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Valuing New Random Genetically
Modified (GM) Traits in Corn

Sumadhur Shakya, William W. Wilson, and Bruce Dahl

Numerous genetically modified (GM) traits are currently under development. Those currently
being developed for corn include traits for drought tolerance, cold tolerance, and nitrogen use
efficiency, among others. The value of these traits is random and sporadic, creating challenges
in assessing its ex ante value. This study estimates the ex ante value of a GM trait in corn with
random characteristics. A real option model is developed to capture risks and returns associated
with the traits, and estimates are derived for drought tolerant corn. Base case results indicate a
slight chance that the option value would be out-of-the-money during the discovery phase. In all
other phases, the expected value is in-the-money. The results are highly sensitive with respect to
trait efficiency and regarding assumptions of randomness in some of the other important variables,
particularly trait values.

Key words: real options, risk premium, stochastic efficiency, trait valuation

Introduction

Genetically modified (GM) crops have had a dramatic impact on agriculture worldwide. Corn has
benefited immensely from the introduction of GM traits, and many new traits are under development,
including drought and cold tolerance and nitrogen-use efficiency (McMahon, 2011; Birger, 2011a,b).
While earlier GM traits had relatively ubiquitous applications, the value of these new traits is less
clear because their usefulness depends on sporadic environmental conditions. For agbiotechnology
firms, determining the value of future prospective traits is an important managerial decision. There
is a high degree of uncertainty regarding many of the factors that determine trait valuation, including
efficacy, regulatory approval, commercial acceptance, competing traits, and prices that can be
charged for a trait. The high uncertainty of trait valuation means that the ex ante values of traits
are also random.

This study estimates the ex ante value of GM corn traits with random valuations, in this case
drought-tolerant (DT) corn. Trait development is considered research and development (R&D) and
is interpreted as a real option. While there are many types of real options, here R&D is interpreted
as a compound-call option. Given the risks and returns across traits, this interpretation is appropriate
for determining the ex ante value for these GM traits.

The analysis estimates distributions for farm budgets with and without the trait, the value of
which depends on drought probability and trait efficiency. We then determine the grower’s value
by estimating risk premiums for simulated budgets using stochastic efficiency with respect to a
function (SERF). This grower’s value is the basis for trait prices in the option model. A real-option
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model is used to estimate the trait’s stochastic value at each stage of development. The study builds
on earlier research using real options to evaluate R&D (e.g., Kolbe, Morris, and Teisberg, 1991;
Luehrman, 1997; Lee and Paxson, 2001; Jensen and Warren, 2001; Seppä and Laamanen, 2001) and
applications of real options to value post-development costs and benefits for GM traits in crops (e.g.,
Furtan, Gray, and Holzman, 2003; Carter, Berwald, and Loyns, 2005). This study contributes to the
literature by using real options to value ex ante, firm-level management decisions, with random
variables in a stochastic binomial specification.

Background

Developing and marketing GM traits can be costly and time-intensive. Discovery, proof of concept,
early and advanced product development, and regulatory phases can take ten to fifteen years to
complete, and revenue from successful development can only be realized after regulatory approval.
Estimating development costs is difficult because these are ultimately firm-level activities and
information is generally not published. Goodman (2004) estimated that developing a GM trait costs
$60 million and that the regulatory approval process can cost $6–15 million (Kalaitzandonakes,
Alston, and Bradford, 2006). A recent estimate of total cost to develop a GM trait in the United
States, including costs related to regulatory approvals, is about $136 million (McDougall, 2011).
Additionally, substantial uncertainty exists throughout the development and commercialization
process regarding costs, time to develop, and trait efficiency and success (Monsanto, 2004).

Until 2009, the dominant GM traits in corn were Roundup Ready (RR) and Bacillus thuringiensis
(Bt). Along with some other traits, these could be stacked in multiples of three or four genetic
modifications in single varieties. Each biotechnology company invested substantially to develop a
multitude of traits for corn and other crops, as summarized by McMahon (2011) for investment by
company and by Birger (2011a,b) in reference to nitrogen-use efficiency. In addition to drought
tolerance, other traits with random values that are being developed include cold tolerance and
nitrogen use-efficiency.

The characteristics of traits under development illustrate a number of important points (Wilson
and Dahl, 2010a,b). First, a large number of traits are anticipated in the next ten or more years,
including twenty-one new GM traits for corn. Second, some of these traits are producer traits,
some are processor traits, and others are consumer traits. Although producer traits dominated
early commercialization, the trait-development focus expanded to consumer and processor traits
as the market matured. Third, a number of traits are being developed jointly, such as Monsanto’s
SmartStax, developed in collaboration with Dow AgroSciences, and Monsanto’s first drought-
tolerant GM traits, the result of collaboration with BASF.

