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ABSTRACT 

Gender-mediated habitat associations of  
kelp greenling (Hexagrammos decagrammus)  

along the central coast of California 
by 

Jessica Flower Moye 
Coastal And Watershed Science And Policy 

California State University Monterey Bay, 2017 
 

 Marine fish assemblages are broadly associated with physical habitat attributes 
such as water temperature and depth. At smaller spatial scales fishes are known to 
associate with specific substrate types such as rocky reef or unconsolidated sediments. 
Understanding these fine-scale habitat associations for economically and ecologically 
important species allows for more refined resource management and spatial planning 
efforts against a framework of increasing use of the marine environment. This study 
quantified the distribution and habitat associations of kelp greenling (Hexagrammos 
decagrammus) at four locations across north-central California, ranging from Point 
Arena to Pillar Point. Data on the distribution of kelp greenling were extracted from 
continuous video and still photographic imagery collected by a remotely operated 
vehicle between 2010 and 2011 as part of the baseline characterization of the newly 
implemented network of California marine protected areas (MPAs). Results indicate 
kelp greenling associate with low-relief, continuous rock substrates at each of the four 
sites. Distribution of fish within sites varied significantly based on gender, with females 
occurring more frequently in sand habitat than males, particularly in areas immediately 
adjacent to hard substrate. The geo-referenced kelp greenling observations were 
coupled with bathymetry-derived environmental parameters using generalized linear 
models to predict areas of fish occurrence beyond the sampled areas. These results 
advance our understanding of how kelp greenling utilize the habitats in which they 
occur, while the resulting predictive maps provide information on their distribution at 
spatial scales appropriate for MPA management and marine spatial planning. 
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INTRODUCTION 

ECOLOGICAL CONTEXT 

Distribution of marine life is broadly correlated with physical habitat attributes, 

including water temperature and depth (Ekman 1953; Bergen et al. 2001; MacPherson 

2003). Within these regional patterns, association to benthic habitats further influences 

the abundance and distribution of species assemblages (Watling et al. 1988; Langton 

and Uzmann 1989). It is known that available substrate material (i.e. mud, gravel, or 

sand), or habitat features (i.e. boulders and cobbles or continental slopes), are largely 

influential in distributing demersal fish species throughout the seafloor (Auster et al. 

2001; Hinz et al. 2006; Anderson and Yoklavich 2007; Anderson et al. 2009; Wedding 

and Yoklavich 2015). The same habitat feature may be used differently among species 

to satisfy ecological habitat requirements (Grober-Dunsmore et al. 2008), support 

specific life history characteristics (Shaw and Hassler 1989; Petrie and Ryer 2006), and 

provide structure and therefore shelter from predators (Lindholm et al. 1999).  

Scale is an important factor when considering fishes’ use of benthic habitats 

(Turner 1989; Syms 1995). Habitat associations can be biotic, such as algae or macro-

invertebrates (Heifetz 2002; Diaz et al. 2003), or abiotic such as depth or rock piles that 

provide relief (Stein et al. 1992; Tissot et al. 2007). For example, Greenstripe rockfish 

were consistently observed sitting in mud near small, isolated rock patches (Tissot et al. 

2007). High abundances of Plaice occur in relatively shallow areas with nearshore 

conditions, likely due to the area’s sand content that enables easier digging for burial or 

foraging and results in less expended energy (Howell and Canario 1987; Amezcua and 

Nash 2001; Hinz et al. 2006). These examples indicate how specific habitat features, 

multiple features, and even the spatial arrangement of these features fulfill particular 

biological requirements and describe a species’ distribution.  

