unexpectedly fine scale genetic structuring of a few meters (Johannesson 

1988; Andrade and Solferini 2007). Thus, there is a need for studies that can incorporate 

variation of scale and determine the scales at which the drivers responsible for genetic 

diversity become ecologically significant in the marine realm (Balkenhol et al. 2009). 

This is a significant knowledge gap when attempting to apply an ecosystem-based 

approach to marine conservation and management. 

The focus on seascape scales is, in part, due to the great potential for larval 

dispersal that characterizes the majority of marine species. This life history pattern has 

led to a paradigm that considers marine popUlations open, where reproductive output is 

decoupled from recruitment ofjuveniles in local populations for reef fishes. This has led 

to a theoretic focus on larval dispersal and recruitment in reef fish ecology (Cowen and 

Sponaugle 2009). However, at local scales the influence of the environment on juveniles 

and adults might playa greater role in determining the scales, rates, and patterns of 

demographic and genetic connectivity among populations. Recent studies of larval 

dispersal patterns and genetic population structure suggests that local reef fish 

populations is less open than previously thought (Warner and Cowen 2002; Buonaccorsi 

et al. 2004; Cowen et al. 2006; Bay et al. 2008). This suggests that species with reduced 

scales of larval connectivity or without larval dispersal, the relationship of adult 

iIldividuals with the local habitat at fine spatial scales might have important population 

level consequences (i.e. demographic and genetic connectivity). 

Habitat composition, the abundance and distribution of the biological components 

of a habitat, can be driven by the variation in the structural complexity of the habitat. 

Structural complexity has been shown to be important in predicting abundance and 
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distribution in a diverse array of taxa including birds (Macarthur and Macarthur 1961), 

lizards (Reagan 1991), bighorn sheep (Sappington et al. 2007) and invertebrates (Beck 

1998). In marine habitats, the distributions of adult reef fish, like most other adult 

organisms, are related to spatial variation in habitat composition and complexity (Grober

Dutlsmore et al. 2007; Grober-Dunsmore et al. 2008). Structural complexity can 

influence habitat composition and is an important habitat characteristic with many 

ecological roles. Increased complexity provides habitat structure, promotes species 

richness, and alters boundary-layer flow over the bottom (Butman et al. 1994; Green et 

al. 1998). Along the seafloor, the interaction of current flow and substrate complexity can 

affect settlement of larvae and algae (Hills et al. 1999; Lapointe and Bourget 1999) and 

subsequent population performance because it controls delivery of nutrients, oxygen, and 

chemical cues (Weissburg and Zimmer-Faust 1993; Leonard et al. 1998; Lenihan et al. 

1999). Complexity is an important habitat characteristic that serves many ecological roles 

(i.e. often correlated with species richness) and provides refuge from predators and 

physical stress (Pittman et al. 2009; Zawada and Brock 2009). 

While most marine fishes are oviparous with pelagic larvae that disperse soon after 

hatching, Surfperch (Embiotocidae) are a notable exception and are viviparous having 

internal fertilization. Females give birth to multiple fully developed offspring that are 

free-swimming and that have been shown to form sibling groups immediately after birth 

(Sikkel and Fuller 2010). Adult surf perch have very limited dispersal capability, swim 

within a meter of the reef substrate, require rocky reef habitat to forage and use as refuge, 

and live in restricted territories. 

Black surfperch (Embiotocajacksoni) are a common nearshore fish species that 

lives in a narrow band of the marine littoral zone (approximately 3 to 20 m) (Hixon 1981; 

Bernardi 2000; Froeschke et al. 2007) which ranges from Fort Bragg in northern 

California to central Baja California in Mexico (Humann and Hall 1996). This species 

attains a maximum length of about 35 cm (Humann and Hall 1996), and is commonly 

observed swimming within a meter of the reef substrate and feeding on small benthic 

animals (Quast 1968; Schmitt and Coyer 1982). It is strictly diurnal, becoming inactive 

near the reef substrate at night (Ebeling and Bray 1976). It eats various species of small, 

sedentary invertebrates (mainly crustacea) that inhabit a diverse aggregate "turf of small 
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plants and colonial benthic animals covering much of the reef bottom (Quast 1968; 

Schmitt and Coyer 1982, 1983; Schmitt and Holbrook 1984; Holbrook and Schmitt 

1992). The primary preys are tube-dwelling and free-living gammarid amphipods 

(detritivorous and planktivorous crustaceans averaging several millimeters in length) 

(Schmitt and Holbrook 1984). 

Black surfperch life history, low dispersal, and strong habitat affinity suggests that 

populations are dependent on habitat composition at local scales. Biological habitat 

composition has also been shown to be associated with varying levels of habitat 

complexity in the rocky subtidal. Taken together they may drive not only patterns of 

distribution and abundance in these populations but, over time, influence patterns of 

genetic variation in these populations. Using mitochondrial markers Bernardi (2000) 

demonstrated population structuring of black surfperch populations at a sub-regional 

scale. Their limited dispersal capability and fine scale habitat affinity (Holbrook and 

Schmitt 1984; Schmitt and Holbrook 1990; Holbrook and Schmitt 1992; Schmitt and 

Holbrook 2007), might drive fine scale (100's - 1000's meters) population structure. 

Partitioning of populations may be a long-term response to habitat variation through 

space. The goal of this study is to determine if black surfperch populations are structuring 

at local scales and if this structuring is influenced by both habitat complexity (the 3D 

structural complexity of the seafloor) and habitat composition (the biological distribution 

of habitat types through space). I hypothesize that populations of black surf perch will 

demonstrate genetic partitioning at relatively small spatial scales. I also predict genetic 

diversity will be correlated with a suite of landscape parameters (e.g. topographic 

complexity, slope, habitat complexity, algal habitat distribution, and prey distribution) 

that are also scale dependent. I tested these predictions through a novel integration of 

population genetics and landscape ecological techniques to estimate how habitat 

complexity may drive genetic variation in a population that resides in subtidal rocky reef 

systems. 

For this study, I used a landscape genetics approach to examine the role of fine scale 

landscape variation on the genetic composition of relatively low mobility marine 

organisms. Using highly variable micro satellite markers, short tandem repeat sequences 

(usually di-, tri-, or tetranucleotides) that are polymorphic Mendelian markers I generated 
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population specific allele frequencies. These allele frequencies were then used as part of a 

model comparison to determine genetic variability between populations and 

subpopulations. Specifically, this study documents 1) the relationship of the physical 

landscape to biological habitat distribution 2) prey availability as a response to algal 

habitat distribution 3)Prey consumption as a function of prey availability and 4) 

population structure of the black surfperch as a function of the physical landscape, habitat 

distribution, and prey availability. Finally, this study attempts to generate an 

understanding of the interaction between genetics and the physical and biological 

landscape for management and conservation in the nearshore marine environment. 