Additionally, several forms of herbicide tolerant and DT traits are currently planned. Monsanto
will potentially be the first company with a DT product on the market, followed by Syngenta and
later by Pioneer/DuPont (McMahon, 2011). An additional trait, nitrogen-use efficiency, will be
commercialized first by Monsanto, with Pioneer and Syngenta following. Many of these traits will
be released as stacked traits, similar to SmartStax, which was approved for release in 2010 and had
eight traits stacked in one variety.

Trait efficiency is a measure of how much the technology increases some attribute of the
underlying crop relative to incumbent technologies. It provides value for the trait and ultimately
influences its price and commercial success. Limited information exists about trait efficiency
until the trait is released because firms are hesitant to release this information to competitors.
Firms are constantly choosing among possible events, each of which may have slightly different
trait efficiencies; until the event is chosen, any information is highly preliminary and proprietary.
Trait efficiency is important analytically because it impacts trait value, which is concurrent with
trait-development decisions. Presumably, these calculations are made simultaneously during the
development process.
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Drought Tolerance and Trait Efficiency

Although the concept of drought tolerance is not novel, at least three companies are currently using
genetic engineering—a novel technique—to improve drought tolerance in crops.1 Drought tolerance
allows corn to be produced in geographies with less rainfall and with greater risk of drought. The
goal of these modifications is to reduce crop-yield losses during drought (Brasher, 2011), given that
approximately 40% of crop losses in North America are due to suboptimal moisture (Abbott, 2011).

Previous studies inferred information about the efficiency of drought tolerance traits in corn.
Edmeades (2006); Edmeades et al. (2006); Edmeades (2008) described the genetic technology
for drought tolerance, its effect, and likely distributions. Edmeades et al. (2006) suggested that it
is possible to eliminate 25% of drought-related yield losses through genetic improvement, 25%
through water-conserving agronomic practices, and the other 50% through irrigation. He suggested
that yields could potentially be improved by 8–22% under the drought stress that reduces yields
by 50% but did not distinguish between GM technology and market-assisted breeding. DT corn,
including Pioneer’s AQUAmax and Syngenta’s Artesian lines, is also being developed using non-
GM technology. There have been some concerns that GM technology may not be keeping pace with
conventional breeding, which “is producing drought tolerance two to three times faster than genetic
engineering” (Union of Concerned Scientists, 2012). In either case, trait-efficiency measures for
drought tolerance vary.

Tests by Monsanto (2009a) indicated that first-generation DT corn varieties had yield advantages
of 7–13% and second-generation varieties had yield advantages of 9–15% compared to nonmodified
corn; additionally, there was a 9–10% yield advantage reported for low-drought seasons and 15%
advantage for high-drought seasons. These findings suggest that yield advantages for drought-stress
varieties improve as drought stress increases. The interpretation of yield increases from genetic
improvement for drought tolerance is as rightward rotation of the corn-yield distribution relative to
current technologies. These distributions are illustrated in figure 1 by using data for trait efficiencies
of 0.12 and 0.20 as used in this study.

Monsanto developed DT corn as a GM trait. The Monsanto event (MON 87460) has a bacterium
gene that allows the plant to survive on less water during flowering (Brasher, 2011). This trait was
under development for a long time and was deregulated in late 2011 (Abbott, 2011), leading the
way to begin farm trials in 2012 (Gillam, 2011). Early results for the 2012 farm trials are anecdotal
but suggest efficiency gains. The 2012 field trials indicated that “corn farmers will lose one-quarter
less of their crop than they did during the 1988 drought” (Mertens, 2012). Results in Texas and
Kansas revealed up to a six-bushel advantage over competitor hybrids (Monsanto, 2012), and another
observation in Indiana suggested “a significantly higher yield, by 30–50 bushels” (Leber, 2012).