The kelp greenling (Hexagrammos decagrammus) is a recreationally and 

commercially exploited demersal fish, endemic to the northeastern Pacific Ocean. It 

inhabits subtidal waters to approximately 50 meters (m) deep from the Aleutian Islands, 

Alaska to central California, with occasional southern observations in La Jolla, California 

(CDFW 2001; Hoobler 2006).  
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A review of current literature provided little information regarding habitat use by 

the sexually dimorphic kelp greenling. Association to rock can be assumed, at least 

seasonally by males, since males defend nests laid on encrusting epifauna or directly 

onto rock (DeMartini 1986; Crow et al. 1997). Using visual observations from 

submersibles, Stein et al. (1992) found the kelp greenling of Heceta Bank, OR more 

significantly correlated to hard-bottom if it were a secondary substrate rather than as a 

primary substrate and Anderson et al. (2009) concluded the fish in Cordell Bank, CA 

have a moderate correlation with rock, a weak correlation with cobble, and a negative 

correlation with mud. Gender differences in habitat use were not examined in these 

prior studies. Additionally, results from an acoustic tagging study found that adults have 

established home ranges of 500 - 1500 m2, female kelp greenling have larger home 

ranges than males, and juveniles were generally free-roaming and not established 

(Freiwald 2009). 

The ecological rationale for gender-specific habitat use is based on sexual 

asymmetry in reproductive strategies and mating success due to sexual dimorphism 

(Croft et al. 2003; Blanckenhorn 2005). Since adult female kelp greenling are larger in 

size (CDFW 2001) with broader home ranges that aid genetic dispersal, it is possible 

that habitat use differs from territorial males.  

Understanding potential gender differences in habitat associations promotes 

more informed management of the kelp greenling. Known habitat associations can 

broadly predict amounts of suitable habitat within an area, effectively aiding in creation 

or assessment of marine protected areas (MPAs). It is now understood that MPAs are 

more successful as a network of protected areas, especially when implemented with 

sufficient protection of redundant habitats on a suitable scale (Bohnsack 1992; 

Lubchenco et al. 2003; Osmond et al. 2010).  

This study aims to understand 1) kelp greenling distribution along the coast of 

northern California relative to specific, fine-scale habitat attributes of the seafloor, 2) 

how gender mediates this habitat-specific distribution, and 3) the predicted distribution 

of kelp greenling beyond the relatively limited sample areas using predictive habitat 

modelling. 
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METHODS 

STUDY AREA 

The study sites included state waters of and around Point Arena (PA), Bodega 

Head (BH), Southeast Farallon Islands (FI), and Pillar Point / Montara (PP) (Figure 1A-

D). MPAs surveyed included State Marine Reserves (SMRs), State Marine Parks 

(SMPs), State Marine Conservation Areas (SMCAs), and State Marine Recreational 

Management Areas (SMRMAs). Across these regions, the seafloor is generally 

comprised of soft sediment beyond the 30 m isobath, however available hard substrate 

creates near-shore patch reefs containing rocky outcrops, pinnacles, and steeply 

sloping walls (CMLPAI 2007).  

    

  

  

Figure 1. Study site maps of ROV transect placement conducted at (A) Point 
Arena, (B) Bodega Head, (C) Southeast Farallon Islands, and (D) Pillar Point / 
Montara. Includes MPA boundaries, 20 and 30 m isobaths, and sun-illuminated 
topographic maps of the seafloor. 

A B

  
A 

C D 
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SAMPLING DESIGN 

Study sites were surveyed June – August 2010 and 2011. Within each site, 

underwater visual surveys were conducted using a remotely operated vehicle (ROV) 

inside the MPAs as well as in unprotected areas adjacent to the MPAs. The ROV 

Beagle, a Vector M4 ROV (owned by The Nature Conservancy and operated by Marine 

Applied Research and Exploration), was equipped with forward-facing multibeam sonar, 

an altimeter, a CTD, two halogen lights, and two high powered HMI lights. A Trackpoint 

III ® acoustic positioning system tracked the ROV’s position on the seafloor and 

coordinates were logged into Hypack ® navigational software. Four brushless motor 

thrusters were mounted on the ROV to allow directed movement rather than drift. Three 

video cameras recorded high-resolution forward-, down-, and rear-facing video and one 

down-facing camera collected still photographs. Live video feed was transmitted from 

the ROV to the boat through an armored coaxial cable and recorded digitally. Forward 

and down paired sizing lasers were spaced 10 cm apart and were captured in the video 

and still photographs. The ROV was ‘flown’ at a mean altitude of 0.2 m with an 

approximate speed of 0.6 knots. The forward-facing video camera captured an area of 

approximately 2 m by 5 m in each frame along the transect.  