Applying population genetic theory in a landscape ecology framework can help managers 

identify constraints created by anthropogenic, habitat, or environmental factors that may 

increase reproductive isolation, demographic independence among populations, and the 

reduced likelihood of population persistence. Though a few recent studies have examined 

how fine scale landscape complexity in the subtidal realm influences the distribution and 

abundance of mobile marine species (Grober-Dunsmore et aL 2008; Hovel and Regan 

2008), few studies have examined the linkage between genetic diversity and micro-scale 

landscape processes in marine systems. The goal of this project was to examine the 

ability of geospatial and genetic tools to determine the influence of physical and 

biological habitat on popUlation structuring in a marine fish. 
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2 METHODS 

2.1 Study site 

This study focused on the development of geospatial methods that can be used to 

visually and quantitatively estimate linkages between landscape complexity in rocky 

subtidal reefs , benthic habitat composition, prey abundance, and finally genetic 

partitioning in a model population of marine fish. I chose four nearshore study sites along 

the Monterey Peninsula, California (Figure I). 

N 

A 

I 

Coral Street 

Lovers Point 

o 
,~ ,... Mac Abe e B e a c h 

.~ / 

Monterey Penins u al 

r Stillwater Cove 
..0 ' I , ... 

12, ' 56"O"N l21 S2"O"V'J 

D 

o 0.5 1- 2 
Kllometers 

Figure 1: Map of research sites around Monterey Peninsula. 

I used black surfperch habitat requirements to determine site locations that 

include rocky reef habitat between a depth of 5 and 20 meters. Using bathymetric data 

collected by the California Seafloor Mapping Program, I chose nearshore sites with 

depths between 5 and 15 meters with rocky reef habitat. Divers scouted the sites to ensure 

the presence and sufficient numbers of black surfperch at each site. Once site locations 

were selected, coordinates of site centers were chosen using ArcMap and uploaded to 

handheld GPS units (Table I) to accurately revisit each site. 
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Table 1: Site locations with latitudes and longitudes 

Site Latitude Longitude 
MacAbee 121 °53'55.457" 

Lovers Point 121 °54'48.38" 

Coral Street 121 °55'20.364" 

i Stillwater 121 °56'58.362" 

2.2 Field collections 

2.2.1 Habitat Sampling 

Photoquadrats (underwater images of a quadrat) were collected using a 

photoquadrat framer. The framer was constructed using PVC pipe and designed from a 

modified schematic from (Vroom et al. 2004). The dimensions of the photoquadrat used 

are 0.6 m by 0.45 m covering an area ofO.27-m2. The framer was used to mount an 

Olympus Stylus Tough 6000™ housed in a pt -047 underwater housing with a sealife 

digital pro flash™, 

For each site divers traveled by boat and navigated using a W ASS enabled 

Trimble® GeoXTTM handheld GPS unit to find the site center. The boat anchor was 

dropped at the center point to anchor the boat and to be used as the central tether for 

subtidal transects. Divers descended along the anchor line to the seafloor. Once at the 

center point the dive assistant would clip a 50 meter transect tape on to the anchor and lay 

out the transect tape along a predetermined heading. At the end of the transect tape the 

photoquadrat was placed lengthwise along the center of the transect line and a photo of 

the substrate was taken by the lead diver (Figure 3). The photo number and time were 

recorded and the dive assistant would send a marker float to the surface using a diving 

reel. 

At the surface, a support kayaker would paddle to the float and once on top of the 

float would record the position using the handheld GPS unit. No less than three positions 

were recorded for each waypoint and the time and sequential number of the waypoint 

were automatically recorded for each point. When the waypoint had been collected, the 
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kayaker would give three large tugs on the float for the dive assistant to reel the 

float back down. The divers would then move on to the next predetermined meter point 

along the transect tape while reeling in the transect tape. The predetermined meter 

marking was randomized for each ten-meter section for each transect. A total of sixteen 

transects were collected for each site for an approximate total of 97 photoquadrat points 

for each site. 

Figure 2: Schematic of photoquadrat collection and georeferencing. 

Two, 10 by 10 centimeter substrate scrapings were also collected along each 

transect for a total of 30 substrate samples from each site. Substrate and algae were 

scraped from the seafloor and placed into individually pre-marked Ziploc bags 

underwater. Substrate samples were brought back to the surface and stored in a cooler on 

the boat until they were transported back to the lab where they were stored at -20Ge until 

processing. Substrate sample points were collected at select photoquadrat points and were 

dependent on the presence of surfperch habitat types. Samples were not collected from 

bare patches or patches without algal habitat types. 
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Figure 3: Mosaic of photoquadrats of substrate showing different levels of habitat diversity among 
photoquadrats. 

2.2.2 Fish Sampling 

Up to 20 black surfperch were opportunistically collected using pole spears by 

divers at each site. At each site, divers would patrol in an expanding circle from the 

center point and spear any black surfperch they encountered. When an individual was 

captured, the assistant diver would send up the marker float to the kayaker who would 

record the float position using the handheld GPS unit to record the waypoint with a 

mjnimum of three positions recorded for each waypoint. All fi sh were placed into 

individually pre-marked bags and the bag number and time was recorded by the lead 

diver. All fish were stored in a cooler in the field and then transported to the lab where 

they were stored at -20De until processing. 
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2.3 Lab Processing 

2.3.1 Benthic cover estimates 

Photos from the camera were downloaded the same day that they were collected 

and organized by photo code and date. I used ACDsee™ photo editing and managing 

software to optimize photo quality for each quadrat. Optimization improved the contrast, 

brightness, and color of each photo for habitat classification. Optimized photos were then 

imported into the Coral Point Count with Excel extensions software package (CPCe) 

(Kohler and Gill 2006). I used CPCe to define the quadrat extent in each photo and place 

100 random stratified points. The extent of the point distribution was delineated by 

manually creating a border that coincided with the area framed by the quadrat. For each 

photoquadrat, a stratified random point distribution using 100 points was created. CPCe 

stratified the points by dividing the photo quadrat into a grid of 10 boxes by 10 boxes with 

each box being -27 cm2, and 1 point was randomly placed within each box. 

