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Linking land use, in-stream stressors, and biological condition to
infer causes of regional ecological impairment in streams

Jacob J. Vander Laan1, Charles P. Hawkins2, John R. Olson3, AND

Ryan A. Hill4

Department of Watershed Sciences, Western Center for Monitoring and Assessment of Freshwater
Ecosystems, and Ecology Center, Utah State University, Logan, Utah 84322-5210 USA

Abstract. We used field-derived data from streams in Nevada, USA, to quantify relationships between
stream biological condition, in-stream stressors, and potential sources of stress (land use). We used 2
freshwater macroinvertebrate-based indices to measure biological condition: a multimetric index (MMI)
and an observed to expected (O/E) index of taxonomic completeness. We considered 4 categories of
potential stressors: dissolved metals, total dissolved solids, nutrients, and flow alteration. For
physicochemical factors that varied predictably across natural environmental gradients, we quantified
potential stress as the site-specific difference between observed (O) and expected (E) levels of each factor
(O–Estress). We then used 2 sets of Random Forest models to quantify relationships between: 1) biological
condition and potential stressors, and 2) stressor values and land uses. The 2 indices of biological condition
were differentially responsive to stressors, indicating that no single measure of biological condition could
fully characterize assemblage response to stress. Total dissolved solids (as measured by electrical
conductivity [EC]) and metal contamination were the stressors most strongly associated with biological
degradation. The most likely sources of these stressors were agriculture, urban development, and mining.
Our findings highlight the need to develop EC criteria for streams. Measures of biological condition and
stress that account for natural variability should reduce errors of inference and increase confidence in
causal analyses. This approach will require development of robust models capable of predicting physical
and chemical reference conditions. Causal analyses for individual sites require appropriate hypotheses
about which stressors and what levels of stress can cause biological degradation. Our study demonstrates
the usefulness of field data collected from multiple sites within a region for developing these hypotheses.

Key words: causal analysis, electrical conductivity, ecological assessment, flow modification, metals,
models, nutrients, pollutants, Random Forests, stream ecosystems, stressors, temperature.

Many types of stressors can alter freshwater
communities, and identifying the specific stresses
causing biological alteration at individual sites can be
challenging for at least 4 reasons. First, conducting in
situ, stressor-removal experiments in the field gener-
ally is impractical, especially at the thousands of sites
that have been biologically degraded. Second, quan-
tifying stress in the field is not straightforward given
that many types of stress represent alterations in
natural physicochemical conditions at a site rather
than the addition of a novel contaminant. Third,
multiple potential stressors or alterations often co-

occur, and each must be evaluated as a potential
contributor to biological degradation. Last, managers
often may lack realistic hypotheses about what types
and levels of stress are likely to lead to biological
degradation.

Several frameworks have been advanced recently to
help managers identify causes of ecological degrada-
tion (e.g., Suter et al. 2010, Allan et al. 2011, Norris et
al. 2012). Cause and effect can rarely be established
from single studies (Norris et al. 2012), so a weight-of-
evidence approach generally is needed to identify the
most likely causes of impairment (Suter et al. 2010).
Strong inferences regarding the causes of ecological
degradation require, at a minimum, observed expo-
sure of biota to a stressor, identification of a plausible
causal mechanism (i.e., a causal chain starting with
exposure and ending in a biological response), and a
consistent and strong association between the hy-
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pothesized cause and effect (Norris et al. 2012).
Plausible causal mechanisms have been identified
for many stressors, but accurate quantification of
associations between hypothesized causes and effects
can be difficult to achieve. Simple (i.e., small-scale or
laboratory-based) bioassays may not scale up to real
systems (Kimball and Levin 1985, Crane et al. 2007),
and inferences derived from field observations often
are confounded by the presence of natural environ-
mental gradients or complicated by the combined
effects of co-occurring stressors (Allan et al. 2011).
Models that quantify relationships between biological
condition, stressors, and land uses among multiple
sites could help quantify how biological communities
respond to different stressors and identify the likely
contribution of different land uses and waterway
alterations as sources of stress. However, accurately
modeling complex relationships between stressors
and biological condition in multistressor environ-
ments can be problematic (Allan 2004, Townsend et
al. 2008). Individual stressors may interact, and biota
may respond in complex, nonlinear ways to stress
(Townsend et al. 2008). Therefore, understanding the
real-world effects of stressors will require analyses
that are robust in detecting interactions among
predictors and nonlinear responses.

The natural physicochemical properties of stream
water are an important determinant of invertebrate
assemblage composition (Allan and Castillo 2007).
When human activities cause these properties to
exceed their natural range of variation, they can be
considered stressors (Townsend et al. 2008) that may
alter and degrade ecological communities. Many
types of stressors can adversely affect aquatic macro-
invertebrate assemblages (e.g., Poff et al. 1997,
Clements et al. 2000, Van Sickle and Paulsen 2008,
Hentges and Stewart 2010, Nicola et al. 2010).
However, the relative importance of different stress-
ors and their sources often are not well understood.
Anthropogenic activities that can alter physicochem-
ical properties of stream water include urban devel-
opment (e.g., Paul and Meyer 2001, Walsh et al. 2005),
agriculture (e.g., Collins and Jenkins 1996, Johnson et
al. 1997, Matthaei et al. 2010), impoundment and other
flow modifications (e.g., Poff et al. 1997), and mineral
extraction (e.g., Smolders et al. 2003, Clements 2004).
The in-channel physicochemical alterations that result
from these land and water uses are all potential
causes of biological degradation.

Accurate association of degradation of biological
condition with stressors in survey data requires
separation of the effects of anthropogenic degradation
from natural variation in both the biota and physico-
chemical properties of streams. Biota vary along

natural and anthropogenic gradients, and failure to
account for natural biotic variation will confound
interpretations of the effects of stressors and increase
both type I and type II errors of inference regarding
whether streams are biologically impaired (Cao et al.
2007, Hawkins et al. 2010a). Biological indices
adjusted for natural biotic variability among sites
help isolate the effects of human-caused stress and
enable investigators to attribute variation in index
scores to anthropogenic factors with more confidence.
Several types of stress represent alterations in the
specific physicochemical conditions that naturally
occur at sites. These naturally occurring conditions
can vary markedly among locations and must be
accounted for to associate environmental alteration
accurately with both biotic responses and the sources
of stress (human land uses). However, until recently,
few attempts have been made to account for natural
variability in the spatial distributions of physicochem-
ical factors that, if modified, can act as stressors
(Hawkins et al. 2010b). Alteration of naturally
occurring levels of electrical conductivity (EC), nutri-
ents, temperature, and flow can present significant
stress, but these factors also vary markedly along
natural climatic and geologic gradients. Similar to the
reference-condition approach used in bioassessments,
use of models that estimate expected natural physi-
cochemical properties of individual streams could
improve characterization of stressors occurring at
different locations.