ROV transects averaged 3.2 km and were conducted between 20-116 m depths. 

Transect lengths were not standardized and therefore captured between 0.5 to 4 hours 

of imagery, depending upon at sea conditions. Transect were placed using high-

resolution (2 m) data from multibeam and sidescan sonar systems as part of the 

California Seafloor Mapping Project courtesy of CSU Monterey Bay’s Seafloor Mapping 

Laboratory (CSUMB SFML). Transect placement was stratified by habitat type (hard 

substrate, soft sediments, and transitional habitats). Transects were not re-sampled 

between 2010 and 2011, but rather distributed to collect as much seafloor imagery as 

possible, then pooled as one dataset within each study site.  

VIDEO ANALYSIS 

Data was collected from the forward-facing video, since it captured fish presence, 

response to ROV, and habitat availability. Since lights and sound are shown to cause 

altered responses of fishes through attraction or avoidance to underwater vehicles 
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(Stoner et al. 2008; Ryer et al. 2009; Rountree and Juanes 2010) the reaction of 

individual kelp greenling was recorded at the initial moment of ROV detection to 

determine if ROV presence altered activity. 

To standardize the inconsistent visibility between and within study sites, only fish 

viewed below the paired lasers were counted. For each kelp greenling observation time 

code, depth, total length, gender, reaction at first site, and habitat immediately used by 

the fish were quantified. The time code (GMT rounded to the nearest second, i.e. 

20:15:45), which is linked to the ROV’s geo-referenced location, altimeter, and CTD 

information was used to estimate each individual’s location. Habitat immediately used 

was considered the predominant substrate in the video frame when the fish was 

centered as close to the pairing lasers as possible.  

Species identification, gender, and size measurements of the kelp greenling were 

verified by using the down-facing video and still photographs. Fish total length was 

binned by 5 cm increments. Only fish greater than 10 cm were considered since species 

detection, identification, and sizing accuracy beyond this was not completely reliable 

with the ROV imagery and varying visibility.  

Habitat associations were classified using fine-scale seafloor substrate and relief 

metrics (Table 1). With the fish as close to the sizing lasers as possible, dominant 

substrate was quantified using a modified substratum classification established by 

Greene et al. (1999). Relief was the dominant, vertical height of the physical substrata 

off the seafloor and estimated using the paired lasers. 

 
Table 1. Substratum and relief categories used to define fine-scale habitat. 

Substrate Type Criteria 

Continuous rock Outcropping or bed of solid rock 

Large rock (Boulder) ≥ 20 cm loose, individually distinguishable rocks 

Small rock (Cobble) < 20 cm loose, individually distinguishable rocks 

Sand Unconsolidated, small particle size 

Substrate Relief Criteria 

Flat 
Featureless sand or flat rock (most commonly used for 
sand habitats) 

Low 0 - 1 m vertical relief (for rock or sand habitats) 

Moderate 1 - 2 m vertical relief (for rock habitats) 

High > 2 m vertical relief (for in rock habitats) 

 



6 

 

 

To understand if male and female kelp greenling use different attributes of the 

fine-scale habitats, data were split into three categories based on gender (all kelp 

greenling, identified males, and identified females). All statistical analyses were 

conducted using the R statistical package (R Development Core Team 2011). Data 

were tested for normality using a Shapiro-Wilk normality test. Univaritate comparisons 

were conducted to compare habitat characteristics used by males and females (i.e. 

substrate and relief) using the non-parametric Mann-Whitney-Wilcoxon test (wilcox.test) 

and post-hoc test in R (pairwise.wilcox.test). 

GEOSPATIAL ANALYSIS 

The Marine Geospatial Ecology Toolbox (MGET; Roberts et al. 2010), was used 

to predict the probability of occurrence in the non-surveyed areas of each study site by 

combining the kelp greenling geo-referenced points (presence points) and true absence 

points. Absence points were randomly selected using ArcGIS 10.1 (ESRI 2011) for each 

transect with a 1:1 ratio. A 5 m buffer was placed around each presence point to ensure 

all absence points were at least 5 m away from other absence points and presence 

points. Five meters was chosen as a realistic distance between each kelp greenling 

observation after reviewing all video imagery. In three observations, two fish were 

recorded sitting on substrate within 1 m of each other. These observations were 

separated by one second to keep the total count of presence points. The spatial 

separation was negligible and left as is since it provided insight into the nature of kelp 

greenling distribution within the region.  

