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ABSTRACT

Wine grape quality is heavily influenced by a combination of soil properties and site

topography. We used anthocyanin content and yield data from Vitis vinifera L. cv. Cabernet

Sauvignon from a vineyard near Madera, California collected during the 2007 growing season.

We compared sets of hypotheses regarding the anthocyanin content of winegrapes and

vineyard yields as a function of vineyard soil and topographic properties. Each hypothesis was

expressed as a regression model predicting a response variable (yield or anthocyanin content)

from one or more predictor variables. We used a multiple working hypotheses approach to

compare these models using information theoretic criteria (AIC). There was substantial

evidence that soil properties affected both anthocyanin content and yield. The top four

anthocyanin models received 94% support while the top yield model received 68% support of

all models considered. The null models received no support (AICw = 0.00). The predictive

2
power of both the model-averaged anthocyanin content and yield was relatively small (R2 =

2
0.04, R2 = 0.07, respectively). It is likely that greater predictive power could be achieved

through the use of more finely-detailed spatial maps and data from additional vineyards.

Key Words: Winegrape quality modeling, anthocyanin, yield, AIC, precision viticulture.
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Introduction

Success in the production of high-yield and high-quality grapes depends on the understanding of soil and

site variability (White 2009). The complex relationship between this variability and fruit quality is not

completely understood (Copiel et al. 2006, Keller 2010). Despite extensive research in this area it is unclear

exactly what contribution climate, vineyard sites, and viticultural practices make on wine quality (Keller

2010). The majority of studies detailing environmental effects on grape quality have focused on a single

variable or a small set of properties (Tesic et al. 2001, Xoné et al. 2001, Van Leeuwen et al. 2004, Copiel et

al. 2006, Santesteban and Royo, 2006). To date there have been few detailed studies into the spatial

variability of wine grapes within vineyards (Taylor et al. 2005). While single-variable studies on grape and

wine quality are well-known, knowledge of the complexity of the vineyard system is not extensive because

most factors are studied separately (Scienza and Bogoni 1996).

Spatial variability of biological, chemical, and physical soil properties as well as site topography affects

fruit quality and fruit yield in vineyards (Zsófi et al 2007, Hall 2002, Bramely 2004 and 2005). Furthermore,

single vineyard blocks are generally subject to uniform management approaches, which ignore this

variability (Hall, Louis, and Lamb 2003). Ultimately, the ability to assess and augment the yield and

ripening patterns within vineyard blocks will enable growers to implement differential or zonal management

systems (precision viticulture).

More complete knowledge of the relationships between soil conditions and grape quality would allow

for targeted cultural practices that would promote uniformity in grape yield and color (anthocyanin)

development (Bramely 2001), a key indicator of red grape quality. Through these targeted cultural practices,
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growers would be able to farm more effectively (Bramley 2005, Taylor et al. 2005) by reducing variability

and ultimately cost.

We postulated berry anthocyanin content and yield are influenced by one or more of a range of

predictors (calcium, depth to root restriction, hardpan restriction, potassium, saturated hydraulic conductivity,

nitrates, organic matter, observed moisture status, soil pH, root limiting field content, root limiting moisture,

root limiting plant available water, root limiting permanent wilting point, root limiting saturation, soluble

salts, slope, solar radiation, and soil texture), addressing the lack of multi-variable studies of grape quality

and site variability. We examined these postulates using hypotheses represented by statistical models (linear

regressions). Our objectives were twofold, first to determine if relationships exist between predictors and

response variables within our dataset, and second to create models that can be used to predict relative

anthocyanin content and yield patterns given differing soil and topographic conditions.