Our main objectives were to: 1) identify regionally
important causes of biological impairment of streams
in a highly heterogeneous region that has been
exposed to a variety of potential stressors, and 2)
develop realistic hypotheses about the levels of stress
that can lead to biological degradation. First, we
quantified relationships between biological condition
and individual and multiple stressors. We then
assessed the evidence for interactive effects of co-
occurring stressors on biota. Last, we identified likely
general sources of different types of stressors. Models
that predict expected site-specific stream EC (Olson
and Hawkins 2012) and total N and P concentrations
at base flow (Olson and Hawkins 2013) in our study
area allowed us to interpret stress associated with
these factors in the context of natural variation.

Methods

The state of Nevada (NV) is a highly heterogeneous
region that varies greatly in both natural environ-
mental characteristics and human-caused alteration.
Environments in this region range from desert to
montane. The Basin and Range terrain produces
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extreme climatic variability, and cool, wet climates are
restricted to isolated high-elevation habitats. These
high-elevation habitats are sometimes called sky
islands, and despite their small size and isolation,
they support most of the aquatic habitats and much of
the total biodiversity of the region (Chambers et al.
2008). This region also has experienced a wide range
of human-caused watershed and channel alterations,
and individual streams range from heavily degraded
to nearly pristine. Human-caused alterations in the
region include agriculture, urbanization, hydrologic
modification, and mineral extraction. We considered 4
types of potential stressors to stream biota of regional
concern: total dissolved solids as measured by EC,
nutrient enrichment, trace-metal contamination, and
flow alteration. Initially, we had included a measure
of stream temperature alteration as a 5th stressor. We
have models that can predict reference-condition
temperatures (Hill et al. 2013), but the spot temper-
ature measurements available to us were not compa-
rable to the predictions of seasonal and annual means
that our models produce. Therefore, we excluded
temperature alteration from further analyses. The
wide ranges of environmental and anthropogenic
characteristics in this region made a good test case for
evaluating our ability to assess regional variation in
stressor levels and to identify likely causes of

biological degradation in the context of background
physicochemical and biological stream characteristics.

To identify important stressors and their sources,
we developed 2 sets of predictive models: 1 set to link
measures of biological condition to in-stream stress
and 1 set to link spatial variation in stressor levels to
gradients of land uses. Together these models link: 1)
watershed-scale land uses to 2) reach-scale estimates
of likely exposure of organisms to stress to 3) reach-
scale estimates of biological condition (Fig. 1). We
then interpreted quantitative associations between
stressors and biological degradation within the
context of existing conceptual models of biological
response to different types of stressors to infer the
most likely causes of biological degradation within
the region.

Biological indices, stressor data, and natural
environmental data

We used 2 bioassessment indices specifically
developed to characterize biological condition of
benthic invertebrate assemblages in NV streams: a
multimetric index (MMI) and an observed to expected
index of taxonomic completeness (O/Etaxa) (Vander
Laan 2012). The MMI includes 7 metrics and
quantifies biological condition in terms of overall

FIG. 1. Conceptual model for our study identifying possible linkages between land uses, in-stream stressors, and
biological condition.
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assemblage structure. The metrics included in the
MMI are: insect richness, Ephemeroptera relative
abundance, Shannon diversity, collector-filterer rela-
tive abundance, Plecoptera relative abundance, non-
insect richness, and clinger richness. These metrics
were selected based on their statistical and biological
independence and their ability to discriminate be-
tween reference and degraded sites. O/Etaxa measures
biological condition in terms of the loss of expected
taxa at individual sites. Both indices were developed
from samples collected at 165 reference sites in NV
and surrounding areas (Fig. 2). Samples were col-
lected by personnel at the NV Department of
Environmental Protection (NDEP), the US Environ-
mental Protection Agency (EPA), and Utah State

University. Both indices were based on a reference-
condition approach in which models were used to
predict site-specific biological expectations (taxonom-
ic composition or assemblage metrics) based on
naturally occurring environmental characteristics
(Hawkins et al. 2000, Cao et al. 2007). By setting site-
specific biological expectations, this approach ac-
counts for variation in individual metric values or
taxonomic composition associated with natural envi-
ronmental gradients. We followed procedures similar
to those of Herlihy et al. (2008) to select reference sites
when developing the biological indices. Reference
sites passed a screen for land uses and other potential
human impacts and represent the least-disturbed
conditions (sensu Stoddard et al. 2006) for streams

FIG. 2. Distribution of benthic invertebrate sampling locations for reference and test sites used in biological indices and
stressor analyses. Some sites in close proximity to Nevada were included for index development and evaluations.
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in the study area. Specific criteria were given by
Vander Laan (2012). Reference-site scores for both
indices are centered on 1, and scores significantly ,1
indicate anthropogenic degradation. In addition to the
165 reference samples used in index development, 401
invertebrate samples from nonreference sites (hereaf-
ter, test sites) were available from the NDEP database.
We assessed biological condition for all test sites by
calculating O/Etaxa and MMI scores from the inver-
tebrate sample data.