All study sites were analyzed individually to control the confounding factors 

acting upon the populations because of differences in the amount of data collected, 

oceanographic conditions affecting the area, and the amount of soft, hard, and 

transitional habitat surveyed. Following the approaches of Iampietro et al. (2008) and 

Young et al. (2010), separate habitat raster layers for each site were derived from 2 m 

resolution bathymetric digital elevation models created by the CSUMB SFML. These 

environmental parameters included depth, vector ruggedness measure (VRM), 

topographic positioning index (TPI), northness, eastness, curvature, slope, and distance 

to rock (see Young et al. 2010 for raster creation method), all of which successfully 

described the occurrence in reef fishes in the Monterey Bay (Iampietro et al. 2008; 
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Young et al. 2010; Krigsman et al. 2012; Wedding and Yoklavich 2015). After all rasters 

were created, the values were extracted to each presence and absence point. 

MGET’s generalized linear model (GLM) tool was used for analysis with the 

stepwise backward comparison. Instead of dividing the dataset into ‘training’ and 

‘testing’ data, the three datasets (all, males, females) were fitted using the entire 

Bodega Head dataset because it had the most observations. The overall accuracy and 

area under the receiver operating characteristic (ROC) curve were used as evaluation 

criterion to establish best fit. Once the best fit model for each Bodega Head dataset was 

established, it was applied to the other three study site datasets to test each model’s 

accuracy. This method was chosen because assessing models for accuracy using 

independent data can increases precision in suitability maps (Verbyla and Litaitis 1989).  

Once applied to the other study sites, models were evaluated with MGET’s 

deviance values, accuracy values, and ROC values. Higher deviance values of a 

parameter are considered to provide greater predictive power. Model accuracy values 

were calculated by considering the error rate of positive and negative predictions. ROC 

values were interpreted using Hosmer and Lemeshow’s (2000) scale where 0.5 is the 

predictive ability achieved by chance, 0.7 – 0.8 is an acceptable discrimination 

prediction, 0.8 – 0.9 is excellent, and     > 0.9 is outstanding.  

Habitat suitability maps of all sites were created using the Predict from Rasters 

tool in MGET to visualize the spatial arrangement of the statistically significant habitat in 

areas that lacked data collection. The ROC cut off value was used to discriminate 

suitable and unsuitable habitat. For each study site, MPA boundaries were overlaid onto 

the predicted map enabling the total area of kelp greenling habitat to be compared 

inside and immediately outside the protected areas. Immediate area outside the MPAs 

was considered the strip of state waters 1500 m north and south of the MPA. This area 

was chosen based on Freiwald’s (2009) findings of kelp greenling home ranges.  

RESULTS 

IMAGERY OBSERVATIONS – FINE-SCALE HABITAT USE AND DISTRIBUTION 

A total of 775 kelp greenling (371 identified males, 286 identified females) were 

observed in over 129 hours of forward-facing video imagery. Across sites, depth 
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observations of kelp greenling ranged from 15.3 m – 95.4 m and paralleled the survey 

effort. Sizes ranged from 10 – 50 cm with over 56% of fishes observed between 25 – 35 

cm. No observations were smaller than 10 cm or larger than 50 cm. Size distributions 

were similar across sites with most fish in the 25-30 cm size class, except for the 

Farallones that had more observations in the 30-35 cm class (Figure 2A). Within each 

study site, more males were observed than females but females were observed at 

deeper depths (> 55 m) (Figure 2B). The majority of occurrences were at Bodega Head, 

but larger fish   (> 35 cm) were observed in the Farallones. 

 

 

 

 
Figure 2. (A) Distribution of size classes for kelp greenlings by study site (North 
to South / left to right) (n = 775). (B) Gender by depth bins for kelp greenling 
observations across all sites.  