Materials and Methods

Study Area Description. The Merjan vineyard (Figure 1), located outside Madera, California was used

for this study. The vineyard was planted to Vitis vinifera L. cv. Cabernet Sauvignon clone 8, without

integration of a root stock (own-rooted). The area of the vineyard was approximately 162 acres and the

calculated number of vines was 95,172. The vines were planted in a north-south orientation with spacing of

3.048 m x 2.26 m (10 ft x 7.5 ft). The Merjan Vineyard is a mechanically pruned vineyard and is cut to a

‘tight box' of approximately 0.46 square meters (60 square inches) in size. Unlike hand pruned vines,

mechanically pruned vines begin the growing season with an indeterminate number of buds which increases

2



vine to vine variability and, as a whole, make the vineyard much more susceptible to spatial variation.

Sampling Techniques. Vines were sampled within the Merjan vineyard beginning in the northeast

corner and working north to south. This resulted in a sampling grid of 20.6m x 27m (average distance

between data rows and data vines). Sampling locations were measured using a Trimble GeoXT Geoexplorer

2005 series receiver. Ten grape clusters from each vine sampled were collected two weeks prior to the 2007

harvest. Cluster samples were taken in a deliberate and uniformed manner, with five clusters sampled from

the upper 50% of the canopy, while five others were sampled from the bottom 50%. This sampling scheme

ensured that an equal distribution of clusters was sampled at each vine location. Yield estimates were

calculated by weighing each cluster on an electronic scale and obtaining an average cluster weight for each

vine. Anthocyanin content was measured with a Zeiss Corona 45 VISNIR 1.7 spectrometer. Total

anthocyanin measurements resulted in Na = 581 samples. Total sample size for yield measurements resulted

in Ny = 631 samples.
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Figure 1. Merjan Vineyard, 12 km northwest of Madera, Madera County, CA

Ground penetrating radar, electromagnetic induction, electrical conductivity, and soil probing and boring

equipment were used to determine the spatial variability of physical, chemical, and biological soil properties.

These resulting measurements were spatially interpolated to obtain a raster model of continuous properties

over the vineyard site (unpublished data, R. Wample, Fresno State University and D. Rooney, Soil and

Topography Information LLC, Madison, WI), Hawth's Analysis Tools for ArcGIS (Beyer, 2004) in ESRI

ArcGIS to extract interpolated topographic and soil data. This interpolated data was then paired with

measured anthocyanin and yield data from each vine location for analysis.

Climate. The 2007 growing season was marked by a mild winter with below average rainfall and a

warmer than average growing season (4448 GDD {CIMIS}). The average high temperature in July 2007

was 35.8 degrees Celsius, with the average daily low being 16.5 degrees Celsius. Rainfall for the 2007 water

year (October 2006 through September 2007) was 15.2 cm. Historic average rainfall for the Madera area is

30.33 cm/year with the majority of rainfall occurring between October and April (NOAA, 2012). While this
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study only focused on one growing season, spatial variation of winegrape quality within vineyards are

broadly consistent from year to year (Bramley 2005).

Model Comparison Approach.

We used an information theoretic approach to model selection because this approach has advantages

over traditional hypothesis testing (Burnham and Anderson 2002, Mazerolle 2006). Sets of hypotheses about

anthocyanin content and yield were compared. Each hypothesis was expressed as a regression model

predicting a response variable (yield or anthocyanin content) from one or more predictor variables (Table 1).

The regression models were structured such that the response variable Y is a function of r explanatory

variables Xj (j = 1, 2., r):

Yi = Po + p|-V| + P2X2 + ... + PrX + pWy + S/ , i = 1,...,n.

Each model was constructed a-priori (Table 2) and comparisons were made using Akaike's Information

Criterion (AIC), with inferences about which predictors are important being derived from the results of these

comparisons. The idea behind AIC is the best model represents natural variation in the data using the fewest

number of independent variables. Represented mathematically:

AIC = -2 log (L) + 2K

where L is the maximized likelihood function and K is the number of parameters in a given model. The

model with the lowest AIC value provides the strongest prediction of patterns in a data set given the suite of

predictor variables and the set of candidate models from which the best model was chosen. All analyses

were conducted using R statistical software (R Development Core Team 20||). Variables were assumed to

be independent of one another.
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Selection of Candidate Models.