We assumed that an ecologically meaningful
measure of the chronic stress at each site could be
estimated as either the mean values of water-
chemistry variables calculated over multiple years of
data or the long-term hydrologic alteration associated
with upstream reservoirs. We calculated mean values
of potential dissolved stressors (EC, metal concentra-
tions, and nutrient concentrations) from water-sample
data provided by the NDEP. These samples generally
were collected during low-flow conditions. We
derived mean EC, dissolved metal concentrations,
and nutrient concentrations from samples collected
between the years 2000–2010 (average number of
samples/site = 8). EC was measured as mS/cm, and
nutrients were measured as concentrations (mg/L) of
total N (TN) and total P (TP). Metal concentrations
were measured as dissolved metals (mg/L). We used
dissolved metals because this measure is generally
considered to be most representative of the biologi-
cally available portion of metals in aquatic systems
(Reiley 2007). We had data available for 10 metals:
arsenic (As), cadmium (Cd), chromium (Cr), copper
(Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium
(Se), silver (Ag), and zinc (Zn). We also obtained
water-chemistry data from the NDEP for 68 of the
reference samples used for index development, and
we included these samples in the models relating land
uses, stressors, and biological condition to ensure that
the full ranges of land uses and stressor gradients
were represented. We used data from the National
Inventory of Dams (USACE 2009) to estimate the total
reservoir volume and the volume of the largest
reservoir within each watershed and within 3 km
upstream from each site (both standardized by
dividing by watershed area).

We used a geographic information system (GIS) to
characterize land use and the natural environmental
characteristics of each watershed (Appendix 1). We
obtained land-cover information from the National
Land Cover Database (NLCD) produced by the Multi-
Resolution Land Characteristics Consortium (Homer
et al. 2007) to calculate the % area in each watershed
that was classified as having agricultural or urban
land use and the % area of the watershed within 3 km

upstream from the sample site that was classified as
having agricultural or urban land use. We used the
whole-watershed measure of land use to characterize
the potential cumulative effects of land uses on
physicochemical conditions and the 3-km measure
to characterize more proximate watershed conditions
that may be important determinants of local stream
physicochemical conditions. We obtained mining data
from the US Geological Survey (USGS) mineral-
resources data system (http://mrdata.usgs.gov) and
characterized mining activity as the density of known
mine sites in each watershed. Dams may influence
physicochemical factors other than flow, so we also
used the measures of reservoir volumes described
above as potential predictors of the levels of other
stressors. We extracted 30-y average air temperature
and precipitation information from grids produced by
the PRISM climate group (Daly et al. 2008). We used
geologic (Reed and Bush 2001) and soil (Wolock 1997)
data to define geology and soil properties of each
watershed. We characterized watershed topography
as watershed size; mean, minimum, and maximum
watershed elevation; and watershed slope calculated
as the change in elevation within a watershed
(maximum elevation minus minimum elevation)
divided by the maximum flow length. We also
roughly characterized 2 aspects of the natural
hydrologic regime: 1) mean baseflow index as
provided by Wolock (2003), and 2) a measure of
hydrologic stability calculated as the minimum mean
monthly discharge divided by the maximum mean
monthly discharge interpolated from the 12 closest
USGS gauging stations within a 100-km radius.

Modeling approach

We developed Random Forest (RF) models to
identify and quantify relationships between land
uses, stressors, and biological condition. RF models
combine predictions from numerous regression or
classification trees based on bootstrap resamples of
the data to produce robust and accurate predictions
(Cutler et al. 2007). RF models can be used for
classification and regression and have significant
advantages over other statistical methods, including
the ability to model complex interactions among
predictors and resistance to model over-fitting (Cutler
et al. 2007). Individual relationships between predic-
tors and the response variable are assessed with
variable importance measures and partial depen-
dence plots. Variable importance in an RF model is
measured as the % increase in mean squared error
(MSE) of the model when that variable is randomly
permuted. Partial dependence plots characterize the
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effect of an individual predictor on the response after
accounting for the effects of all other predictors (Hastie
et al. 2001). RF model performance is best evaluated
based on out-of-bag (OOB) MSE and % variance
explained. OOB refers to the samples that are left out
of each of the bootstrap samples in each tree in an RF
model. By predicting to these OOB samples, an
unbiased estimate of error, similar to cross-validation,
can be obtained (Cutler et al. 2007). Because RF can
model complex interactions between predictors, it is
well suited for assessing individual and cumulative
effects of stressors on stream invertebrate assemblages.

Accounting for natural variability in stressor levels

Of the stressors we examined, EC, nutrients, and
hydrology exhibited marked natural variation among
streams. Therefore, we used existing models to
estimate expected site-specific reference conditions
for EC (Olson and Hawkins 2012) and TN and TP
(Olson and Hawkins 2013). Similar to the biological
indices, these models are based on a reference-
condition approach in which relationships between
environmental characteristics and water chemistry
at reference sites are used to predict site-specific
expectations for reference-condition water-chemistry
values. For these factors, we subtracted expected (E)
values from observed (O) values and used O–Estress

values as estimates of physicochemical alteration in
the biota–stressor and stressor–landuse models. We
lacked a practical way of assessing natural variation
in metal concentrations among sites, so we assumed
that observed metal concentrations represented an-
thropogenic disturbance. We also lacked direct
estimates of flow modification. Therefore, we used
total upstream reservoir volume and the volume of
the largest upstream reservoir as a proxy for
hydrologic alteration. We conducted a principal
components analysis (PCA) on all stressor variables
followed by varimax rotation of the principal compo-
nent axes to identify patterns of spatial covariation
among stressors.

Quantifying relationships between biological condition
and stressors

We built RF regression models with index scores as
responses and stressors as predictors (hereafter biota–
stressor models) to quantify individual relationships
between biological condition and individual stressors.
We developed 2 biota–stressor models: one with O/E
scores as the response and the other with MMI scores
as the response. We developed these models itera-
tively by first including all stressors as potential

predictors. We then conducted a stepwise removal of
the least important predictors until performance was
maximized (as measured by % variance explained).
We assessed the performance of these models by
comparing the % variance in index scores explained
by the models to the maximum possible variance
explained given the variability in standardized
biological index scores. We calculated the maximum
possible % variance explained as

100|
S : N

S : Nð Þz1

where S:N is the signal-to-noise ratio calculated by
dividing the variance of biological index scores
observed at all sites by the variance of index scores
observed at only the reference sites used to calibrate
the biological indices (J. Van Sickle, Department of
Fisheries and Wildlife, Oregon State University,
personal communication). The variance among refer-
ence-site scores is associated with sampling variance
and model error and represents the noise that will
limit the amount of variation in index scores that can
be associated with predictors. We also modeled
associations between individual component metrics
and stressors. We used univariate and bivariate
partial-dependence plots to assess the associations
between biological index values and different stress-
ors, check for interactions among stressors, and
visually identify thresholds associated with biological
degradation. We also used t-tests to assess whether
biological index values differed between sites with a
dam within 3 km upstream from the sample site and
those without dams this close. Many factors affect the
length of stream that a dam will influence. Our 3-km
threshold was arbitrary, but should encompass the
sections of streams most likely to be affected by
upstream dams, i.e., tailwaters.