 

The kelp greenling reactional observation survey indicated that observed fish had 

a neutral response to the ROV (Table 2). The survey included 636 out of 775 fish 

(82%); of these observations, 39% were identified females and 47% were identified 

A 
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males. More than 50% of the surveyed fish were recorded in direct contact or adjacent 

to structure and/or substrate when the ROV approached and over 36% of fish were 

recorded swimming slowly through the water column in a single direction with no visible 

response to the ROV’s presence. Therefore, over 85% of surveyed fish had no 

observable response to the ROV. Less than 8% of fish appeared disturbed by the ROV 

through a fleeing response after it was initially observed in direct contact with structure 

or slowly swimming in a single direction. 

 

Table 2. Kelp greenling reactional observation survey categories and results 
across all study sites. 

Behavior Code Description Observed 

Station-keeping on 
Bottom Position 

SB 
Direct contact with or adjacent to 
structure using little or no fin 
movements to maintain position. 

51.10% 

Station-keeping 
Swimming 

SS 
Maintaining position over a seafloor 
feature using active fin movements. 

0.16% 

Continuous 
Swimming 

CS 
Directed, slow swimming in single 
bearing; no movements directed at 
obvious prey, no attempts at predation. 

36.64% 

Hesitated sprint HS 
Visible shift in alertness - began CS or 
SB then changed to S in frame 

7.86% 

Sprint S 
Directed, urgent swimming either away 
from or towards the remotely operated 
vehicle 

4.09% 

 

 

Kelp greenling were commonly observed over continuous rock with low relief 

(Figure 3A-B), however male and female kelp greenling use of substrate and relief 

categories were non-identical populations (p < 0.003 in both cases). There was a 

significant difference between the use of sand and rock substrate for males and 

females, with females having a higher occurrence in sand (p < 0.005). The relief 

category flat was commonly combined with sand substrate and used significantly more 

by females than males (p < 0.021). 
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Figure 3. Frequency of substrate (A) and relief (B) categories observed for 
identified male, identified female, and undetermined kelp greenling across all 
sites. (*) indicates significant differences in the use of the habitat between 
genders and the category in which each gender associates. 

 

GEOSPATIAL ANALYSIS – PREDICTED REGIONAL DISTRIBUTION  

Results from the GLM backward stepwise comparison in MGET concluded there 

were different significant environmental parameters for the all, male, and female kelp 

greenling models (Table 3). For the all kelp greenling model, there was a significant 

inverse relationship for the distance to rock and depth parameters and a significant 

positive relationship with VRM; meaning, kelp greenling are not likely to be observed far 

from hard, rugose substrate or in deeper depths. For males, the highest deviance 

explained was the significant inverse relationship with depth and the significant positive 

relationship with slope. For females, the highest deviance explained was the significant 

inverse relationship with distance to rock and a significant positive relationship with 
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VRM. Topographic position index was included across all winning models but not 

significant. 

 

Table 3. Results of generalized linear model backward stepwise comparisons of 
kelp greenling distribution relative to environmental predictor variables, including 
the explained deviance, direction, and significance level of any relationship.  
 

 Model Parameter Deviance Explained Significance 

All Fish 

Depth 13.659 (-)*** 

Northness   

Curvature 3.964 (+)* 

Distance to Rock 24.860 (-)*** 

TPI 0.301 (-) 

Slope   

VRM 13.329 (+)*** 

Males 

Depth 16.084 (-)*** 

Northness   

Curvature   

Distance to Rock 5.743 (-)* 

TPI 2.862 (-) . 
Slope 11.970 (+)*** 

VRM   

Females 

Depth   

Northness 1.816 (+) 

Curvature 4.053 (+)* 

Distance to Rock 18.974 (-)*** 

TPI 0.086 (-) 

Slope   

VRM 6.750 (+)** 
Significance = '***' 0.001, '**' 0.01, '*' 0.05, '.' 0.1 
TPI = Topographic position index 
VRM = Vector ruggedness measure 

  

 

Habitat suitability maps for the all, male, and female kelp greenling models in 

Bodega Head indicate kelp greenling are more likely found in nearshore, hard substrate 

environment than in soft substrate areas offshore (Figure 4). No kelp greenling are 

predicted to occur in the soft substrate (blue/cool colors), except for a small strip of area 

surrounding the hard substrate; this area (subsequently referred to as halo) around the 

hard substrate is indicated in light green and most evident in the map predicting female 

occurrence. The male kelp greenling map has a larger amount of highly suitable habitat 
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indicated by red/warm colors found mostly along the shallower, nearshore hard 

substrate. 