We identified eighteen environmental variables that the literature suggested would affect berry quality in

terms of anthocyanin content and yield (Table 1). In addition to the global model (a model inclusive of all

possible variables), we constructed forty-two candidate models to compare (twenty-one each for

anthocyanin and yield), with the number of variables and parameters in each model ranging from two to ten.

Table 1. List of explanatory variables with units and model abbreviations.

Variable Variable Name Variable Type

Slope (%) SLOPE Continuous

Solar Radiation (kWH/m2) SOLAR Continuous

Calcium (ppm) CA Continuous

Nitrate (ppm) N Continuous

Organic Matter (%) OM Continuous

pH (pH units) PH Continuous

Potassium (ppm) K Continuous

Soluble Salts (dS/m) SALT Continuous

Hardpan Restriction (dimensionless index) HARD Continuous

Depth to Root Restriction (cm) DPRR Continuous

Observed Moisture Status (dimensionless index) OMS Continuous

Saturated Hydraulic Conductivity (cm/hr) KUSAT Continuous

Texture: USDA Texture Class 4 - Clay Loam TEX Factor

USDA Texture Class 6 - Sandy Clay Loam

USDA Texture Class7 - Loam

USDA Texture Class 8 - Sandy Loam

Root Limiting Field Capacity (cm) RLFC Continuous

Root Limiting Field Moisture (cm) RLM Continuous

Root Limiting Field Permanent Wilting Point (cm) RLPWP Continuous

Root Limiting Plant Available Water (cm) RLPAW Continuous

Root Limiting Saturation (cm) RLSAT Continuous

Models (Tables 2 and 3) were compiled based on several characteristics. Several of the models composed
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were based on published research, such as model A20 (Table 2, K+N) from Delgado et al. (|996) and

models A2| (Table 3, DPRR+TEX) and Y2| (DPRR+TEX) from Morlat and Bodin (2006), which is also

similar to Tesic et al. (2004) and Van Leeuwen et al. (2004). Some reflect combinations of prior published

experiments such as model A|5 (TEX+SOLAR+RLPAW), a combination of Tesic et al. (2004), Lamb et al.

(2004), and Zsófi et al. (2007) and model Y|6 (RLSAT+TEX+CA), a combination of Santesteban and Royo

(2006), Van Leeuwen et al. (2004) and Yokotsuka et al. (|999). Other models were determined from an

extensive literature review, personal communications, and inferential approaches.

We deliberately attempted to exclude variable interactions that may have been potentially correlated.

Soil structure influences movement and storage of ground water as well as root development (Wilson |999).

Variables such as soil texture (TEX) and slope (SLOPE) influence variables related to water availability,

such as root limiting field capacity (RLFC). Due to the complex nature of soil systems it was not possible to

separate all possible interacting factors. A statistical analysis of potentially correlated predictors was

completed using Pearson's correlation coefficient. The resulting correlation analysis showed little correlation

among the variables with the exception of all root limiting factors (RLFC, RLMOIST, RLPAW, RLPWP)

being positively correlated with themselves as well as depth to root restriction (DPRR), f = 0.958. Their

occurrence together in the models was minimal and no further action was taken.

The list of candidate models for anthocyanin content and yield modeling are presented in Tables 2 and 3,

respectively. Prior to modeling, both predictor and response variables were standardized to be dimensionless

variables with zero mean and unit standard deviation, in order to facilitate comparison of effects between

predictors by virtue of their coefficients being dimensionless and on a unit scale.
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of predictor variables (k = n+1)

Table 2. Selection of candidate a-priori models to predict grape anthocyanin content. n = number