F or each point, the habitat classification was recorded for the entire photo using a 

custom classification scheme based on nine habitat types, characteristic of the sites 

including habitat associations of black surfperch (Table 2). Classifications were processed 

at habitat level classification of algal groups and functional groupings for biogenic 

habitat. CPCe then was used to create excel tables that tabulated the percent cover of each 

habitat type for individual photos and grouped percent cover estimates for each Site. The 

habitat classification Other Algae was exclusively red foliose algae. Therefore, percent 

cover for the classification Rhodymenia and other algae were added together and used in 

all further analyses as a red algae habitat classification. 
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Table 2: Habitat groupings and codes for the percent cover estimation 

Code IHabitat Type 


T 
 Turf 


LA 
 Laminarial 

Rh Rhodominia sp 


ER 
 Erect Coralline 


C 
 Encrusting Coralline 


OA 
 Other Algae 


OL 
 Biogenic Habitat 

SAR 
 Sand,Artificial, rock 


U 
 Unknowns 

TWS 
 Tape, wand, shadow 

t;t.'\lW-:1)(f - ill x 

., 

.." «>i 

..,.. 

Figure 4: Photoquadrat from Lovers Point, February 24,2011 with 100 stratified random points in 
CPCe (Kohler and Gill 2006). 
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2.3.2 Prey Estimates 

Resource samples were thawed and following the protocols of Coyer (1979) 

invertebrates were separated from the algal materials. I identified all invertebrates to 

coarse taxonomic groupings (Table 2), counted all individuals, and measured the first 100 

individuals from a group using an ocular micrometer (Schmitt and Coyer 1982). Length~ 

weight relationships were used to estimate biomass for taxonomic groups (Coyer 1979). 

Fish samples were thawed and dissected as soon as possible after collection. All 

prey items in the digestive tract of each fish was removed, identified, and counted using a 

dissecting microscope. A random sample of up to 100 individuals per taxon for each fish 

was measured using an ocular micrometer. I used the same length-weight relationship to 

estimate biomass for the fish samples as I used for the resource samples. 

2.3.3 Genetics 

Gill tissue from each fish was collected and stored in 95% ethanol at ~20oC. Total 

genomic DNA was prepared from 75- 100 mg of tissue using a standard Proteinase K, 

chloroform extraction procedure (Sambrook et al. 1989). 

For this study I used twelve (out of 21 tested) highly variable microsatellite loci 

(Table 3). These micro satellites were previously derived from a genomic library based on 

Embiotoca jacksoni DNA and analyzed (Bernardi 2008). Amplification of 50-1 00 ng of 

DNA followed standard reaction protocols, with cycling profiles of 45 sat 94°C and 1 

min at 54 °C, 45 s at 72 °C for 35 cycles, followed by 3 min at 72 °C. 
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Table 3: Microsatellite loci characteristics. Columns correspond to: microsatellite name (Locus), (F) 
forward and (R) reverse primer sequence, repeat motif, and amplification size of original clone (Amp. size), 
GenBank Accession numbers are EU781555 to EU781566 

Locus Primer sequence (5'-3') Repeat motif size 

EJ C3 
F: 5'-CGTCAATGATACTCATGTGAAC-3' 
R: 5'·ATGTCCCCTTGGGATT AA-3' 

(TAGA)4(T ACA)8 113 

EJ BS 
F: 5'-CCACCTGGGGCTAAACTG-3' 
R: 5 '-CACGGCAGACAGAGCAAC·3 , 

(CATC)15 112 

E.J_B3 
F: 5'-CATTTTCCATCCATCCTTCTG-3' 
R: 5'·CAGCACAAGCATCACA1TAGC·3' 

(CATC) I 4 156 

E.J BI 
F: 5'·ACTCGGACAGTAAAGCTGAGG-3' 
R: 5'-AAAATGTCTCCTTGCAGGATC-3' 

(CATC)14 180 

EJ AI2 
F: 5'·GAAAGAAGCTCAATGCAATCAC-3' 
R: 5'-AGCAGCTCTCAGATCAGAGGTA-3' 

(CA)24 232 

E.J A)O 
F: 5'-AACAAAAACTGCATCCAAGATG-3' 
R: 5'-ACGAACTGTTCCATCCTCAAG-3' 

(CA)15 228 

E.J_A2 
F: 5'-AGCAAAGGTCAAAGGTCAA-3' 
R: 5'-TTGTGGCTGTTGTTTATGG-3' 

(CA)20 235 

EJ A7 
F: 5'-AATACCGTCGATGCTTTGTATC-3' 
R: 5 '-GCCTCTGATTATACGTCAGCTC-3 , 

(CA)15 245 

EJ All 
F: 5'·ACTTCCATGACAACAAAGT AGG-J' 
R: 5'-CAAAAT AAGCCAAGTGTGATG-3' 

(CA)24 283 

E.J_BS 
F: 5'-GGTCGTATTTTGCAGTATGC-3' 
R: 5'-AAGGATTCCCAACATCATG-3' 

(CATC)30 266 

E.J_AS 
F: 5'-AACCGCTGAGTAAGT AAACATC-3' 
R: 5 '-TCATCCCCATCATATTTATAGC-3 , 

CA)30 275 

E.J D2 
F: 5'-CCTCCCTTTACCCATCTTTATC-3' 
R: 5'-AAGGAT ATTGAGTCACCACAGG-3' 

(TAGA)6 283 

2.4 Statistical Analysis 

2.4.1 Site Characterization 

Using ArcMap 10.1, I incorporated bathymetric digital elevation models of the 

near shore around the Monterey Peninsula. The Seafloor Mapping Lab at California State 

University, Monterey Bay, supplied all bathymetric seafloor data. From the elevation 

models, I used the Slope, Topographic Position Index (TPI), and Vector Ruggedness 

Measure (VRM) tool sets within ArcMap to generate raster models of slope, TPI, and 

VRM ofthe seafloor. Slope is the measure of the rate of change in depth from each cell. 

TPI is the difference between a cell elevation value and the average elevation of the 

neighborhood around that cell. Positive values mean the cell is higher than its 

surroundings while negative values mean it is lower. The positive and negative 

classification is then used to identify peaks, valleys, and plains (Jenness 2006). VRM 

measures habitat complexity as the variation in three-dimensional orientation of grid cells 

within a neighborhood (Sappington et al. 2007). 



21 

In ArcMap, I created 100 random points for each of the four sites and sampled the 

depth, slope, TPI, and VRM rasters respectively. The stored values for each variable for 

each point were used to test for differences among sites of the physical variables. I 

imported my photoquadrat GPS points into ArcGIS and following the same sampling 

procedure for the random points, I sampled the physical variable rasters. To determine if 

the sampled points were sufficiently random I used a linear model to compare pooled and 

among sites for differences between the random points and the photoquadrat points. 