 

Bodega Head 
All kelp greenling 

n = 356 
Male kelp greenling 

n = 143 
Female kelp greenling 

n = 142 

   

Figure 4. Habitat suitability maps for Bodega Head constructed with all 
observations from the study site. Warm colors indicate areas of more suitable 
habitat and higher likeliness of kelp greenling occurrence.  

 

The Bodega Head models were applied to the datasets of Point Arena, the 

Farallones, and Pillar Point / Montara to test model fit (Figures 5 - 7). All, male, and 

female models scored between 63.1% and 87.3% accurate out of 100%, indicating the 

ability of the fitted models to detect true presence and absence. Models scored highest 

accuracy in Point Arena (all kelp greenling = 80.1%, males = 77.0%, females = 87.3%) 

(Figure 5). The all and male models scored lowest accuracy in Pillar Point (63.9% and 

63.6%, respectively) (Figure 7). The female model scored lowest accuracy in the 

Farallones (63.1%) (Figure 6). This parallels the results for the area under the ROC 

curve values, where models had excellent to nearly outstanding values in Point Arena 

(all = 0.813, males = 0.770, females = 0.899) to barely acceptable discrimination 

prediction in other sites (Pillar Point: all = 0.667, males = 0.638; Farallones: females = 

0.636). 
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Figure 5. Habitat suitability maps constructed using Bodega Head model and 
applied to predict kelp greenling distribution in in Point Arena, Southeast Farallon 
Islands, and Pillar Point. Area under the ROC curve (AUC), model accuracy, and 
sample size are reported. Warm colors indicate areas of more suitable habitat. 
 Point Arena Southeast Farallon Islands Pillar Point / Montara 

AUC Accuracy n AUC Accuracy n AUC Accuracy n 

A
ll

 F
is

h
 

0.813 80.1% 158 0.710 68.0% 153 0.667 63.9% 108 

   

M
a

le
s
 

0.770 77.0% 89 0.765 72.0% 84 0.638 63.6% 55 

   

F
e
m

a
le

s
 

0.899 87.3% 55 0.636 63.1% 61 0.649 66.1% 28 
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Point Arena model accuracies were higher than all other sites even with a 

modest amount of observations. Point Arena had 10° steeper slopes than all study 

sites, which may have strongly influenced the male kelp greenling model. Vector 

ruggedness measures were also higher in Point Arena and Pillar Point and likely 

increased the all and female model accuracies of these sites.  

From north to south, Point Arena quantified the highest amount of kelp greenling 

per square kilometer and the highest rate of males at size at 50% maturity (maturity 

sizes taken from CDFW 2012) (Table 4). Bodega Head summed the most observations 

and the largest area of rock however this did not translate to the highest amount of kelp 

greenling per rock area. The number of male and female kelp greenling per square 

kilometer of rock was comparable in Bodega Head, the Farallones, and Pillar Point. 

Even with more rock coverage than Point Arena, Pillar Point had the least amount of 

kelp greenling observations, fewer fish per square kilometer, and in general models 

scored relatively low accuracies. No noticeable latitudinal trend in area protection is 

evident. 

 

Table 4. Distribution of kelp greenling (KG) relative to available rocky substrate at 
each study site; see Figure 1 for area used in model calculations.  