Relating stressors to land uses

We developed several RF models to relate stressor
levels to land uses within watersheds. We included
both land use and naturally occurring environmental
characteristics (including model-derived estimates of
EC and nutrients expected under natural conditions)
as predictors of altered physicochemical conditions
for 3 reasons: 1) the effect of land uses on in-stream
physicochemical conditions may depend on the
natural environmental setting, 2) we were interested
in assessing the effects of land use on stressor levels in
context of natural background conditions, and 3) land
use and naturally occurring environmental character-
istics may be correlated. By including natural envi-
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ronmental characteristics or estimates of naturally
occurring physicochemical conditions as predictors in
the RF models, the partial dependence plots should
more accurately describe how stress varied across
gradients of different land uses.

We used the same modeling approach described
earlier to develop models iteratively through stepwise
removal of the weakest predictors. For nutrients and
EC, potential predictors included model-estimated
reference-condition values of these factors and land-
use variables. For metals, potential predictors includ-
ed all measures of land uses and all measures of
natural environmental characteristics (Appendix 1).
We retained landuse predictors with interpretable
relationships with the response variables even if they
were relatively weak predictors so that we could
assess the relative strength of associations between
different land uses and stressors. We used the %

variance in each stressor explained by the models,
variable importance measures, and partial depen-
dence plots to assess the performance of models and
interpret relationships. We could not model relation-
ships between actual flow modification and the
source of flow modification (dams and land uses)
because we did not have direct measures of hydro-
logic alteration. If stressors were not continuously
related to gradients of specific land use, we used t-
tests to determine if stressor levels were related to
general watershed alteration, i.e., if mean stressor
levels differ between reference and test sites.

Results

Stressor levels

Stressor levels varied considerably among sites
(Table 1), but they were relatively low at most sites.
Reservoir volume was the most variable potential
stressor followed by O–ETP, As, and O–EEC. PCA
showed that stressors tended to covary along 7 axes of
variation (Table 2).

Relationships between biological condition and stressors

Four stressors were important predictors of O/Etaxa

scores (Table 3). O/Etaxa scores were negatively asso-
ciated with O–EEC, Cu, As, and Zn concentrations
(Fig. 3A–D). These stressors accounted for 20% of the
variance in O/Etaxa scores out of a maximum possible
64% variance. O/Etaxa scores declined as O–EEC

increased from near 0 to ,400 mS/cm, but showed
little further response to O–EEC values .600 mS/cm
(Fig. 3A). O/Etaxa declined sharply and uniformly
across the full range of observed As values (,0–
80 mg/L) (Fig. 3B). O/Etaxa was insensitive to Cu

concentrations between 0 and 10 mg/L, but dropped
precipitously at concentrations .10 mg/L (Fig. 3C). O/
Etaxa was weakly associated with variation in Zn
concentrations (Fig. 3D). We did not observe evidence
for interactive effects of stressors on O/Etaxa.

Four stressors were important predictors of MMI
scores: As, O–EEC, O–ETN, and O–ETP (Table 3). These
4 stressors accounted for 13% of the variance in MMI
scores out of a maximum possible 80%. As observed
for the O/Etaxa index, MMI scores declined sharply
and continuously with increasing concentrations of
As (Fig. 3E). However, the MMI was much less
responsive to variation in O–EEC than was O/Etaxa

(Fig. 3F), and it was not responsive to variation in
either Zn or Cu. In contrast to the O/Etaxa index, the
MMI did vary with excess nutrient concentrations
(Fig. 3G, H). MMI values declined ,0.1 units (10% of
the mean reference-site value) across a 0 to 1000 mg/L
range of excess TN, but increased slightly as O–ETP

increased from 0 to 20 mg/L. We did not observe
obvious evidence for interactive effects of stressors on
MMI values. O–EEC, O–ETN, and O–ETP accounted for
2 to 17% of the variance in the component metrics of

TABLE 1. Minima, maxima, and coefficients of variation
(CV) of potential stressors among sites. Both observed
minus expected (O–E) and raw observed values of electrical
conductivity (EC), total P (TP), and total N (TN) are listed
for context. Negative values of O–E are caused by model
error at low levels of expected concentrations of total
dissolved solids (EC), TP, and TN.

Stressor Minimum Maximum CV

O–EEC (mS/cm) 2241 2743 2.51
EC (mS/cm) 22 3256 1.35
O–ETP (mg/L) 232.6 2571 2.95
TP 4.16 2600 1.97
O–ETN (mg/L) 2231 3891 2.05
TN 0 4200 1.05
Watershed maximum

reservoir volume
(m3/km2)

0.0 363,250 6.34

Maximum reservoir volume
within 3 km (m3/km2)

0.0 12,854 20.5

Watershed sum reservoir
volume (m3/km2)

0.0 539,608 6.25

Sum reservoir volume
within 3 km (m3/km2)

0.0 12,854 19.9

As (mg/L) 1.9 250.7 2.10
Cd (mg/L) 1.0 2.0 0.14
Cr (mg/L) 1.5 4.0 0.10
Cu (mg/L) 1.7 5.7 0.17
Pb (mg/L) 1.0 2.3 0.26
Hg (mg/L) 0.1 0.5 0.34
Ni (mg/L) 2.8 16.0 0.22
Se (mg/L) 1.5 7.6 0.34
Ag (mg/L) 1.3 2.0 0.09
Zn (mg/L) 8.1 157.0 0.66
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the MMI (Table 3). The most responsive (17% of
variance) metrics were clinger richness and Ephemer-
optera relative abundance.

We did observe evidence that hydrologic alteration
negatively affected biological condition even though
reservoir volume was not an important predictor of
index scores in the RF models. O/Etaxa scores were
lower for samples from sites with a dam within 3 km
upstream (mean = 0.56) than for sites without dams
within 3 km upstream (mean = 0.91) (p , 0.005).
However, MMI scores from sites near dams did not
differ significantly from scores from sites that were
not in close proximity to dams.

Biological index scores also were related to overall
human impacts. Mean scores for both indices were
,10% lower at test sites that failed a screen for land
use and other potential human impacts (O/Etaxa =

0.89, MMI = 0.90) than at reference sites (1.0 for both
indices).