2.4.2 Spatial Autocorrelation 

Most ecological data sets have a spatial component that can significantly 

influence statistical tests (Zuur et al. 2009). While everything may be related, things 

closer together tend to be more related to one another than they are to things at a greater 

distance. This is known as spatial autocorrelation, which can occur when an observation 

at one location positively or negatively affects the value of an observation at another 

point in space (Legendre 1993). Autocorrelation quantifies the degree to which spatial 

phenomena are correlated to itself in space, the level of interdependence between the 

variables, and the nature and strength of the interdependence (Cliff and Ord 1973, 1981). 

Spatial autocorrelation violates the assumption of independently and identically 

distributed errors of most standard statistical procedures (Anselin 2002), inflating type I 

errors, occasionally inverting the slope of relationships when not accounted for in the 

model (Kuhn 2007). 

I examined the raw data and model residuals for the presence of spatial 

autocorrelation by plotting covariance against spatial lags between paired observations 

also known as correlograms (Legendre and Fortin 1989). Spatial covariance structures 

were estimated for each point and added as an explanatory variable in the models. I 

estimated the covariance structure by creating correlograms of multiple model runs with 

different covariance structures added. An exponential function was used for the 

correlation structure as it best describes the reduction of spatial autocorrelation of the 

data. Estimated covariance between two points was calculated from the fitted spatial 

autocorrelation model as a function of separation distance, calculated as the Euclidean 

distance between the two points. Creation and plotting of correlograms and modeling of 
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spatial autocorrelation were performed using the R statistical program (R Development 

Core Team 2011 ), 

Moran's I is a commonly used method to measure spatial autocorrelation is and 

measures how similar a data point is to its neighboring points (Legendre and Legendre 

1998), Moran's I was used to test for the presence of spatial autocorrelation in the 

variables used for the GLM model and to generate correlograms for both response and 

environmental variables, Moran's I usually varies between LO and -1.0, where 1.0 

indicates positive correlation (clustered) and -1.0 indicates negative correlation 

(dispersed) and zero indicates no spatial autocorrelation (random) (Diniz-Filho and De 

Campos Telles 2002). Correlograms, Moran's I coefficients plotted against the 

geographical distance class, were created to show the spatially lagged similarity between 

neighboring data points. 

2.4.3 Modeling Approach 

To examine the multiple variables and their respective influence I used a model 

comparison approach. Generalized linear models (GLM) are extensions of linear 

regression that are able to incorporate different distributions (e.g. the binomial 

distribution for binary and proportional data). These models also use a link function 

between the expected values of the response variable and explanatory variables that 

ensures that the titted values are appropriate (e.g. larger than zero for count data, or 

between 0 and 1 for binary data) (Mccullagh and NeIder 1989). 

I developed Generalized Linear Models to quantify the influence of the predictor 

variables on the response variables. Each model was developed in R statistical package 

using a backward deletion stepwise selection and the Akaike information criterion (AIC) 

to determine variable inclusion in the model (Chambers and Hastie 1993). Information 

theoretic approaches (Burnham and Anderson 2002) provide a nested framework to test 

each model against a simpler model to determine the most significant contributing factors 

in the model. Stepwise selection provides the opportunity to explore whether different 

variables are important and to measure their relative contributions to driving distribution 

patterns. 
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2.4.4 Habitat Distribution 

There paucity of turf habitat in the photos dictated its exclusion from further 

analyses. For the remaining four habitat variables, I used arcsine transformed 

photoquadrat estimates of habitat percent cover to create linear models of each habitat 

group as a function of the three physical variables and site for a total of four saturated 

models. 

M2 : Laminarials = f30 + f31 VRM + f32Slope + f33TP1 + f34Spatiai Covarience 

M4: Biogenic Cover = f30 + f31 VRM + f32S1ope + f33TP1 + f34Spatial Covarience 

I used an information-theoretic approach (Burnham and Anderson 2002) to select 

these hypotheses in terms of the likelihood that each model gave rise to the data. Each 

hypothesis was compared using evidence ratios derived from Ale. I conducted a 

backwards stepwise regression to determine the best model using Ale. 

2.4.5 Prey Distribution 

I calculated total numbers of all prey groups from the resource samples and 

looked at proportion of each group as a function of the total number for each sample, 

pooled for each site and pooled across sites. I then repeated the same calculations for the 

fish gut samples as were done for the resource prey samples. I selected a sub-group of 

prey items, amphipods and crabs, which made up the highest proportion of fish diets and 

all subsequent analyses, were done using these two taxonomic groupings. 

I compared average biomass of resource prey to fish diet prey and did a regression 

analysis between the two to detect differences in prey selectivity in fish from resource 

availability. I conducted a two-way t-test to determine if there was a difference between 

average prey biomass from the resource samples and the fish diet samples. I used model 
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comparison to determine the influence of biological and physical variables on prey 

availability in the environment and in fish diets. 

I used a logarithmic transformation on all biomass data and arcsine 

transformations for the percent cover data for model comparisons. To determine the 

influence on habitat availability on prey biomass I compared prey biomass as a function 

of habitat availability with the spatial covariance structure to account for the spatial 

autocorrelation. 

MR : Resource Prey = /30 + /31Spatial Covarience + /32Reds + /33Laminaria/s + /34Articulate Coraline 

+ /3sBiogenic Habitat + /36VRM + /37TPI + /3a Slope 

MF : Fish Prey = 
/30 + /31Spatial Covarience + /32Reds + /33Laminarials + /34Articuiate Coraline + 

f3sBiogenic Habitat +\f36VRM + f37TPI + /3aS/ope 

2.4.6 Genetic analysis 

I ran the microsatellites on an automated sequencer ABI 310 and scored them 

using the software Gene Mapper version 3.7 (Applied Biosystem). Raw scores were then 

binned and tabulated and the potential presence of null alleles was controlled with 

Microchecker (Van Oosterhout et a1. 2006). I analyzed within-sample deviations from 

Hardy-Weinberg (HW) expectations using an exact test ofHW proportions for multiple 

alleles (Guo and Thompson 1992) using GENEPOP version 3.2 (Raymond and Rousset 

1995). I used Arlequin (Excoffier et al. 20(5) to examine the data conformance to HW 

expectations, and to estimate expected and observed heterozygosities (HE and HO). 

Finally, to analyze the independence of the micro satellite loci. I conducted an exact test 

for linkage equilibrium in Ar1equin 3.5. 

I assessed population structure using both classical FST calculations including 

GST, Analysis of Molecular Variance (AMOVA), as well as more recently derived 

estimates of population differentiation, namely jost's D and G ". Using highly 

polymorphic micro satellite markers the GST-value cannot reach its maximum value of 1. 

Even when popUlations share no alleles at all, GST-values remain low. To calculate 'real' 

genetic differences between populations, it has been suggested that a different method 

using the differentiation index D and the bias-corrected estimator Des! is more accurate 
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(Jost 2008). These indices are based on the effective number of alleles resulting in a more 

meaningful perception of differentiation (Heller and Siegismung 2009; Jost 2009). 