Real Options as a Technique for Valuing GM Traits

An extensive literature on real options exists (see Schwartz and Trigeorgis, 2001, who describe
the evolution of this method and its role in valuing R&D). Important features of the problem are
that uncertainties are resolved through time and managers have options to exercise throughout the
development process. R&D investments are made through time, providing the option to continue,
wait, or abandon. R&D investing is a call option and can be valued as a real option because it involves
future opportunities, uncertainty, and options. Kolbe, Morris, and Teisberg (1991) and Luehrman
(1997) explain why R&D can be modeled as real options and Lee and Paxson (2001), Jensen and
Warren (2001), and Seppä and Laamanen (2001) offer multiple applications of this choice. R&D

1 Breeders have focused on drought for many years and have probably increased drought tolerance of corn (Campos et al.,
2004), though it may not have been an explicit objective. Drought tolerance has also been a focus for trait development in
other crops, including rice (Reyes, 2009) and wheat. Genes activated by drought that would avoid any yield penalty under
normal conditions are currently being identified (an efficiency gain for a drought-resistant gene is realized when a drought
occurs) to avoid any yield penalty with normal conditions. Jacqui (2008) has suggested that “drought tolerant crops look to
be one of the most promising upcoming biotech traits in pipeline, providing ability to produce ‘more crop per drop’ of water.”
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for new GM traits lends itself well to using the real-options framework for valuation because the
development process is staged and each stage has measurable risks and outcomes.

The option value may be either in-the-money when expected cash flows exceed development
costs or out-of-the-money otherwise. This paper uses a stochastic binomial option model to represent
R&D of GM traits as a compound-call option. The continue growth option represents the decision
to move to the next stage and make further development investments. If the option value were in-
the-money, management would make decisions to continue with development. If the option value
were out-of-the-money, management would choose to wait before making a further investment. The
option to wait for any stage is valued the same as the option to continue the previous stage with
an additional timeframe added to it without investing in a subsequent stage. The option to abandon
evaluates the salvage value at the current investment stage.

Real options have been used previously to value GM wheat (Flagg, 2008). Carter, Berwald,
and Loyns (2005) and Furtan, Gray, and Holzman (2003) analyzed decisions from a public sector
perspective and were modeled as irreversible post-development timing options; the values were
derived using an adaptation of the Black-Scholes model. These approaches differ from ours in a
number of respects. Most importantly, we modeled decisions for private firms during the R&D
process, as opposed to a more comprehensive analysis that included public decisions and social
costs and benefits. Second, they modeled the problem as a timing decision that was part of a
public process. Our approach differs in that it considers real options confronting managers of
agbiotechnology companies during the development process. Further, their primary concern was
uncertainty in post-product development, as opposed to modeling uncertainties within the R&D
process. Our approach views how managers confront R&D investment decisions through time and
confront uncertainties and decisions about whether to continue, wait, or abandon at each phase.
Finally, in our approach, many parameters are random. Thus, we derived the option value at each
phase using stochastic methods.

Valuing Drought Tolerance at the Farm Level

Figure 2 summarizes the two major steps in our methodology. First, we derive estimates of the DT
traits at the farm level. Farm budgets are simulated to measure risk and returns with and without the
new trait. Stochastic efficiency with respect to a function (SERF) is then used to estimate certainty
equivalents with and without the trait, which are used to derive the grower’s risk premium for the
trait. The risk premium is defined as the value of the certainty equivalent required for a grower to be
indifferent between the variety with and without the trait or, alternatively, the value of the grower’s
preference for one technology over the other. The grower’s risk premium for the trait is then used
as the basis for pricing new traits and is an input for the option model. Second, we use these results
in a real-option model that aggregates the findings from the first step and applies the logic of the
real-option methodology to estimate option values for each phase of GM-trait development.

Farm Budgets, Yields, and Trait Efficiency

The analysis quantified growers’ risks with and without the trait. We used farm budgets for each
USDA-defined crop-reporting region (U.S. Department of Agriculture, Economic Research Service,
2010). The budgets were simulated to estimate net returns and risk per acre. Random variables in
the simulated budgets included crop yields; prices; costs for seed, chemicals, and fertilizer; and the
probability of drought and coverage. Historical data for yields from current technology, prices, and
costs were fitted to distributions by budget region using data from 1996 to 2009 (U.S. Department
of Agriculture, Economic Research Service, 2010). These are shown in table 1.

Returns to labor and management (RLM) for current technology were defined as:

(1) RLMi = [(P̂i × Ŷi)− (Ŝi + F̂i + Ĉi + OCi + FCi)],
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Figure 1. Yield Distributions for Current Technology, Drought Tolerance with Trait
Efficiency = 0.12 and 0.20, Northern Great Plains Region

where P is price, Y is yield for current technology, S is seed cost, F is fertilizer cost, C is chemical
cost, OC is other operating costs, and FC is fixed costs for region i; variables withˆare random and
drawn from fitted distributions.