Relationships between stress and land uses

Variation in biologically important stressor values
among sites was associated (32–96% of variance) with
a combination of land use and natural features
(Table 4, Appendix 2). Altered EC was the most
predictable stressor and was positively related to
agriculture, mine density, and urbanization. With the
distinct exception of As, land use accounted for most
of the variation in in-stream stressor levels (Table 4).
As levels were significantly (p , 0.005) higher at test
sites (mean = 7.8 mg/L) than reference sites (mean =

5.0 mg/L), but As concentrations were not related to
any measure of land use used in RF models. In
contrast to As, in-channel dissolved concentrations of
other metals, such as Cu and Zn, were associated with
urban development and mining within watersheds.
Altered EC and nutrient levels were most strongly,
and positively, associated with agriculture and urban
development. For all stressors, % area of the entire
watershed classified as urban or agriculture was a
better predictor of stressor levels than the % area of
the watershed within 3 km upstream from the sample
site.

TABLE 2. Varimax rotated principal components loadings for all stressors. Bolded values highlight strongly correlated
stressors. Abbreviations are as in Table 1.

Stressor Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7

Cu 0.94 0.09 20.01 0.00 0.05 0.22 0.03
Pb 0.94 0.07 20.01 20.01 0.14 0.10 0.02
Hg 0.90 0.11 20.01 0.00 0.36 20.04 0.00
Cd 0.87 0.16 20.01 20.01 0.13 0.00 20.04
Zn 0.86 0.02 20.02 20.05 20.10 0.12 0.05
O–ETP 0.02 0.94 0.01 20.01 0.08 0.07 0.02
O–EEC 0.24 0.80 20.02 0.00 0.01 0.14 0.14
O–ETN 0.11 0.67 0.01 20.02 20.19 0.43 0.11
Maximum reservoir volume

within 3 km
20.02 0.00 1.00 0.01 0.01 0.00 0.00

Sum reservoir volume within
3 km

20.02 0.00 1.00 0.01 0.01 0.00 0.00

Watershed maximum
reservoir volume

20.03 20.01 0.01 1.00 0.03 0.00 20.01

Watershed sum reservoir
volume

20.03 20.01 0.01 1.00 0.03 20.01 20.01

Ag 0.10 0.02 0.01 0.04 0.91 20.05 0.03
Cr 0.20 20.06 0.00 0.01 0.83 0.05 0.05
Se 0.21 0.20 0.00 0.00 20.10 0.87 0.06
Ni 0.08 0.34 0.00 20.01 0.43 0.61 20.13
As 0.04 0.17 20.01 20.02 0.06 0.01 0.97

TABLE 3. Percent variance (% var) accounted for by each
of the biota–stressor Random Forest models. Predictors are
listed in order (left to right) of their importance in the
model. Abbreviations are as in Table 1.

Index % var Predictors

O/Etaxa 20 O–EEC, Cu, As, Zn
MMI 13 As, O–EEC, O–ETN, O–ETP

Insect richness 2 As, O–ETP, O–EEC, O–ETN

Ephemeroptera
relative abundance

17 O–EEC, O–ETP, As, O–ETN

Shannon diversity 8 As, O–EEC, O–ETP, O–ETN

Collector/filterer
relative abundance

11 As, O–EEC, O–ETN, O–ETP

Plecopteran relative
abundance

6 As, O–ETP, O–ETN, O–EEC

Noninsect richness 10 O–EEC, As, O–ETN, O–ETP

Clinger richness 17 O–EEC, As, O–ETP, O–ETN
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Some stressors also varied with natural watershed
features (Table 4). As levels were negatively related to
precipitation and elevation and positively related to
air temperature. Cu and Zn concentrations decreased
with either precipitation or elevation, but not as
strongly as observed for As. Little of the variation in
O–E values for EC, TN, and TP was associated with

predicted reference-condition concentrations, results
indicating that the magnitude of stress (O–E values)
for these factors generally was not related to the
natural background concentrations of these factors at
a site.

Discussion

Restoring the biological integrity of degraded
streams requires that we identify the stressors causing
degradation and the sources of those stressors. Our
use of a modeling approach to quantify relationships
between biological index scores, potential stressors,
and measures of watershed alteration enabled us to
address 2 major challenges for quantifying relation-
ships between biota, stressors, and land uses: 1)
separating anthropogenic effects on physicochemical
conditions and biota from natural variation, and 2)
assessing relative, cumulative, and interactive effects
of co-occurring stressors on biotic condition. Our
interpretations of the modeling results were guided
by the degree to which observed relationships were
consistent with established causal mechanisms (e.g.,
Suter et al. 2010, Allan et al. 2011, Norris et al. 2012).
Our approach is similar in concept to that used by

FIG. 3. Partial dependence plots of biological indices on
stressors from the Random Forest biota–stressor models that
describe how biological index scores for observed/expected
taxa at a site (O/Etaxa) (A–D) and the multimetric index
(MMI) (E–H) vary along the stressor gradients. A.—O–EEC.
B.—As. C.—Cu. D.—Zn. E.—As. F.—O–EEC. G.—O–ETN.
H.—O–ETP. EC = electrical conductivity, TN = total N,
TP = total P.

TABLE 4. Summary of Random Forest (RF) models
predicting biologically important stressors. % var = %

variation in each stressor accounted for by the model.
Values on the left of the slash indicate model performance
with both natural and landuse predictors. Values on the
right of the slash indicate model performance without
natural predictors. Predictors are listed from left to right in
order of importance in the model. Signs in parentheses
indicate the general direction of the stressor in response to a
predictor. Abbreviations are as in Table 1.

Stressor % var Predictors

O–EEC 96/93 Predicted EC (+), % watershed
agriculture (+), mine density (+),
% watershed urban (+)

O–ETN 52/46 % watershed urban (+), % watershed
agriculture (+), mine density (+),
predicted total N (+)

O–ETP 43/41 % watershed agriculture (+), % water-
shed urban (+), predicted total P (+)

As 32/0 watershed mean annual maximum
precipitation (2), site elevation
(2), watershed mean annual
minimum temperature (+)

Cu 80/69 % watershed urban (+), watershed
mean annual maximum wet days
(2), site elevation (2), watershed
mean hydrologic stability (2),
mine density (+)

Zn 62/56 % watershed urban (+), mine
density (+), site elevation (2)
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others who have tried to relate land uses, stressors,
and biota (e.g., Dauer et al. 2000, Volstad et al. 2003,
Yuan and Norton 2004, Novotny et al. 2005), but our
use of models to account for natural variation in both
stressors and biota, coupled with a nonparametric
modeling technique improved our ability to interpret
these relationships.