 

Point 
Arena 

Bodega 
Head 

Southeast 
Farallon Isl 

Pillar 
Point 

Total area of rock (km2) 14.64 43.66 21.54 17.97 

KG per km2 of rock 24.3 3.5 7.3 6.0 

Males per km2 of rock 6.1 3.3 3.9 3.1 

Females per km2 of rock 3.8 3.3 2.8 1.6 

Males - size at 50% maturity per 
km2 of rock 

5.4 3.0 3.9 2.9 

Females - size at 50% maturity 
per km2 of rock 

2.0 1.9 2.4 1.3 

 

Marine protected area boundaries were overlaid on the predictive maps and the 

area of suitable kelp greenling habitat was quantified inside and immediately adjacent to 

the MPAs (Table 5). For the all kelp greenling model, Bodega Head MPAs totaled the 

highest amount of protected habitat across all sites (59.9%) and extremely high 

amounts of suitable habitat in the unprotected area immediately surrounding the MPAs 

(74.0%). The Farallones had the largest discrepancy of protected to unprotected 
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suitable habitat (difference of 15.7%). For the male kelp greenling model, there was 

14.9% more suitable habitat immediately outside the Bodega Head MPAs than inside 

the boundaries. The Farallones had the least amount of suitable habitat inside the 

boundaries (13.7%) and a nearly untraceable amount immediately outside (3.6%). For 

female kelp greenling, suitable habitat was comparable inside and outside Bodega 

Head MPAs. In the Farallones, suitable habitat adjacent to the MPAs was 21.1% less 

than inside the boundaries. Across all models, Point Arena and Pillar Point had 

comparable amounts of suitable habitat inside and outside the MPAs (differences ≤ 

3.1% or 7.3%, respectively). It is interesting that except for females in Pillar Point and all 

models in the Farallones, there was more suitable habitat adjacent to the MPAs than 

protected within the boundaries. 

 

 

Table 5. Percentage of suitable kelp greenling habitat inside and immediately 
outside of marine protected area (MPA) boundaries for all, male, and female kelp 
greenling.  Study sites are listed north to south.  

 
% suitable habitat inside 

MPA boundaries 
% suitable habitat outside 

MPA boundaries 

All kelp greenling 

Point Arena 26.9 27.6 

Bodega Head 59.9 74.0 

Farallones 21.6 5.9 

Pillar Point 21.4 25.0 

Male kelp greenling 

Point Arena 29.2 32.3 

Bodega Head 47.4 62.3 

Farallones 13.7 3.6 

Pillar Point 25.2 32.5 

Female kelp greenling 

Point Arena 22.6 23.1 

Bodega Head 32.6 38.2 

Farallones 28.9 7.8 

Pillar Point 20.9 19.0 
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DISCUSSION 

 

This study is the first to our knowledge to describe gender-mediated habitat 

utilization by kelp greenling. While kelp greenling associated with low relief, continuous 

rock features common throughout the study area, females occurred more frequently in 

sand habitat than males, particularly in areas immediately adjacent to hard substrate. 

Males tended to occur within continuous rock habitat. Both Stein et al. (1992) and 

Anderson et al. (2009) found an association of kelp greenling to hard-bottom but the 

correlation may have been more significant if genders were quantified and analyzed 

separately. Results also depicted the relative abundance of suitable habitat for kelp 

greenling inside and out of MPAs from Point Arena to Pillar Point, offering insight into 

potential future performance of selected MPAs with respect to protection of kelp 

greenling. 

The neutral response of kelp greenling to the ROV in the reactional survey 

provides true insight of the interaction between kelp greenling and their habitat. This is 

supported by Ryer et al. (2009) who determined that underwater vehicles are unlikely to 

bias abundance estimates when observing lingcod, a species similar in biological and 

reproductive behavior to kelp greenling (CDFW 2001), since lingcod were the least 

active fish surveyed. Unbiased results are also confirmed by Yoklavich et al. (2007) who 

surveyed a sedentary, non-schooling fish (Sebastes levis) using submersible 

observations.  

Geospatial analyses confirmed observational habitat associations and quantified 

a larger amount of highly suitable habitat for males than females, especially in rocky 

nearshore areas. This is interpreted as female kelp greenling do not have as strong of 

an association to specific habitat as males. Interestingly, all female habitat suitability 

maps illustrate neon green ‘halos’ around the edges of hard substrate, suggesting the 

females’ frequent use of the rock/sand interface. This glow around rock edges is absent 

in the male habitat maps indicating males are not departing from rock reef into soft 

substrates like females.  