I estimated genetic differentiation among populations with Fst (Weir and 

Cockerham, 1984; calculated by Arlequin) using 95% confidence limits. An Analysis of 

Molecular Variance (AMOVA) was done using the software package Arlequin 

(Schneider et aI., 2000). As a fixation index, Fst does not accurately measure the 

magnitude of genetic differentiation among populations when heterozygosity is high 

and/or variable among sampling locations (Hedrick 2005; Jost 2008). Thus, I compared 

the estimates of Fst with estimates of actual genetic differentiation, Dest, using the 

program SMOOD (Jost 2008; Crawford 20lO) To test for isolation by distance in the 

samples I conducted a MANTEL test using linear pairwise FST values and pairwise 

distance (krn) among samples as implemented in OENEPOP (10,000 permutations). 

Finally, to test for influence of the environmental parameters I conducted a 

MANTEL test using pairwise environmental values as well as pairwise distance 

parameters among all samples. Variation in FST values for each population relative to fish 

density and landscape complexity was analyzed using a generalized linear model using 

the OESTE (genetic structure inference based on genetic and environmental data) 

analytical program (Foil and Oaggiotti 2006). The OESTE program implements a 

hierarchical Bayesian approach to estimate population-specific FST values and which 

local environmental factors likely contribute to observed genetic structures. The model is 

based on a OLM structure using MCMC's to estimate posterior distributions. Local FST, 

a site-specific metric of allelic differentiation, was calculated with a maximum likelihood 

approach in the program OESTE (Foll & Oaggiotti 2006) with all sampling sites 

included. I compared the Pairwise genetic data (Fst and Dest) with euclidean and 

oceanographic distance metrics. Correlations were tested with mantel tests. 
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3 RESULTS 

3.1 Site Characterization 

All sites were statistically different for all but one of the physical habitats estimated 

from seafloor map derivative data sets. Vector Ruggedness Measure, Slope, and Depth 

were all significantly different among sites (Figure 5). However, Topographic Position 

Index was not significantly different among sites. I tested an equivalent number of 

random points from each site and modeled against photoquadrat points to detect sampling 

bias in site characterization. The t-test detected no difference among the random and 

photoquadrat points for any of the habiat characteristic variables. The spatial 

autocovariance included in the models accounted for the site effect and was included in 

all models. 

*** 

::: 

~"'6. 
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Figure 5: Boxplots of physical habitat variables from 100 random sampling points per site; a) Vector 
Ruggedness Measure, b) Slope, c) Topographic Position Index, d) Depth. *** denotes significant 
differences among sites. 
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3.2 Spatial Autocorrelation 

There was significant positive spatial autocorrelation for composition, complexity, 

and prey availability variables (Table 4). The auto covariance of both physical and 

biological habitat variables was positive at relatively small spatial scales (~ 5 meters) and 

dissipated quickly as the scale increased (Figure 6). This suggests that samples close to 

one another were more similar than by chance but that this relationship disappeared 

quickly at only slightly larger scales where most of the samples were taken in relation to 

one another. Including spatial autocovariance in the models reduced the spatial 

autocorrelation residual values. The quick dissipation of the autocorrelation suggested 

that an exponential model was required to model the spatial autocovariance structure 

within the GLM's for the subsequent model selection. 

Table 4: Spatial autocorrelation table showing observed and expected Moran's I with associated 
stan d d d eVlatlOn an d p-va ue or Slglll (cant autocorre IatlOn.ar .. If"1i . 

VARIABLES 
Obscncd 
Morans I 

Expcctcd 
MonlllS I 

sd p-\'aluc 
I 

VRM 0.170 -0.003 0.010 a 
Complexity TPI 0.071 -0.0 3 0.010 4.54E-1 3 

Slope 0.105 -0 .003 0.010 0 

IL Reds 0.294 -0.003 0.010 0 

Composition 
Laminarial 

AJ1icuiatc Conlllinc 
0. 130 
0.578 

-o.om 
-0.003 

0.010 
0,010 

0 
0 

Prey 
Biogenic 

Total Prey Resource 
0.048 

O. 17i 
-0.003 
-0 .009 
~ -

0.010 
2J)33 

5.53E-07 
1.51 E-O 



28 

0 0 
~ 

Red Algae 
~ I L!!min!!ri!!1 Alg!!e• 

"' "' \0 0 

- -
~ '" 

., 
~....~~-ffi 0 ...... .. . • _• • ~.... e_e • ........--._•• . .. °c a 

~-................ .......0 '" 0is •.. . .. 0 •L . ::<. . 
"' "' 'i' 'i' 

0 a 
'"; '";

0 20 40 60 80 0 20 40 60 80 

GeographlC Distance 1m) Geographi c Di sta nce (m ) 

0 0 
~ 

Articulate Coralline Algae 
~ \ Biogenic Habit!!! 

Of) "' a 

\ 
0 

\- -
", .\ . ~ .\.--c a .A~~"""~~.~""",-!--,-,-

-c a • .. . . .......L•., •• • .- ...... • •~'" 0 ... "' 0 ..
" 

.. . 0 
~ • L • 

Of) '" 'i' 'i' 

0 a 
'"; '";

0 20 40 60 80 0 20 40 60 80 

Geographic DIS1ance (m) Geographic Distance (m) 

- .."-

0 
~ 

, 
Prey Biomass 

..-, • 
0 

\~-
~, • ••0" 0 • • •I1J 

" 
0 " •• .. • ." •• • •2 • •• • 

•I() 

'i' 

0 

';
I I I 

0 20 40 60 80 

Geographic Distance1m) 
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3.3 Habitat Distribution 

A total of 400 photoquadrats were collected from the four sites and used to estimate 

percent cover estimates of benthic habitat. Habitat availability varied greatly within and 

among sites (Figure 7). Within sites, patchy mosaics exist at the scale of several meters as 

can be seen in the raster maps created for each habitat type for Lovers Point. These rasters 

show the percent cover of each habitat type interpolated across the site from the 

photoquadrat data collected (Figure 8) with red being high percent cover and blue low 

percent cover. Among sites, differences were significant as all model selections of the 

possible models for habitat type as a function of physical variables and site kept site as a 

significant variable. 
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Figure 7: Boxplots of percent cover of habitat types from] 00 random sampling points per quadrat; a) 
Red Algae, b) Laminarial Algae, c) Articulate Coralline Algae, d) Biogenic Habitat. ***denotes 
significant differences among sites. 
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All models included the spatial autocovariance structure to address the spatial 

autocorrelation (Table 5). Model comparisons for red algae showed VRM and TPI to be 

important predictor variables. However VRM alone is important variable (AICw 0.24, er 

1.01) while TPI makes up a smaller contribution to the availability of red algae. The null 

model for laminarial algae was the strongest model and showed that spatial covariance is 

the only strong predictor of percent cover of laminarial species. Articulate coralline algae 

were best predicted by TPI measurements while the null model with spatial covariance best 

described biogenic habitat percent cover. 