Name n Model

A0 0 Po

A1 9 CA + DPRR + HARD + K + N + PH + RLMOIST + SOLAR + TEX

A2 8 K + N + RLFC + RLPAW + SALT + SOLAR + SLOPE + TEX

A3 7 HARD + K + N + PH + RLMOIST + SOLAR + TEX

A4 7 HARD + PH + RLSAT + SALT + SOLAR + SLOPE + TEX

A5 6 CA + HARD + OM + PH + SOLAR + TEX

A6 5 N + PH + RLPWP + SOLAR + TEX

A7 5 HARD + KUSAT + OM + RLPAW + SALT

A8 5 CA + OMS + RLFC + SLOPE + SOLAR

A9 4 K + HARD + RLFC + SOLAR

A10 4 OM + PH + RLSAT + SLOPE

A11 4 PH + RLFC + SLOPE + SOLAR

A12 4 KUSAT + OMS + RLPWP + TEX

A13 4 K + OM + RLPAW + SLOPE

A14 4 KUSAT + OM + RLMOIST + SALT

A15 3 RLPAW + SOLAR + TEX

A16 3 PH + SOLAR + TEX

A17 3 PH + RLSAT + TEX

A18 3 OM + RLPAW + SOLAR

A19 3 CA + K + N

A20 2 N + TEX

A21 2 DPRR + TEX

A99 18
CA+DPRR+HARD+K+KUSAT+N+OM+OMS+PH+RLFC+RLMOIST+RLPAW

+RLPWP+RLSAT+ SALT+SLOPE+SOLAR +TEX
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Table 3. Selection of candidate a-priori models to predict grapevine yield

Name n Model

Y0 0 Po

Y1 10 CA + DPRR + HARD +K+N+OMS+ PH + RLMOIST+SOLAR+ TEX

Y2 9 DPRR + HARD + K + N + PH + RLFC + RLMOIST + SOLAR+TEX

Y3 7 K + N + RLFC + RLPAW + SALT + SOLAR + TEX

Y4 7 HARD + KUSAT + PH + RLSAT + SOLAR + SLOPE + TEX

Y5 6 CA + HARD + OM + PH + SOLAR + TEX

Y6 6 K + KUSAT + N + RLPAW + SOLAR + TEX

Y7 5 DPRR + PH + RLFC + SOLAR + TEX

Y8 5 CA + HARD + RLFC + SALT + SOLAR

Y9 5 CA + K + OM + RLFC + SLOPE

Y10 4 N + PH + RLSAT + SOLAR

Y11 4 CA + RLFC + SLOPE + SOLAR

Y12 4 KUSAT + OMS + RLPWP + TEX

Y13 4 KUSAT + RLMOIST + RLPWP + SALT

Y14 3 CA + RLPAW + SLOPE

Y15 3 CA + SALT + SOLAR

Y16 3 CA + RLSAT + TEX

Y17 3 CA + RLPAW + SOLAR

Y18 3 HARD + OM + RLPAW

Y19 3 CA + K + N

Y20 2 HARD + TEX

Y21 2 DPRR + TEX

Y99 18
CA+DPRR+HARD+K+KUSAT+N+OM+OMS+PH+RLFC+RLMOIST+RLPAW

+RLPWP+RLSAT+ SALT+SLOPE+SOLAR +TEX

Resulting statistical inference was derived from Akiake weights (wi) and evidence ratios (ER). Akiake

weights are a normalization of the log likelihood of a given model compared to the entire set of models; £wi

= 1. A given wi denotes the strength of support of model i given the set. Evidence ratios further aid in the

model selection process. Evidence ratios are relative measures of strength of support for one model as

compared with another (wi / wj).
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Spatial autocorrelation, or the degree to which variables are correlated with themselves, was accounted

for by the inclusion of the term pWy, to account for possible spatial dependence within the dataset. The error

distribution Si was initially be specified to be normal with constant variance, and the errors were assumed to

be independent (after accounting for spatial dependence). AIC was used to select the best approximating

model.

Results

A sample size of N = |2|2 independent anthocyanin and yield measurements were taken during the 2007

growing season and used for our analysis. The distribution of the data can be seen in Figure 2.