Yields for DT corn were estimated for current technology (without the trait), trait efficiency,
and a probability distribution of drought coverage within the region. To accommodate a rightward
rotation in yield distributions for drought technologies, yields for DT varieties were modeled
assuming:

(2) YieldDT = YieldCT + (MaxYieldCT − YieldCT )× TraitEfficiency × DroughtCoverage,

where CT and DT refer to current technology and drought tolerant, YieldDT is the yield for DT
varieties, MaxYieldCT is maximum yield, YieldCT is random draw for yield, TraitEfficiency is the
trait efficiency for the DT variety, and DroughtCoverage is a random variable that indicates the
distribution for the proportion of area covered by drought.

Distributions for drought coverage were derived using data from the National Drought Mitigation
Center (2006). We assigned river basins to ERS budget regions based on which basin was
predominant within each region.2 Data for each basin were fitted to derive distributions for the
budget region’s drought coverage. The fitted distributions are listed in table 1 and are used in
the budget simulations. Correlations between yield and drought-coverage levels were estimated by
mapping the joint cumulative distributions for yields and drought coverage, assuming that yield
losses were due solely to drought. The joint cumulative distributions for yields and drought coverage
were defined at percentiles of the distribution from 5–95% such that high yields were associated with
low drought coverage and low yields were associated with high drought coverage. Correlations were
computed from these joint observations. The distributions for and correlations between yields and
drought coverage were used in the budget analysis to simulate yields for CT and DT technologies as
well as the likelihood of drought by region. While yield losses can occur due to other environmental
differences, it implies that lower CT yields occur when droughts cover a wider area of the budget
region and should represent an upper bound for the value of the DT trait.

Trait efficiency for DT corn was inferred from published studies. Specifically, we define a base
case value of 0.12 and apply it to the yield difference from the maximum yields for the region (as
shown in figure 1). This transformation implies that a DT variety can recover 12% of the yield

2 River basins are geographic regions defined by the National Drought Mitigation Center (2006).
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Figure 2. Overview of Simulation Methodology
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Table 2. Relationship Between Yield Loss and Drought-Tolerant Yield Advantage by Trait
Efficiency (Northern Great Plains)

GM Drought-Tolerance Technology
Conventional Technology Trait Efficiency =0.12 Trait Efficiency = 0.20
Yield Loss Yield Advantage of DT

Mean (112 bu/a) 3% 5%
-25% (84 bu/a) 6% 11%
-50% (56 bu/a) 10% 16%

Notes: Assumes that max yield is 138 bu/a and mean=112 bu/a.

loss attributable to drought, which is similar to values suggested by Edmeades (2008). Monsanto
(2009a) indicated a yield advantage of about 6% for a 25% yield loss and a 10% yield advantage for
a 50% yield loss in the Northern Great Plains region (table 2). In other regions, the yield advantage
increased slightly, so DT yields were up to 12% higher for a 50% yield loss and 8–9% higher for a
25% yield loss with a trait efficiency of 0.12. We conducted sensitivities on these values.

Simulation Procedures, SERF, and Risk Premiums

Budgets were simulated with and without the DT trait for each region using Monte Carlo procedures
in risk (Palisade Corporation, 2007). The model was iterated 10,000 times; at that time, stopping
criteria indicated that additional iterations would not improve results. Random variables included
yield, drought coverage, price, and costs for fertilizer, seed, and chemicals. Correlations among
random variables were included where significant.

Stochastic efficiency with respect to a function (SERF) was used to estimate the certainty
equivalent that growers would place on a risky alternative relative to a no-risk investment (Hardaker
et al., 2004). Certainty equivalents were estimated from the simulated distributions for returns to
labor and management for the corn budgets with and without the DT trait by region for growers’
risk attitudes that range from risk neutral (relative risk averse coefficient (RRAC= 0) to highly risk
averse (RRAC= 4). The risk premiums were used as the basis for trait prices in each region.

Real-Option Methodology

Real Options

R&D for GM trait development is modeled as a compound option, consisting of the options to
continue, wait, or abandon. The option value is modeled as a stochastic binomial model using
discrete event simulation where the variables change at discrete points in time (in contrast to a
continuous system where state variables change continuously over time). Several methodologies
can be used for quantifying real-option values, including transformations conforming to the Black-
Scholes models as well as others using more stylized binomial pricing models and/or Monte Carlo
simulation techniques. We used Monte Carlo simulation because there were numerous distributions,
many of which were nonnormal. The binomial model of real-option values was specified as an
option tree encompassing each phase of GM trait development and was simulated over a fifteen-
year period. Phases of the R&D and commercialization process were defined along with estimates
about the probability for success and the costs for each phase (Seppä and Laamanen, 2001).