Table 5: Ale tables for model comparison of habitat availability for red algae, lamina rials, articulate 
coralline algae, biogenic habitat. 

Model 

MO 
MI 
M2 
M3 
M4 
MS 
M6 

glm(Rcds - Spatial Covar) 
glm(Reds-Spatial Covar+VRM+TPI+Slope ) 
glm(Reds-Spatial Covar+ TPJ+VRM) 
glm(Reds-Spatial Covar+TPI+Slopc ) 
glm(Reds-Spatial Covar+VRM+Slope ) 
glm(Reds-Spatial Covar+VRM ) 
glm(Reds-Spatial Covar+Slope ) 

AIC 
3 1042276 
6 103.8944 
5 101.9893 

104.4832 
1018746 
\02.071 

4 104.5345 

AICc 
104.2889 
104.1103 
102.1432 
104.637 
104.0284 
102.1733 
104.6368 

delAIC AICw er 
2.145677 0.083664 2.923667 
1.967135 0.091476 2.673979 

0 0.244606 1 

2.493848 0.070297 3.479624 
1885251 0.095299 25667 J2 
0030135 0.240948 1.015181 
2.493576 0.070306 3.47915 

M7 

MO 
Ml 
M2 
,-13 
1\14 
MS 
M6 
M7 

MO 
;\of! 

'12 
M3 
M4 
MS 
M6 
M7 

glm(Reds-Spadal Covar+TPI ) 

Model 

glm(Laminarials-Spatial Covar) 
glm(Laminarials-Spatial Covar+VRM+TPI+Slope) 
glm(Laminarials-Spatial Covar+TPI+VRM) 
glm(Laminarials-Spatial Covar+TPI+Slope) 
glm(Laminarials-Spatial Covar+VRM+Slope ) 
glm(Laminarials-Spatial Covar+VRM) 
glm(Lll.minarials-Spatial Covar+Slope ) 
glm(Laminarials-Spalial Covar+TPI ) 

Model 

glm(ArlCor - Spatial Covar.data=dat) 
glm(ArtCor-Spatial Covar+VRM+TPI+Slope) 
glm(ArICor-Spatial Covar+TPI+VRM.data=dat) 
glm(ArtCor-Spatial Covar+ TPI+Slope ) 
glm(ArtCor-Spatial Covar+VRM+Slope) 
glm(ArtCor-Spatial Covar+VRM) 
glm(ArtCor-Spatial Covar+Slope ) 
glm(ArtCor-Spatial Covar+ TPI ) 

4 

df 

3 
6 
5 
5 
5 
4 
4 
4 

df 
3 
6 
5 
5 
5 
4 
4 
4 

1037629 1038652 

AIC AICc 

3291.036 3291.098 
3296.163 3296379 
329437 3294.524 
3294.165 3294319 
3294.897 3295.05 
329303 3293.132 
3292.904 3293.007 
3292396 3292.498 

AIC AICc 
·85.16056 ·85.09933 
-82.88888 ·82.67294 
·8448313 ·84}2928 
-84.48714 -8433329 
·8190204 ·81.7482 
·8121385 ·83.11155 
·83.57675 -83.47445 
·86.32433 ·86.22203 

1721993 

delAiC 
0 

5.281211 
3.426617 
3.221749 
3.952942 
2034783 
1.909073 
1400333 

delAIC 
1122697 
1549087 
1.892748 
1.888736 
4.473833 
J 11048 
274758 

0 

0103405 

AICw 
0.352997 
0.025175 
0.063634 
0.070498 
0.04891 
0.127621 
0.1359 

0.175264 

AICw 
0.184719 
0.054907 
0.125689 
0.125941 
0.03458 
0.068371 
0.081973 
0.323819 

2365516 

er 
1 

1402169 
5.547285 
5.007188 
7.217229 
2.76597 
2.597466 
2.01408 

er 
1.753035 
5.897587 
2576351 
2.571188 
936441 
4.736224 
1950293 

1 

i 

I 

I 

MO 
MI 
M2 
M3 
M4 
1'.15 

M6 
M7 

Model 

glm(Biogenic Habitat-Spatial Covar) 
glm(Biogcnic Habitat-Spatial Covar+VRM+TPI+Slope) 
glm(Biogenic Habitat-Spatial Covar+TPI+VRM) 
glm(Biogenic Habitat-Spatial Covar+TPI+Slope) 
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Figure 1: Interpolated raster models of percent cover of the four habitat variables a) Red Algae b) 
Laminarial Algae c) Articulate Coralline Algae d) Biogenic habitat at the Lovers Point research site. 
Each raster has the mapped points of fish caught at each site. 
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3.4 Prey Distribution 

A total of III benthic samples were collected from all sites. There were 22 

taxonomic groups that were identified and 51,465 individuals were counted. The majority 

were gammarid amphipods, which totaled 21,247 individuals. The total proportion of 

prey by taxon was dominated by gammarid amphipods (Figure 2). Fish diet data had a 

higher proportional number of gammarid amphipods (Figure 3). Dissections of fish 

showed that some individuals would have fewer amphipods in there stomach but would 

have several crabs. The crabs were significantly larger than amphipods and appeared to 

be a significant prey source in terms of biomass when available. As this trend was 

consistent across sites subsequent analysis of prey availability is restricted to crab and 

amphipod prey groups with the other prey groups excluded from analyses . 

.
: 

Sp.eaes 

Figure 2: Proportion of prey by number in resource samples 
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Figure 3: Proportion by number of prey items from a) resource samples and b) fish gut analysis. 

Across sites, fish selected a similar proportion of crabs and amphipods in their 

diet. MacAbee had the greatest variation in diet among individuals and this variation 

among individuals' declines with successive sites sampled. Fish diets were increasingly 

dominated by Amphipods as sites were sampled from site 1 to site 4 (Error! Reference 

source not found.). Fish selected prey items that were on average larger than prey 

collected in the environment (Error! Reference source not found.). 
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Figure 11: Proportion of gammarid amphipods and crabs in surfperch diet across research sites. 
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For the resource prey availability model the stepwise regression demonstrated that red 

algae, VRM, and slope were significant contributors. 