Figure 2. Histogram of Anthocyain Content and Yield

|0



Both predictor and response variables were standardized prior to modeling. The analysis showed

substantial evidence soil properties affected both anthocyanin content (Table 4) and yield (Table 5). Both the

null models received no support (AICw = 0.00). For anthocyanin content modeling, four models (A1,A3, A4,

A5) garnered 94% of support given the entire set (Table 4). These models all shared the predictors HARD,

PH, SOLAR, and TEX. The best model, A4, received 35% support and also included the predictors RLSAT,

SALT, and SLOPE. Model A4 was the only highly supported model which included these variables. The

second and third best models, A1 (AICw=0.25) and A5 (AICw=0.22) represented a combined 47% support.

These models also shared the predictor CA. Model A1 and A3 (AICw=0.12) were the most similar in

structure and shared the predictors K, N, and RLMOIST, in addition to the four predictors shared by all top

models. There was no support for the remaining models (AICw < 0.02). For estimation of the importance of

each predictor (below), a model averaging approach was taken for anthocyanin content due to the lack of a

dominant model from the results. This averaged model was named Aavg.

The yield model with overwhelming statistical support was Y5, which garnered 68% support (Table 5).

Individual support for any individual remaining yield model was very small (AICw < 0.07). The model with

the greatest predictive power was Y5 which contained the predictors CA, HARD, OM, PH, SOLAR, and

TEX. This model was identical to model A5, which received 22% support within anthocyanin content

modeling. These results suggest that many of the factors which affect anthocyanin production may also

contribute to grapevine yield as well.

11



Table 4. Model selection using Akiake information criterion (AIC) of 
23 linear regression models used to predict vineyard anthocyanin
content. AAIC = change in AIC score from top model; AICw = model
weight. Winning models highlighted.

Model n AIC AAIC AICw

A0 0 1651.81 13.98 0.00

A1 9 1638.47 0.65 0.25

A2 8 1645.73 7.91 0.01

A3 7 1639.89 2.07 0.12

A4 7 1637.82 0.00 0.35

A5 6 1638.70 0.88 0.22

A6 5 1647.58 9.75 0.00

A7 5 1649.65 11.83 0.00

A8 5 1652.28 14.46 0.00

A9 4 1656.69 18.86 0.00

A10 4 1652.04 14.21 0.00

A11 4 1652.04 14.21 0.00

A12 4 1649.26 11.43 0.00

A13 4 1654.82 17.00 0.00

A14 4 1652.06 14.24 0.00

A15 3 1647.40 9.58 0.00

A16 3 1644.07 6.25 0.02

A17 3 1646.12 8.29 0.01

A18 3 1656.10 18.28 0.00

A19 3 1657.26 19.43 0.00

A20 2 1646.76 8.94 0.00

A21 2 1647.69 9.86 0.00

A99 18 1644.90 7.08 0.01
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Table 5. Model selection using Akiake information criterion (AIC) of 
23 linear regression models used to predict vineyard yield. Winning 
model highlighted

Model n AIC AAIC AICw

Y0 0 1793.70 29.72 0.00

Y1 10 1764.47 4.46 0.07

Y2 9 1779.15 18.98 0.00

Y3 7 1786.76 24.82 0.00

Y4 7 1780.94 20.96 0.00

Y5 6 1761.12 0.00 0.68

Y6 6 1782.82 22.21 0.00

Y7 5 1793.78 32.93 0.00

Y8 5 1768.87 4.89 0.06

Y9 5 1770.55 6.57 0.03

Y10 4 1792.09 28.12 0.00

Y11 4 1771.54 7.56 0.02

Y12 4 1791.86 31.83 0.00

Y13 4 1789.85 25.87 0.00

Y14 3 1769.02 5.04 0.05

Y15 3 1771.86 7.88 0.01

Y16 3 1766.63 6.21 0.03

Y17 3 1770.14 6.16 0.03

Y18 3 1781.56 17.58 0.00

Y19 3 1771.84 7.87 0.01

Y20 2 1789.22 28.57 0.00

Y21 2 1791.40 31.01 0.00

Y99 18 1773.65 13.60 0.00

Note: See table 4 for descriptions of abbreviations.