The model specifies a binomial option tree with multiple steps. The option price is solved at the
initial node, which is done by repeatedly applying the principles described above (Hull, 2005). The
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length of time is replaced with ∆t years to account for multiple steps in the binomial pricing method:

f = e−r∆t [p fu + (1 − p) fd ;(3)

p =
er∆t − d
u − d

;(4)

where f is the payoff corresponding to upper node u and lower node d, p and (1 − p) are the
probabilities for reaching the upper and lower nodes, and r is the risk-free rate of interest. Equation
(3) is used again in following sequence of equations to represent a multi-step binomial model:

f = e−r∆t [p fuu + (1 − p) fud ;(5)

f = e−r∆t [p fud + (1 − p) fdd ;(6)

f = e−r∆t [p fu + (1 − p) fd ;(7)

Equation (5) represents the payoff from the option that can reach the upper node and then lower node
through consecutive choices. Equation (6) represents the payoff from reaching the upper node and
then the lower node, or reaching the lower nodes twice. Substituting from these equations results in:

(8) f = e−2r∆t [p2 fuu + 2p(1 − p) fud + (1 − p)2 fdd ].

The variables p2, 2p(1 − p), and (1 − p)2 are the probabilities that the upper, middle, and lower
nodes will be reached. The option value is equal to its expected payoff and discounted using the
risk-free interest rate (Hull, 2005).

The model is an extension of Jagle (1999), who developed a real-option model for the new
product development case. First, the net present value of future expected returns (FER) for the
agbiotechnology company is calculated from technology fees (TF), planted acres (PA), and the
projected adoption rate (PAR) and is derived over fifteen years after commercialization of the trait
is calculated:

(9)
n

∑
i=1

FERi = T Fi × PAi × PARi × (1/(1 + I)T
i ),

where i refers to the year after commercialization, T Fi is the technology fee charged for year i (in
$/acre equivalent), PAi is the planted acres for year i, PARi is the projected adoption rate for year
i, I is the weight-adjusted cost of capital (WACC = 10%), and Ti is the time elapsed after the trait
is commercialized for year i. The summation of FER for years 0 to 15 after commercialization
is then used to calculate nodal values of the binomial option tree using backward induction. The
development time and investment cost are treated as random in the binomial option tree. Each phase
has a probability that the GM trait would successfully proceed to the next phase. The cumulative
probabilities are from Monsanto (2008) and are converted into single-period probabilities and then
treated as risk-neutral probabilities to derive the option value at each node (e.g., development phase).
The risk-neural probability for any node is solved as:

(10) P =
((1 + r)t)×−S−

(S+ − S−)

where P is the risk neutral probability, r is the risk-free interest rate, t is the time in the development
phase, S is the current value of the project, and S+ and S− are the present cash-flow value at the
end of the phase in the case of an upward movement and in the case of a downward movement.
Valuations were derived for individual regions, aggregated to comprise the U.S. market value, and
then used to evaluate the logic of the option model.
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Table 3. Trait Development Assumptions in Real-Option Model Parameters and Distributions
Phase of Development

Distribution
Type Discovery

Proof of
Concept

Early
Development

Advanced
Development

Regulatory
Submission

Time (Years) Uniform (2, 4) (1, 2) (1, 2) (1, 2) (1, 3)
Investment ($million) Uniform (2, 5) (5, 10) (10, 15) (15, 30) (20, 40)
Cumulative Probability Discrete 0.05 0.25 0.50 0.75 0.90
Single Period Probability Discrete 0.20 0.50 0.67 0.83 0.90

Notes: Monsanto (2008) and Flagg (2008).

Table 4. Risk Premiums for Different Regions at Different Measures of Trait Efficiency, $/acre
Region

Trait
Efficiency Heartland

Northern
Crescent

Northern
Great Plains

Prairie
Gateway

Eastern
Uplands

Southern
Seaboard

0.20 0.00 3.04 10.66 11.56 0.35 3.24
0.12 0.00 1.82 6.39 6.94 0.21 3.43
0.06 0.00 0.91 3.20 3.47 0.11 1.74

Assumptions

A series of assumptions was made to accommodate the analysis. Each is described; in some cases
these assumptions are relaxed in the sensitivities. Trait prices, or technology fees (T F), are assumed
to be a proportion (γ) of the trait’s value to the grower (GTV ) and are defined as T F = γGTV .
In the base case, we assume γ = 0.3, although this equation is a simplification of a broader, more
complicated problem for GM pricing.3 Typically, agbiotechnology companies assume and price
traits such that the price captures 50% of the trait’s value to growers (e.g., γ = 0.5).4 Monsanto has
since indicated that it will reduce the prices for its most expensive crop seeds by as much as 75% in a
bid to combat market-share gains by DuPont (Kaskey, 2010). However, Monsanto recently indicated
a change in strategy: in the future, the company will seek to capture 30% of the trait’s value to the
grower (Monsanto, 2010).