Biological index responsiveness to stressors

Our use of 2 established types of biological indices
revealed that different biological indices may be
differentially responsive to the same stressors. These
differences in responsiveness have implications for
interpreting the biological effects of stressors on
aquatic ecosystems. Differences in index responsive-
ness to stressors could lead to different assessments of
biological condition and potentially could cause
managers to ignore stressors that are actually causing
biological harm. To interpret biological responses to
stressors adequately, understanding what the biolog-
ical indices we use actually measure and how they are
likely to change along stressor gradients is critical.

The higher responsiveness of the O/Etaxa index
than the MMI to stressors may have occurred for at
least 2 reasons. First, O/Etaxa and an MMI are based
on different biological properties of the same assem-
blage that may differ in their responsiveness to stress
for ecological or statistical reasons. For example, the
responsiveness of the MMI may have been dampened
by aggregation of information from individual taxa
into composite metrics that describe community-level
attributes (trophic structure, diversity, etc.). If sensi-
tivity to specific stressors varies among taxa that
contribute information to a metric, the overall
responsiveness of a metric will be some average
function of responses of those specific taxa that
contribute to a metric. Furthermore, an MMI as a
whole comprises individual metrics that may differ in
their response to any given stress. O/Etaxa is not
prone to these averaging effects because reductions in
O/Etaxa occur when individual taxa expected at a site
are lost, theoretically because of stress and in order of
their sensitivities to local stressors. Second, differenc-
es in how indices are calibrated may affect their
responsiveness (Hawkins et al. 2010a). For example,
O/Etaxa indices are calibrated with only reference
data, whereas MMIs are calibrated with both refer-
ence sites and predefined degraded sites. Calibrating
an index with data from disturbed sites generally
should lead to high responsiveness, but MMIs may
show dampened response to high levels of stress or to
novel stressors if the degraded sites used in calibra-
tion do not adequately characterize the complete mix

or levels of stressors within a region (Hawkins et al.
2010a). However, the differential sensitivities of the 2
types of indices cannot necessarily be generalized to
other studies or types of stressors. MMIs measure a
somewhat different aspect of biological condition
than O/Etaxa indices, and may respond more strongly
than O/Etaxa to types of stressors that were not
present in our study region. Furthermore, the differ-
ential responsiveness of component metrics implies
that some individual metrics may be more useful in
assessing biological response to different stressors
than aggregate indices. In general, more comparisons
of index and metric responsiveness to different
stressors are needed.

Accounting for natural variability in both biota
and stressors

Many bioassessments and causal analyses are
potentially confounded by spatial covariation of
naturally occurring features and human alteration of
the environment. For example, more human-associat-
ed alteration has occurred in lowland than upland
settings. Our use of modeled bioassessment indices
(Vander Laan 2012) that measure biological condition
as the deviation from expected reference condition
(Hawkins et al. 2010a) allowed us to account for the
effects of naturally occurring environmental variabil-
ity on biota and to attribute changes in biological
condition scores to anthropogenic stressors with more
confidence. We were able to use a similar approach to
understand when physicochemical conditions proba-
bly exceeded levels expected at individual sites,
which allowed us to describe both biota–stress
relationships and stress–land use relationships more
accurately.

Quantification of stressors can be an especially
difficult problem when analyzing field data. For novel
stressors, direct measures of the concentrations ob-
served at each site should be a meaningful estimate of
exposure because natural background concentrations
must be 0. We assumed that observed metal concen-
trations were associated with anthropogenic distur-
bance. However, this assumption may not have been
completely robust because relatively high levels of
metals in streams can result from natural geologic
sources (Schmidt et al. 2012). We were not able to
account for potential natural sources of trace metals in
our study area. However, the levels of metal concen-
trations that we observed at reference sites were below
those considered to be toxic (USEPA 1996), which
suggests that natural background metal concentrations
may be generally low in the study region. Many other
forms of stress represent human-caused changes in
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physicochemical conditions that can naturally vary
among locations, e.g., water chemistry, temperature,
sediment, nutrients, and flow modification. In these
cases, potential stress is best measured as deviation
from natural conditions. We were able to estimate
deviation from expected reference condition for EC
(Olson and Hawkins 2012) and nutrients (Olson and
Hawkins 2013), so we were able to strengthen
inferences regarding the effect of alterations in these
factors on invertebrate assemblages and the landuse
activities that are associated with their alteration.
However, we did not have direct estimates of
hydrologic regimes and, therefore, had to use a proxy
(reservoir volume) to estimate flow alterations. Better
methods of estimating flow alterations would greatly
improve our ability to analyze the effects of altered
hydrology on stream biota. Omitting natural predictors
from the land use–stressor models had only a small
effect on stressor predictability (with the exception of
As), suggesting that watershed alteration accounts for
most spatial variation in stressors in our study region.
However, stressors should be interpreted in the context
of natural environmental gradients, and including
natural predictors increased our confidence in inter-
preting relationships between land uses and stressors.

Stressor-specific relationships

Metals.—Zn, Cu, and As were associated with
degraded biological condition in our data set, a result
consistent with results of several other studies in
which negative associations between the condition of
invertebrate assemblages and metal contamination
were reported in field (e.g., Clements et al. 2000, Cain
et al. 2004, Pollard and Yuan 2006) or laboratory
settings (e.g., Richardson and Kiffney 2000, Clements
et al. 2002, Clements 2004). Modes of biological
uptake and toxicity are less broadly understood, but
several studies have identified possible pathways
(e.g., Xie et al. 2009, 2010). In general, metal toxicity
can increase mortality or reduce the fitness of aquatic
invertebrates (e.g., Thorp et al. 1979, Wicklum and
Davies 1996) and increase population loss by increas-
ing emigration through invertebrate drift (Clements
2004). This information coupled with the negative
relationships we and others have observed between
measures of biological condition and metal concen-
trations supports the inference that metal contamina-
tion is a stressor of concern in NV streams. Zn and Cu
also tended to co-occur spatially with other metals
like Cd, Pb, and Hg (Table 2), results suggesting that
the relationships we observed between biota and Zn
and Cu may represent the combined effects of this
suite of heavy metals. Zn and Cu were both strongly

associated with human land uses, such as urbaniza-
tion and mining, a result implying that these land
uses are sources of contamination by these metals and
the ultimate cause of biological degradation. These
source-channel relationships are consistent with pre-
vious observations (e.g., Paulson 1997, Beasley and
Kneale 2002, Macklin et al. 2006, Wong et al. 2006,
Xiao and Ji 2007).