Within the model averaged anthocyanin response Aavg, the greatest effects were driven by sandy loam

(TEX=8, Pi = 0.76), and loam (TEX=7, Pi = 0.56) soil texture (Table 6). Soil pH (Pi = -0.12) had the second

greatest effect, followed by hardpan restriction (Pi = 0.10). Other physical soil properties such as depth to
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root restriction (P¡ = -0.06), root limiting moisture (P¡ = 0.07), and root limiting saturation (P¡ = -0.03) had

weaker effects. Similarly, some chemical soil predictors such as nitrogen (P¡ = -0.06), potassium (P¡ = 0.03),

and salt (P¡ = 0.03) had a modest impact while the effect of calcium (P¡ = -0.01) and organic matter (P¡ =

0.00) were negligible. Additionally, the topographic variables of solar radiation (P¡ = -0.04) and slope (P¡ =

0.00) contributed little to the model.

Similar to Aavg, the strongest effect on the winning yield model Y5 was soil texture, specifically sandy

loam (P¡ = -0.43) and loam (P¡ = -040). The second strongest effect was calcium (P¡ = -0.27). Soil pH was

also important (P¡ = 0.12) as was hardpan restriction (P¡ = - 0.07). The predictors of relatively little

significance were organic matter (Pi = 0.05) and solar radiation (Pi = 0.01). Comprehensive explanations of

soil and topographic influences on the response variables for both anthocyanin content and yield can be

found below in the discussion section.

Models Y5 and Aavg shared coefficients HARD, SOLAR, PH, TEX, CA, and OM. However, the effect of

these variables on yield was opposite to their effect on anthocyanin i.e. the coefficients had opposite signs.

The predictor with the greatest difference in influence between anthocyanin content and yield was calcium,

which had a much larger effect on yield (Pi = -0.27) than anthocyanin content (Pi = 0.06).

An exploratory analysis was conducted to assess the importance of the predictors with very small

contributions to the highest supported anthocyanin models. Two additional models, A22 (predictor: TEX)

and A23 (predictors: HARD+PH+TEX) were compared with the winning anthocyanin model, A4. With the

three models analyzed together (Table 6), we found relatively little support for model A22 (2.0%) while

model A23 received a fair amount (18.0%). This indicates that the additional predictors from model A4
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( RLSAT + SALT + SOLAR + SLOPE) are important in capturing variation in combination, even though

their individual influence was rather weak.

Table 6. Exploratory model comparison including two additional anthocyanin 
models (A22 and A23). AIC weights in this table were computed relative to just the 
three models compared in the table.

Model Predictor n AIC AAIC AICw

A4 HARD + PH + RLSAT + SALT + SOLAR + SLOPE + TEX 7 1637.82 0.00 0.81

A22 TEX 1 1645.77 7.95 0.02

A23 HARD + PH + TEX 3 1640.86 3.04 0.18

There was no significant predictive power for either best model. Spatial representations of the best

models projected onto a vineyard layout are found in Figures 2 and 3. Normalized yields were measured

between -3.98 and 4.09, model Y5 predictions ranged between -0.96 and 0.616. This loss of variation was

also seen in anthocyanin content modeling, where the range of modeled anthocyanin content was recorded

between -3.39 and 2.95 and our best model estimated between -0.52 and 0.53. The models appear to

reproduce some aspects of the overall spatial pattern of variation within the vineyard, but there is substantial

unexplained variation.
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Table 7. Standardized coefficient values from best approximating anthocyanin and yield models. The coefficient values for Aavg are an AIC-weighted 
average of the four models representing 94% support of all anthocyanin models. Model Y5 represents 68% support of all yield models. Weighted averages 
of coefficients were calculated using Burnham and Anderson 2002. See Table 1 for explanations of covariates.