Trait prices (technology fees) were based on the trait’s value to growers (GTV) and estimated
as the risk premiums derived in the SERF analysis. In our base case, we assumed that the GTV was
equivalent to the risk premium for a grower with a relative risk aversion of 2. Risk aversion was
relaxed in sensitivity because the distribution of growers across risk attitudes was not known. In
this sensitivity, we derived a triangular distribution for each region’s GTV where the risk premium
for RRAC= 2, RRAC= 3, and RRAC= 4 were defined as the minimum, most likely, and maximum
values for GTV, respectively.

Acres planted were defined for each USDA crop-budget region. We used the percentage of acres
planted to each region as a point of departure (U.S. Department of Agriculture, National Agricultural
Statistics Service, 2010). We adjusted the aggregate planted acres to 89 million, which had been used
as the total expected planted acreage in the United States.5 Planted acreage is relaxed in sensitivity.
The values used in each region were derived by adjusting them for the fact that there would be no
additional acres planted in the Heartland region (assuming this region was already planted as much

3 This research focuses on valuing a single trait and the prices of that single trait. This is much more complicated for
stacked traits. See Gillam (2011) and Shi, Chavas, and Stiegert (2010), who explore pricing stacked traits, and Magnier,
Kalaitzandonakes, and Miller (2010).

4 Traditionally, the technology fee is defined as one-half the value of the risk premium as defined above (i.e., half of
negative exponential utility weighted risk premiums). This is in line with analyst Mark Gulley’s comments on Monsanto:
“They are in essence splitting the value of extra yield 50–50” (Kaskey, 2009).

5 This value had been used in the period 2009–2011 (e.g., ProExporter). Since that time, the expected acreage planted to
corn has increased (ProExporter, 2013).
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Figure 3. Option Values of ‘Drought Tolerance’ in Corn Across Stages of Development
(RRAC= 2,Trait Efficiency= 0.12, and $ in Millions)

as possible). Hence, the increase in acres (only a slight increase in planted acres aggregated across
USDA regions) was allocated across the other regions.

The adoption rate was specified as a triangular distribution, the values of which were subjectively
determined to reflect data on adoption rates for GM traits (James, 2008) and industry trends.
Specifically, penetration increases and reaches a peak in year 7 after introduction, at 70% of
the targeted area, and declines thereafter. Adoption of drought tolerance would be insignificant
unless there were consecutive years of drought. To incorporate this situation in the model, the
projected adoption rate is correlated with drought occurrence for the previous year. In the case
of drought during the previous year, the random draw of adoption rate would tend towards the
maximum, otherwise toward the lower half of the distribution. The probability of drought occurrence
is modeled as drought coverage area (random) derived from the fitted distributions for drought
coverage from the National Drought Mitigation Center (2006) for fifteen simulated years after seed
commercialization for the respective regions.

The salvage value represents the value a company may achieve by abandoning the project at any
stage of development or by licensing it to a competitor. Because these values are unknown, they are
evaluated in the simplest (first-option tree) scenario, in which salvage values are all the bottom nodes.
Duration and development cost are each random variables and are taken from previous, publicly
accessible reports (Monsanto, 2008, 2009b; Edmeades, 2008). The length of each phase, along with
development cost and success probability, are defined and shown in table 3.

Results

Base-case results are shown first. Then, results from the sensitivities on trait efficiency, trait pricing,
and more variables are treated as random.

Base Case

The empirical risk premiums are measured as the difference in certainty equivalents relative to corn
without drought tolerance. Results for moderately risk-averse growers (RRAC= 2) are shown in
table 4. For a trait efficiency of 0.12, the value of DT ranges from 0 in the Heartland to $6–7/acre
in the Prairie Gateway and Northern Great Plains. DT corn would have the greatest value in the
Prairie Gateway and the Northern Great Plains, approximately $6.94 and $6.39, for our base-case
trait efficiency. For obvious reasons, these regions are being targeted for this corn trait. For trait
efficiency equal to 0.20, the risk premium ranges upwards to $12/acre. This increase suggests why it
is in the agbiotechnology companies’ best interest to select events with the greatest trait efficiency.
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Figure 4. Cumulative Distribution for Option Values of Drought Tolerance across Stages of
Development in Corn at a Trait Efficiency= 0.12 ($ Millions)

Decreasing the trait efficiency to 0.06 lowers the risk premium to $3.20–$3.47/acre in the selected
regions. For other regions, the value of the trait diminishes substantially.