Mp: Resource Prey = Red + VRM + Slope 

3.5 Genetic analysis 

Multi-locus genotypes (11 loci) were obtained from a total of 64 individuals: 8 from 

Coral Street, 20 from Lovers Point, 18 from MacAbee Beach, and 18 from Stillwater cove. 

No evidence of linkage disequilibrium was found between any pair of loci, indicating 

independent segregation of alleles. Following correction for multiple tests, no significant 

departure from Hardy-Weinberg expected proportions was found in each sampled site. The 

microsatellite loci had relatively low levels of variation (i.e. 1-6 alleles per locus; mean 

allelic richness ranged between 1 and 5.3 alleles per locus), although moderate levels of 

expected heterozygosity were found (Le. mean HE ranged between 0.2 and 0.9). 

Fst values for the among and \,vithin population comparisons show no significant 

structuring among the four sites (Table 6). Splitting the sites into two regions, the Monterey 

region and the Carmel region, also did not show any structuring. D estimates were also 

non-significant and low for among sites and among regions comparisons. 

Table 6: AMOYA table of within and amoll differences showin no among sitc differences. 

AMOYA Components 

Among populations 

Within popUlations 

Total 

Sum of 
Squares 

Varience 
Components 

Precentage 
Variation 

6.328 0.00061 0.02727 

238.321 2.21894 99.97273 

244.649 2.21955 

The site-specific OESTE Fst values were low (Table 7) and there was no significant 

structure among populations. OESTE analyses indicated that all combinations of factors 

received low posterior probability. 
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Table 7: Geste generated Fst values for research sites 
Fst statistics 

mean mode 95% HPDI 

Coral Street 4.19E-22 4.19E-22 [4.1ge-22-4.1ge-22] 

Lovers Point 3.08E-22 3.08E-22 [3.08e-22-3.08e-22] 

MacAbee 2.43E-22 2.43E-22 [2.43e-22-2.43e-22] 

Stillwater 2.98E-22 2.66E-22 [2.66e-22-3.61e-22] 
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4 DISCUSSION 

The main goal of this study was to examine the linkages between the structural 

complexity, biogenic composition of the seafloor, and the population structuring of black 

surfperch populations using geospatial and genetic tools. This study demonstrated that the 

measures of structural complexity, VRM, TPI, and Slope, are useful for describing the 

distribution of both red algal and articulated coralline algal habitats. Red algal habitats 

were best described by VRM and TPI and articulated coralline algal habitats were best 

described by TPI alone. In this study, black surfperch were selective in prey choice with a 

significant preference for amphipods and crabs, which made up the largest proportion of 

prey in their diet. Surfperch also showed size selectivity choosing larger than average prey 

items from their environment. Models that included a combination of structural complexity 

and habitat composition, specifically red algal habitat cover, TPI and slope best described 

the density of both amphipods and crabs. However, there was no signiticant genetic 

differentiation detected among the different research sites. Model comparisons using 

differentiation measures were not successful in tlnding a non-trivial solution compared 

against the physical and biological variables. All models of genetic differentiation were 

significantly similar to one another and no single model was signifIcantly better than any 

other model. 

Structural complexity and habitat composition 

Coarse scale habitat categorizations (i.e. rock and sand) are commonly used for subtidal 

systems such as for MP A designation for the Marine Life Protection Act (MLP A) process 

in California. The linkage of habitat composition to the structural complexity demonstrated 

in this study suggests that the underlying seafloor structure plays an important role in the 

distribution of biological habitat at a finer scale not captured by coarse habitat 

categorizations such as the one used in the MLP A process. This suggests that the likelihood 

of capturing targeted habitats in MPA's within a spatial region is dependent on the 

structural complexity of the underling seafloor not just the presence or absence of coarse 

habitat type alone, such as rocky reefs. Not all rock is equal as is implied by the broad 
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categorization of habitats that have been commonly used to date and the scale that an 

organism interacts with the environment drives the relationship between structural 

complexity and ecological patterns. 

Structural complexity is an important habitat characteristic with many ecological 

roles. Increased complexity provides habitat structure, promotes species richness, and alters 

boundary-layer flow over the bottom (Butman et aL 1994; Green et al. 1998). The 

interaction of flow and substrate heterogeneity can affect settlement of larvae and algae 

(Hills et al. 1999; Lapointe and Bourget 1999) and subsequent population performance 

because it controls delivery of nutrients, oxygen, and chemical cues. VRM as an estimate 

of fine scale rugosity, and TPI as an estimate of coarser scaled peaks and valleys, together 

were useful for describing multiple scales of structural complexity and describing their 

influence on red algal species distribution. These measures of complexity together suggest 

that red algae are strongly linked to the seafloor structure at both coarser and finer scales. 

In this study, the percent cover of red algae differed among sites with greater 

percent cover at the MacAbee and Lovers sites with percent cover declining significantly at 

Coral Street and Stillwater Cove sites. Wave exposure was not incorporated in this study; 

however, it likely plays a significant role in the differences among sites in the observed 

cover of red algae. Red algae may require a minimum amount seawater current flow along 

the seafloor for both optimal establishment and growth while over a certain threshold may 

reduce percent cover through physical disturbance. In contrast, articulated coralline algae 

may require flow dynamics that are opposite that of red algae, which require greater current 

flow for optimal establishment and growth. Peaks and valleys may provide a refuge or alter 

flow regime, increasing it in areas, preferred by articulated corallines. However, at sites 

with high exposure in may decrease flow rates offering refuge for reds and at sites with 

lower exposure in may increase flow rates for reds. 

Vector ruggedness measure was most strongly linked to red algae. This suggests 

that finer scaled habitat complexity was important to the red algae group. This may be due 

to the increased surface area a highly complex seafloor has for algal attachment. It may 

also play part in the importance of current flow regimes important to red algae. The 

seafloor current flow pattern may become more dynamic with a more structurally complex 

seafloor. This has implications to not only red algal species but also other species that are 
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dependent on complex flow patterns for larval settlement, nutrient, oxygen, and chemical 

cue flow dynamics. 

Percent cover of articulated coralline algae was best predicted by TPI alone. TPI is 

a measure of peaks, valleys, and plains. This measure may indirectly measure areas of high 

or low seafloor current flow. While TPI may relate to high or low flow areas, the sites 

overall exposure will best describe seafloor current patterns. As current flow is important to 

formation of articulated coralline patches and this study did not include measures of current 

flow at research sites we may have missed important ability to predict. However, being 

able to detect differences using TPI alone demonstrates that peaks and valleys may play an 

important role in finer scale hydrodynamics and therefore may play and indirect roll in 

abundance of articulated corallines or similarly dependent seafloor communities. In this 

study, there was an obvious difference among sites with an increase in coralline algae with 

an increase in exposure of the sites. Both Coral Street and Stillwater showed significantly 

greater amounts of articulate coralline than either MacA bee or Lovers (Figure 7) and both 

were relatively exposed sites that received greater ocean swell on average throughout the 

year (pers. Obs) with greater intensity and duration of high swell periods. 