The US EPA recommends a chronic water-quality
criterion of 150 mg/L of dissolved As to protect
aquatic life (USEPA 1996). Our results suggest that
dissolved As affects stream invertebrates at concen-
trations well below this value and that this recom-
mendation should be reevaluated. However, our
results also imply that setting a single, ecologically
meaningful As criterion may be difficult if high As
concentrations occur naturally in some streams (e.g.,
Wilkie and Hering 1998). Given that we found no
relationships between As concentrations and varia-
tion in specific types of land use, the biological
associations with As that we observed may not be
associated with anthropogenic activities. However,
the moderate difference in mean As concentrations
between reference and test sites does imply that
human activity is generally associated with increased
concentrations of As in streams. Therefore, we
probably did not characterize the specific human
activities associated with increased delivery of As to
these streams (e.g., atmospheric deposition, As-based
pesticide use). Determining how much of the As
concentrations in these streams result from natural
conditions and human activities will require a
detailed and more-refined analysis of potential
sources of As than we were able to conduct in our
study. Even though the sources of As in many streams
are uncertain, the associations between biological
condition and As levels that we observed should be
useful in setting criteria for those streams known to
have naturally low levels of As. Improved ways to
account for background metal concentrations in
bioassessments and causal analyses (e.g., Schmidt et
al. 2012) will help our understanding of both the
sources of metal contamination and its effects on
stream biota.

Climatic and geographic factors also may be
important determinants of a stream’s exposure and
susceptibility to metal contamination. The fact that
As, Cu, and Zn concentrations were negatively
associated with site elevation and cooler, wetter
climates implies that the natural environmental
setting can influence dissolved metal concentrations.
Higher-elevation sites are generally more remote and
have smaller watersheds, which generally should
result in a lower probability of metal contamination
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from urban development or mineral extraction.
However, watershed area was not a good predictor
of metal concentrations, suggesting that the patterns
in metal concentrations we observed along elevation
and climate gradients are not associated simply with
the size of the watershed and the probability that
reaches receive metal contaminants from up-water-
shed sources. We suspect this pattern may be the
result of the evaporative concentration of dissolved
metals at lower elevation sites that, in this region,
generally experience hotter and drier climates than
high elevation sites.

Hydrologic alteration.—Hydrologic alteration is con-
sidered one of the most serious threats to stream
ecosystems (Bunn and Arthington 2002). The low O/
Etaxa scores that we observed at sites in close proximity
(3 km) of dams is consistent with this generalization,
but the lack of relationships between O/Etaxa and the
MMI with upstream reservoir volume implies that
overall hydrologic alteration may not be as important a
stressor as chemical alteration in NV streams. Howev-
er, only 8 samples in our study were taken from sites
within 3 km of a dam, and small sample size may
explain why reservoir volume was not an important
predictor in RF models. In addition, use of reservoir
volume as a proxy for hydrological alteration does not
fully characterize flow alterations. Quantitative char-
acterizations of natural hydrologic regimes have been
developed (e.g., Carlisle et al. 2010, Chinnayakanahalli
et al. 2011), but we did not have comparable
observations of flow regimes to quantify site-specific
hydrologic modification. Estimates of the deviation of
observed hydrologic conditions from expected refer-
ence conditions would strengthen causal arguments
for biological responses to flow modification.

Nutrients.—Nutrient enrichment is an important
stressor in many stream ecosystems, but we did not
observe strong changes in invertebrate assemblages in
response to elevated nutrients. Indices based on algae
(e.g., Smith et al. 2007) may be better indicators of
changes in ecological condition resulting from nutri-
ent enrichment than indices based on invertebrates
because nutrient enrichment in streams is more likely
to have direct effects on algal assemblages than on
invertebrate assemblages. In fact, in naturally nutri-
ent-poor streams, modest increases in nutrients may
increase macroinvertebrate abundance and richness
and potentially could compensate for the adverse
effects of other stressors (e.g., Hawkins et al. 2000).

Total dissolved solids.—In our study area, increases in
EC above expected natural levels (O–EEC . 0) translate
to absolute conductivities that are .,300 mS/cm,
which is well below levels associated with acute toxicity
for most freshwater invertebrates (Blasius and Merritt

2002, Kefford et al. 2003, 2005, Benbow and Merritt
2004). Therefore, we suspect that the biological alter-
ations we observed with elevated EC probably have
resulted from shifts in chemical niche space associated
with taxon-specific differences in osmoregulatory
ability. Increased EC improves conditions for taxa that
are intolerant of very low-ionic-strength water, whereas
taxa that are adapted to low EC may be outcompeted
and excluded from systems with elevated EC (Olson
2012). This 300 mS/cm threshold is the same as that
observed in Central Appalachian streams (USEPA
2011), and may indicate a major natural threshold
between freshwater invertebrate assemblage types. Our
results showing strong associations between excess EC
and land use are consistent with the observations of
others who also report increases in stream EC
associated with agriculture (e.g., Johnson et al. 1997,
Pan et al. 2004), urbanization (e.g., Wang and Yin 1997,
Hatt et al. 2004), and mining (e.g., Pond et al. 2008,
Palmer et al. 2010).

Additional research on how changes in EC affect
freshwater communities is especially needed. We and
others (e.g., USEPA 2011, Pond et al. 2008) have
linked changes in EC to changes in invertebrate
assemblages, but the causal mechanisms by which
EC in excess of natural conditions affects the fitness
and survival of specific invertebrate taxa are not well
understood. Some investigators have suggested that
EC constituents, such as Cl2, rather than total EC,
may be responsible for associated biological degrada-
tion (Soucek et al. 2011), but others have argued that it
is the mixture of all ions that leads to biological
degradation (Cormier et al. 2013). Further work that
establishes the chemical, physiological, and ecological
bases for invertebrate assemblage alterations in
response to changes in the individual and combined
constituents of EC would greatly strengthen our
understanding of this potentially critical stressor and
benefit development of EC criteria that are protective
of freshwater ecosystems.