The option model is first simulated with base-case assumptions and presuming a trait efficiency
of 0.12 as defined earlier. Figures 3 and 4 and table 5 (center panel) summarize the base-case results.
The results indicate that the mean option value increases with the more advanced development
stages. During the discovery phase, there is a chance (probability= 0.09) that the option value is
negative. Thereafter, the value is in-the-money for each development phase.

The cumulative distributions (figure 4) of the option values at different development stages
indicate rightward shifts. The value is in-the-money beyond the discovery phase. The fact that
the option value has greater variability in later stages is due to increased uncertainty about time
and investment and is therefore more risky. However, the risk is more than compensated by larger
expected returns.

Sensitivities

The first sensitivity illustrates the impact of trait efficiency on the option values. Table 5 (upper
and lower panel) illustrates trait efficiencies of 0.06 and 0.20 versus the base-case trait efficiency of
0.12. If DT corn is not as efficient (e.g., 0.06), the option values drop substantially. At regulatory
submission, the option value declines from $132 to $56 million. With this reduced trait efficiency,
there is a greater chance that the option value would be negative for each of the first four development
phases. In this case, it is unlikely that the option would be exercised and extended to further R&D.
If trait efficiency is greater than the base case (e.g., 0.20), the option values increase substantially.
The mean value increases from $132 to $220 million at regulatory submission.

We also analyzed the impact of more acres planted to corn. The base case was 89 million acres
on longer-term projections at that time. As sensitivity, we specified the area planted as 93 million
acres. In this case, the value of the options increased from $1.7 to $2.0 million and from $132 to
$139 million in the discovery and regulatory submission phases.

The third sensitivity introduces uncertainty regarding area planted and trait pricing. Specifically,
we allowed the RRAC to range from 2 to 4, represented as a triangular distribution, and changed the
sharing percentage of technology fees to a range uniformly distributed from 0.3 to 0.5. Interpretation
of range of RRACs is that there is uncertainty about the risk aversion of growers (implying there
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Table 5. Option Value Estimates for Each Development Phase ($ Millions)
Development Phase

Trait Efficiency Parameter Discovery
Proof of
Concept

Early
Development

Advanced
Development

Regulatory
Submission

0.06 Mean −1.1 −0.8 6.8 24.0 56.0
Min −4.1 −11.6 −13.1 −6.8 22.9
Max 2.5 13.2 32.9 62.7 96.2
StD 1.3 5.2 10.6 16.9 20.6
Probability ≤ 0 0.86 0.69 0.21 0.01 0

Base case 0.12 Mean 1.7 15.6 42.4 82.3 132.3
Min −1.9 0.0 10.9 35.2 77.1
Max 6.5 37.0 85.5 148.2 204.7
StD 1.3 5.2 10.6 16.9 20.6
Probability ≤ 0 0.09 0 0 0 0

0.20 Mean 4.9 34.4 83.5 149.5 220.2
Min 0.1 12.7 37.6 80.0 135.9
Max 11.5 68.4 152.2 257.3 245.8
StD 1.7 7.9 16.6 26.4 33.0
Probability ≤ 0 0 0 0 0 0

would be different market segments) and that there would be uncertainty on the amount of the value
to growers that the agbiotechnology firm can capture. The other change allowed for the area planted
to be random with ±5% uniformly distributed for each of six regions.

Results are shown in table 6. Compared to the base case (table 5), the mean option values increase
due to a larger planted area. The standard deviation increases at each development phase, reflecting
greater uncertainty in this scenario. The standard deviation increases from twenty-one to thirty-
two in the regulatory-submission phase, and the CV increases from 0.16 to 0.22. All these results
illustrate the impacts of greater uncertainty during the development phase and how it impacts the
option value of trait development.

Managerial Implications

Ultimately, the purpose of valuing real options for R&D is to guide managerial decisions. These
results can be used to illustrate the strategy implications. First, trait efficiency is very important.
In practice, trait efficiency is not known until at least the early development phase. Trait-
efficiency improvements increase the option values substantially. This is no doubt the reason why
agbiotechnology companies spend considerable amounts of time identifying events with the greatest
trait efficiency.

Second, risky variables are important and impact the option values as well as their likelihood
of being in- or out-of-the-money. Increases in randomness can occur for a number of variables; the
most important are likely adoption rates and trait values. The impact of this is increased chances that
option values would not be in-the-money, resulting in a greater chance that management would not
exercise the option.