Two of the habitat types, laminarials, and biogenic habitat were best described by 

spatial auto covariance alone suggesting that the spatial patterns of sampling were tightly 

linked to the spatial distribution of Laminarial cover. Laminarials were relatively rare and 

occurred in clusters when they were found. This strong spatial structuring of occurrence 

likely overwhelmed all of the other predictor variables included in the models. At the other 

end of the spectrum, the biogenic habitat classification was a coarse categorization with 

distribution patterns being moderately common and evenly spread throughout all of the 

research sites. This category may have been too broadly distributed to detect links to any of 

the physical variables. Breaking this group into subcomponents may assist in generating 

patterns that would provide a better comparison within the models used in this study. 

Black surfperch are generalists but wi1l be selective when able to choose preferred 

prey. They winnow food, taking large chunks of the seafloor, spitting out inorganic 

material and taking in the rest. There were large amounts of shell and sand debris in the 

stomach contents. Analysis of surfperch diets demonstrated that gammarids were the 

dominant prey species by number of individuals but that some individual fish 
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supplemented their diets heavily with crabs, which were fewer in number but significantly 

larger and likely greater nutritional value. A few crabs were the equivalent of many 

amphipods by weight. While other species were present in their diets, there was no single 

group that appeared consistently among individuals or varied greatly across sites. 

A verage prey biomass was not significantly different among sites while fish 

selected prey items were larger on average than the prey available in the environment. The 

pattern of distribution of prey species was similar among sites with some small differences 

in proportion of prey with gammarid amphipods dominating the prey groups. Percent 

cover of red algae, VRc\1, and slope best described prey availability. However, red algae 

cover is linked to VRM, which suggests colinearity. This makes interpretation difficult as 

the predictor variables are not independent of one another and the relative influence hard to 

determine. However, it is appropriate to say that prey availability can be described by the 

abundance of red algae, VRM, and slope and that red algae can be described by VRM and 

TPI. This demonstrates the importance of the physical parameters measured in this study to 

the abundance and distribution of prey items for black surfperch. 

Understanding genetic structuring of populations can provide insight into the 

processes involved in creating and maintaining genetic diversity. This understanding is 

critical for improving ecological knowledge of and improving management of genetic 

diversity of populations (Moritz 2002; Manel et al. 2003). Furthermore, identifying 

subpopulations among what are assumed to be single popUlations also have significant 

implications in the management of many marine species. Accurate predictions of species 

habitat relationships allow for potential mapping of individual species' distributions and 

justify the increasing use of habitat-based management approaches (Stoner et al. 2001; 

Valavanis et al. 2004) and the use of habitat classifications for marine park planning (Ward 

et al. 1999). Black surfperch give birth to live young have low mobility as adults and 

population structuring has been demonstrated at relatively small spatial scales (km's). I 

postulated that I should be able to detect structuring among my research sites, separated by 

16km's broken up by stretches of sandy beaches that are not suitable habitat for this 

species. However, the genetic data demonstrated that population structuring was not 

occurring at the scale at which this study examined local black surf perch popUlations. This 

unexpected result may point to greater movement of black surfperch and suggests that 
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stretches of inhabitable sand may not be a barrier. Hixon (1981) demonstrated that this 

species had small home ranges (SOm) with movement between adjacent reefs while 

Bernardi (2000) demonstrated that significant stretches of sandy seafloor, such as Santa 

Monica bay, can act as a barrier to migration. This study demonstrates that at a local scale 

contiguous stretches of rocky reef allow these fish to move more frequently and further 

distances on average than expected. While it is important to note that a single individual 

per generation, migrating from one population to another, will swamp a detectable genetic 

signal of population structuring between the two areas, this appears to be occurring across 

both sandy stretches and at distances thought to act as barriers. This may be the result of 

enough rocky pathways throughout the region that relatively rarer migration events across 

uninhabitable stretches are more likely to occur. Black surf perch have short life spans 

meaning that this movement occurs more regularly than previously thought. Having a more 

balanced sampling design between each side of the Monterey peninsula may have 

strengthened my ability to determine genetic differences among the areas. The maximum 

geographic distance between populations was 15 km while three of the four sites were 

within 4km of each other. It only takes one migrant per generation to swamp out the ability 

to detect genetic structuring and a greater spatial scale may be necessary to detect ongoing 

genetic structuring. The barriers along the Monterey peninSUla may not have been 

significant enough to prevent small spatial scale movement of individuals at a generational 

temporal scale. 

Discontinuities and spatial variation in the structural complexity and biogenic 

composition are important in the ecological dynamics that may result in popUlation 

structure at local scales. However, understanding the scale at which population structure 

can be detected compared with the scales at which the population dynamics that lead to 

structuring is critical to estimate any linkages between the environment and populations. 

Landscape heterogeneity may lead to populations of a species becoming subdivided in sub

assemblies with differing population dynamics and selective pressures (Endler 1991) but 

determining the scales that this occur is a difficult task. Differing selective pressures may 

lead to genetic pools that are heterogeneous across their distributional range (Burton 1983; 

Reeb and A vise 1990; Borsa et al. 1997; Neigel 1997) but detecting the breaks between 

these pools requires sampling across a number of pools at scales both at the organismal 
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level and across local scales. The resulting genetic heterogeneity may be due to several 

non-random factors including selection through local adaptation (Hedgecock 1986; 

Knowlton and Keller 1986), genetic drift through barriers to connectivity (Gaggiotti et al. 

2009; Galarza et al. 2009), or demography and life history (Hemmer-Hansen et al. 2007; 

Gaggiotti et al. 2009).Understanding genetic structuring of populations give us insight into 

the processes involved in creating and maintaining genetic diversity. However, 

understanding the process and patterns of gene flow and local adaptation requires a greater 

understanding of how landscape characteristics influence population structure. This 

understanding is critical for improving ecological knowledge of and improving 

management of genetic diversity of populations (Moritz 2002; Manel et al. 2003) 

This study has demonstrated that indexes of complexity created from fine scale 

bathymetric data can be used to describe biological habitat distributions. These in tum can 

be used to describe prey availability for black surfperch. This study has also demonstrated a 

methodology to take landscape genetics into the nearshore marine environment and begin 

to ask questions about the importance of the landscape itself on marine populations by 

measuring genetic structuring. The landscape component of this study has demonstrated the 

linkages between biological composition and structural complexity and that this 

relationship is dependent ecological requirements and physical dynamism of areas chosen. 
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