The female halo in the suitability maps, likely driven by the distance to rock 

parameter, may be an explanation for low model accuracies in the Farallones and in 
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Pillar Point. Previous publications simply suggest kelp greenling associate with rock 

(Eschmeyer et al. 1983; DeMartini 1986; Stein et al. 1992; Anderson et al. 2009). While 

the two study sites had sufficient available rock substrate, results suggest it is not only 

available substrate but perhaps habitat configuration that is a more important driver for 

distribution.  

The females’ halo is possibly a response to an indirect biological edge effect that 

influences the dynamics of species interactions (Murcia 1995). If females are generally 

associated with rock substrate but are utilizing sand substrate and the rock/sand 

interface more than males, differences in prey preferences or hunting strategies 

potentially exist between genders. Conceivably, female kelp greenling are feeding within 

the sand habitat, which is similar to Ferrell and Bell (1991) who suggested that sand 

adjacent to seagrass patches is utilized as feeding areas because of the proximity to 

shelter.  

Recent findings from Hurst et al. (2013) describe spatial and temporal variability 

in edge effects. Data were not collected during spawning season, however results still 

establish kelp greenling habitat association by gender. It is possible that additional 

sampling with temporal variability could provide a more evident discrepancy in habitat 

use as males defend nests and have a smaller home range than females (DeMartini 

1986; Freiwald 2009). Smaller home ranges combined with the unresponsive reaction to 

the ROV may be one reason for the skewed gender ratio of higher male occurrence 

across all sites, which is not previously reported in literature. 

Highly suitable habitat and the percentage protected within MPAs varied across 

sites for all, male, and female kelp greenling. Variation in survey effort may be 

responsible for this discrepancy, though it is difficult to compare survey sites because 

MPAs are created with different goals. It is interesting that Bodega Head totaled the 

highest amount of protected habitat and the highest effort but did not quantify the most 

kelp greenling per square kilometer. Concurrently, the Farallones have the lowest 

amount of protected habitat for male kelp greenling (~13%) but the largest observed 

fish. This may be due to the Farallones’ deeper survey depths and geographic location 

since limited access can naturally reduce fishing pressure, adding to the MPA effect.  
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Implementation of the newly created network of MPAs mandated by the Marine 

Life Protection Act (Marine…1999) was underway during data collection years. Results 

from this study provide baseline information of kelp greenling distribution along the 

North Central Coast (NCC) region. This aids the NCC Monitoring Plan that, in part, aims 

to understand the biomass and distribution of fishes within and around MPAs as a 

component of evaluating MPA effectiveness. Specifically, the plan calls for kelp 

greenling density and size structure to aid in understanding trophic structure of 

omnivorous fishes (MPA Monitoring Enterprise 2010).  

Further investigation into the influence of habitat configuration on kelp greenling 

distribution would be useful especially since this study detects an edge effect for 

females and the hard substrate characteristics (i.e. ruggedness) do not entirely describe 

occurrence. Data collection during breeding season may also provide insight into a 

definitive difference in the use of habitats between males and females. These answers 

may indicate discrepancies in prey preference and feeding behaviors between genders, 

providing information on trophic structure.  

Along with the biological results from this study, the predictive habitat suitability 

maps for kelp greenling can be combined with other species’ maps to determine ‘hot 

spots’ of suitable habitat. Collectively, these maps can be useful in determining MPA 

placement, as they effectively provide species distribution information. Depending on 

the goals and performance metrics of MPAs, utilizing model results of known habitat 

associations to determine if a certain amount of suitable habitat is protected can aid in 

evaluation of the conservation strategy. 

Previous to this study, limited knowledge existed for kelp greenling habitat 

associations and distribution. Video imagery collected by the ROV confidently collected 

kelp greenling observations and confirmed a difference in habitat use by gender. 

Results from this study, as well as a growing pool of evidence (i.e. Yoklavich et al. 2000; 

Auster et al. 2001; Laidig et al. 2009; Wedding and Yoklavich 2015) confirm that 

understanding species-specific associations with environmental attributes provide 

valuable insight of species distributions across the seafloor. Application of this 

information may be useful in MPA evaluation metrics and in efforts towards the use and 

conservation of a marine resource.  
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