Third, whether the option value is in-the-money should guide managers to continue. In the base
case, the mean values of options are all positive, or in-the-money. Hence, managers would choose
to exercise the option and continue. If the option value were negative, the decision would be to wait
or abandon. In this case there is a chance (0.135) that the option would be out-of-the-money in the
discovery phase (base case).
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Table 6. Option Value Estimates with Greater Randomness in Area Planted and Trait Prices
($ Millions)

Development Phase

Discovery
Proof of
Concept

Early
Development

Advanced
Development

Regulatory
Submission

Mean 2 18 48 91 144
Min −2 −4 4 21 59
Max 8 50 117 208 293
StD 2 7 15 25 32
Probability ≤ 0 0.08 0.002 0 0 0

Finally, these results can be used to illustrate the virtue of real-option methodologies versus more
conventional net-present-value methods. By ignoring options and their values, there is a greater
tendency to under-value projects, which may result in an under-investment in R&D (Hayes and
Abernathy, 1980; Hayes and Garvin, 1982; Trigeorgis, 2001; Tri). These points can be illustrated in
these results. The binomial-option methodology suggests that the investment becomes in-the-money
at later stages of development. In the base case, there are 0.135 chances the option value will be out-
of-the-money during the discovery stage while, at the last stage of regulatory submission, there is a
90% chance the option value would be positive with a mean of $125 million. Initially, there is a 95%
chance of the option value being less than $3.58 million, but later on there is a 95% chance of the
option value being more than $94.7 million (90% chance between $94.7 million and $160 million).
If the investment decision is made using net present value, the decision not to invest could have
been made in the early stages. Viewing the decision as a real option avoids this choice. The option
value becomes increasingly in-the-money at successive development stages (figure 3). Similarly,
the greater uncertainty in trait efficiency would result in a chance of abandoning R&D in the early
phases. In this case, there is a non-zero probability of loss during the first two development stages,
in which case decision makers may have chosen to not to invest.

Summary and Implications

The valuation of research and development (R&D) is an important problem for many agribusinesses,
particularly agbiotechnology. These companies spend large amounts of money and are subject to
many sources of uncertainty. As a result, these decisions are very risky. Real options can be used
to value R&D and capture these influences. As a methodology, real options have the advantage
of capturing uncertainties and embedding managerial options during the development phases. In
this case, agbiotechnology firms could spend in excess of $130 million over ten to twelve years
to develop a trait with highly uncertain technological feasibility, value, and market penetration.
Development of DT corn using genetic modification is a good illustration of these problems and
opportunities.

We developed a stochastic, binomial real-option model to analyze this problem. Technically,
we used a compound-call option with options to continue, wait, or abandon at each phase. The
model captured a number of risk sources, including those related to development cost and time,
trait efficiency, trait values, area planted, and adoption rates. The model was solved to derive option
values, along with distributions about these values, at each phase of the R&D development process.

The results indicated that Prairie Gateway and Northern Great Plains regions would have the
greatest value for DT corn. There is no doubt that agbiotechnology companies will be targeting
these regions for adopting the DT trait. DT corn had positive expected values for the option value
at each phase of the development process. In the base case, there was a slight chance the option
value would be out-of-the-money during the discovery phase. In all other phases, the expected value
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was in-the-money. The results were highly sensitive with respect to trait efficiency and regarding the
assumptions of randomness in some other important variables, notably trait values.

These results illustrate some important managerial implications. First, managers should use
whether the option is in-the-money to guide their choice to continue to the next phase of research,
wait, or abandon. Indeed, this methodology would have encouraged a company to continue at
each phase, whereas a comparably constructed NPV analysis may have suggested not continuing
at the discovery phase. Thus, capturing managerial options is critical. Second, trait efficiency is
very important and likely illustrates why agbiotechnology companies spend so much time trying to
identify the event that has the greatest impact.

Finally, there are a number of limitations and extensions for future research. The limitations
are virtually all related to the random variables’ distributions. While the random variables are not
observable in practice, or to outside researchers, the use of risk methodologies can go a long ways
toward capturing these impacts. There are a number of areas in which these methods could be
expanded. One would be to apply them to other traits that are emerging (nitrogen-use efficiency,
cold tolerance, shattering in canola, etc.). The second choice would be to analyze values for stacked
traits, which would have to capture the correlated valuations of traits to growers. Finally, in a broader
context, agbiotechnology firms (and R&D programs) are ultimately at varying stages of developing
multiple traits for various commodities at the same time. In this case, strategies for evaluating among
option values are appropriate, as suggested in Luehrman (1997).

[Received March 2011; final revision received March 2013.]
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