Coefficient

Model AICw Po CA DPRR HARD K N OM PH RLMOIST RLSAT SALT SLOPE SOLAR TEX=4 TEX=6 TEX=7 TEX=8

Sandy Clay
Clay Loam Loam Sandy Loam

Loam

A1 0.25 -0.63 0.10 -0.21 0.08 0.05 -0.14 0.00 -0.18 0.24 0.00 0.00 0.00 -0.04 0.00 0.09 0.60 0.86

A3 0.12 -0.56 0.00 0.00 0.08 0.15 -0.17 0.00 -0.15 0.03 0.00 0.00 0.00 -0.06 0.00 0.04 0.55 0.73

A4 0.35 -0.51 0.00 0.00 0.13 0.00 0.00 0.00 -0.07 0.00 -0.02 0.08 -0.07 -0.02 0.00 -0.01 0.50 0.68

A5 0.22 -0.6 0.12 0.00 0.08 0.00 0.00 0.00 -0.11 0.00 0.00 0.00 0.00 -0.04 0.00 0.02 0.60 0.79

aAvvg 0.94 -0.57 0.06 -0.06 0.10 0.03 -0.06 0.00 -0.12 0.07 -0.01 0.03 -0.03 -0.04 0.00 0.03 0.56 0.76

Y5 0.68 0.38 -0.27 0.0 -0.07 0.0 0.0 0.05 0.12 0.0 0.0 0.0 0.0 0.01 0.00 -0.15 -0.40 -0.43
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Figure 3. Spatial representation of standardized observed, Model Aavg predicted, and residual (i.e. unaccounted) variation in anthocyanin in 
the Merjan Vineyard.
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Figure4. Spatial representation of standardized observed, model Y5 predicted, and residual variation of vineyard yield.
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Discussion

This research represents a novel approach to the synthesis of complex soils data and fruit quality within 

the vineyard system. While the non-null models out-performed the null, the predictive power of the winning 

models was low for both anthocyanin (R2 = NS) and yield (R2 = NS). Because predictor measurement was 

conducted independently and at a somewhat coarse scale relative to sampled grapevine data, these data were

interpolated in order to provide coverage of the entire vineyard. Point data was then taken from the

interpolated maps corresponding to the location of grapevine response data. This results in a loss of spatial

detail and could explain the low predictive ability of the models. However, the strong support for non-null

models demonstrates the importance of predictor variables on anthocyanin content and yield in the vineyard. 

The directionality of coefficients of the winning models was consistent with recently published literature, 

with the exception of soil pH.

The soil texture of the Merjan vineyard was overwhelmingly loam (USDA class 7) with a small amount 

sandy loam (USDA class 8) and a small amount trending towards clay loam (USDA class 4-6). Soil structure 

affects the movement and storage of water as well as root penetration. From our results, we found soil 

texture to be the greatest contributor to both the winning anthocyanin and yield models. The winning

anthocyanin model, Aavg, suggests that loam (P¡=0.56) and sandy loam (P¡=0.76) positively affect

anthocyanin content. Soils comprised of more loam and sandy loam contribute to better drainage and reduce 

the water availability to the root zone. Copiel and Van Leeuwen (2006) found reduced water availability 

leads to higher anthocyanin content. Furthermore, while the influence of root-limiting saturation (RLSAT)

and depth to root restriction (DPRR) on anthocyanin content were minimal (3i= - 0.03, P¡= 0.06,

respectively) the directionality of the predictors is consistent with expectations based on the literature. The

positive influence of root-limiting moisture (RLMOIST) on anthocyanin content (3i= 0.07) is similarly weak

and inconsistent with expected results.

The winning yield model Y5, predicted loamy (TEX=7) and sandy loamy (TEX=8) soils negatively

impacted yield (3i= - 0.40 and |3i= - 0.43 respectively). We attribute this to decreased water availability due
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to better soil drainage. Copiel and Van Leeuwen (2006) found shallow soils, resulted in early shoot growth, 

moderate yield as well as high anthocyanin content. This was due to low nitrogen status and water 

availability.

The second largest contributor to anthocyanin content, and to a lesser extent yield, was found to be soil 

pH (pH 5- pH 7). Our findings diverge from previously published literature. The results indicate a negative

response of anthocyanin to increasing soil pH (Pi= - 0.12, R2=NS). In contrast, Yokotsuka et al. (1999) found

increasing the alkalinity of the soil significantly increased anthocyanin content of berry skins. Our results

also identify an equally positive response of grape yield to increased soil pH (Pi= 0.12, R2=NS). Wooldridge

(2010) found soil pH to have an inverse relationship with grape yield, higher soil pH increased carbohydrate 

translocation to vegetative growth rather than the fruiting zones.

Hardpan restriction was a lessor contributor to both anthocyanin content and yield. Our results indicate

that greater hardpan restriction positively affects anthocyanin production (Pi= 0.10) and negatively impacts

yield (Pi= - 0.7). Hardpan restriction is a major factor in vine rooting depth as well as water holding capacity

and acts in a similar fashion as soil texture by limiting water and nutrient availability (Tesic et al. 2001 and 

Copiel and Van Leeuwen 2006).

The weight of evidence suggests the remaining predictors had relatively minimal influence on grapevine 

anthocyanin content and yield. The winning models indicate that nitrogen had a small but inhibiting effect

on anthocyanin formation (Pi= - 0.06) while potassium had a lesser but positive effect (Pi= 0.03). Hilbert

(2003) and Keller (1999) found similar results in which high nitrogen inhibited and impaired the

development and synthesis of anthocyanins in wine grapes. Excessive nitrogen delays sugar accumulation 

and causes vegetative growth which competes with pigment accumulation in grape skins while adequate 

potassium nutrition results in increased color and phenolic content of berries due to the stimulative effect on 

photosynthetic activity (Delgado 2004). For vineyard yield, organic matter had a small, but positive effect

(Pi= 0.05), as expected.

Solar radiation had a very small negative effect on anthocyanin content (Pi= - 0.04), and a very slight,
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positive effect on grape yield (3i= 0.01). Cortell (2007) and Mori (2007) also found high temperatures and

increased solar radiation reduce berry anthocyanin content. Conversely, Spayd et al. (2002) while trying to 

separate temperature from solar radiation, found anthocyanin increased as a function of solar radiation, not 

temperature. For yield, our results remain consistent with the literature. Smart et al. (1990) found increased 

solar radiation on the canopy increases yield potential, although its effect within our model may be 

negligible.

Conclusion

We found both grapevine anthocyanin content and yield to be primarily influenced by soil texture, 

specifically loam (40% sand, 40% silt, 20% clay) and sandy loam (60% sand, 30% silt, 10% clay), relative 

to sandy clay loam (60% sand, 30% clay, 10% silt). We attributed this to the influence of soil texture on soil 

water holding capacity. For anthocyanin content, soil pH had the next greatest influence followed by 

hardpan restriction, and to a lesser and less-certain extent, root limiting moisture, depth to root restriction, 

nitrogen content, solar radiation, salt content, and finally, potassium. Vineyard yield was also found to be 

primarily influenced by soil texture and to a lesser extent by calcium, pH, hardpan restriction, organic matter, 

and, solar radiation. Our conclusions about the relative importance of these effects are conditional by the 

variation they happened to exhibit within the particular vineyard we studied.

While the results were consistent with previously published literature and tended to recreate the overall 

spatial pattern (Fig. 3 and 4), the models lacked predictive ability. We believe this was due to the predictor 

point data taken from interpolated maps which were at a coarser scale than grapevine data. We investigated 

only a subset of all possible models one might conceive in order to predict anthocyanin and yield; it is 

possible that better models could be developed using additional predictor variables, non-linear terms, 

interaction terms, or different types of models. Furthermore, a multivariate modeling approach for yield and 

anthocyanin may provide additional insight. This approach could assist the goal of farming or identifying 

potential vineyard sites that would fit a high yield and high anthocyanin model.

More fine-scaled soils maps or non-interpolated soils data might facilitate greater model predictive
21



power. Vineyards with more diverse soil and topographic conditions could provide a clearer response 

signature in terms of relative anthocyanin content and yield. Incorporating these multiple vineyard sites

within the model would further aid in refinement.
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