Implications for causal analysis of stream degradation

We used a modeled reference-condition approach
to quantify several types of stress that represent
human alterations of naturally occurring physico-
chemical conditions. To assess levels of these stressors
accurately, we needed to separate anthropogenic
alterations of physicochemical conditions from natural
variation. We were able to separate these components
by using models that predict expected natural physi-
cochemical reference conditions (e.g., Hawkins et al.
2010b, Olson and Hawkins 2012, 2013). However,
easily applied models do not yet exist for many
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important stressors like sedimentation or acidification,
and widely applicable EC and nutrient models have
been developed only for streams in the western USA.
In contrast, for some stressors, the ability to assess
alteration of physicochemical characteristics will be
limited by inadequate characterizations of observed
conditions, not by our inability to estimate conditions
expected under reference conditions. For example,
models to estimate expected reference-stream temper-
ature (Hill et al. 2013) and hydrologic characteristics
(Carlisle et al. 2010) have been developed, but for our
study, insufficient data existed to produce comparable
characterizations of observed conditions for tempera-
ture and hydrologic alteration. Temperature and
hydrology are both potentially important determinants
of biological patterns (Jacobsen et al. 1997, Vinson 2001,
Bunn and Arthington 2002, Olden and Naiman 2010)
and the ability to assess alterations in these factors
quantitatively will be crucial for future causal analyses.

Spatial covariation and potential interactive and
nonlinear effects of stressors on biota can make it
difficult to attribute biological degradation to specific
stressors. These issues also may make simple corre-
lation- or linear-regression-based approaches (e.g., de
Zwart et al. 2006, Kapo et al. 2008, Atkinson et al.
2009, Brown et al. 2012) less successful in character-
izing the true effects of stressors on biota. Assessing
interactive effects of stressors with linear models
requires large sample sizes and a priori hypotheses
about potentially interactive stressors (e.g., de Zwart
et al. 2006). However, most causal analyses are done
with relatively small sample sizes (e.g., ,100) and
many possible stressors, resulting in little statistical
power to assess interactive effects of stressors with
linear models. A multivariate modeling approach
capable of accounting for the interactive and nonlin-
ear effects of spatially covarying stressors, such as RF,
should increase statistical power and improve causal
analyses of stream degradation.

The overall goal of causal analysis is to determine
the causes of degradation at individual sites. Howev-
er, this goal cannot be accomplished without having
realistic hypotheses about what stressors and stressor
levels probably are causing biological degradation.
Our study showed that analyses of field data from
multiple sites within a region can provide important
insights regarding the likely effects of stressors on real
biological communities and can provide the realistic
hypotheses necessary to guide site-specific causal
analyses. Laboratory experiments are often thought to
produce the most reliable inferences regarding the
effect of a stressor on biota because they control for
extraneous variables and isolate the effects of indi-
vidual stressors. However, they may lack the realism

needed to identify the levels of stress that cause
degradation in real ecosystems. In particular, labora-
tory experiments often cannot test the responsiveness
of either the most sensitive taxa or the most sensitive
life stages because these organisms are difficult to
maintain in the laboratory (e.g., Buchwalter et al.
2007). Instead, these experiments often rely on
standard test organisms, which are less sensitive to
stress and, therefore, overestimate safe stressor levels.
For example, metal concentrations that elicit toxicity
in the laboratory can be much higher than those
associated with degraded aquatic communities in the
field (Buchwalter et al. 2007). Similarly, the levels of
excess EC that we found to be associated with
biological alteration are much lower than those found
to be toxic from experiments (Blasius and Merritt
2002, Kefford et al. 2003, 2005, Benbow and Merritt
2004). More realistic laboratory experiments that
incorporate sensitive species and life stages could
result in better estimates of safe levels of stress. The
use of field data ensures realism and is probably a
better starting point for identifying the levels of stress
relevant to the measures of biological condition that
resource managers use to assess aquatic life. Realistic
experiments, conducted under field conditions, could
then be used to test these field-derived hypotheses
and refine criteria.

To restore and protect stream ecosystems, manag-
ers must be able to assess biological condition and to
identify likely causes of degradation. Causal analyses
must overcome significant challenges, such as sepa-
rating natural variation in physicochemical and
biological properties from human-caused changes
and accurately quantifying relationships between
biota and potential stressors in complex, multistressor
environments. We recommend use of a modeled
reference-condition approach to separate natural from
anthropogenic effects by predicting biological and
physicochemical characteristics that would be expect-
ed in the absence of human disturbance. This
approach will require development of models to
predict reference-condition levels of several important
stressors and monitoring programs that adequately
measure observed physiochemical conditions. In
addition, for some stressors, such as EC, further
research is needed to establish or confirm the causal
mechanisms associated with biological harm, or for
stressors, such as As, to identify realistic levels of
exposure that cause biological degradation. Last,
more studies that seek to quantify relationships
between stressors and stream biota and identify likely
causes of degradation at regional spatial scales would
improve our understanding of important stressors
and thresholds of degradation. These causal analyses
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will require comprehensive monitoring programs that
simultaneously quantify biological assemblages and
stressor levels.
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APPENDIX 1. Natural and anthropogenic variables used as potential predictors. USGS = US Geological Survey, GIS =

geographic information system.

Variable Description

AG_WS % area of watershed classified as agricultural (Homer et al. 2007)
BFI_WS Mean of all baseflow-index pixel values within the watershed; estimates % stream flow composed of

ground water relative to event flow; calculated from USGS-generated 1-km-resolution grid of base flows
derived by interpolating calculated base flows at 19,000 USGS stream-flow gauging stations distributed
across the conterminous USA (Wolock 2003)

CaO_Mean Mean of all cells within the watershed, where cells represent % underlying bedrock composed of calcium
oxide (CaO); percentages are the average % CaO for all lithologies within a cell, weighted by lithology
prevalence; lithologies and their prevalences were derived from the USGS Preliminary Integrated
Geologic Map of the USA

DOM_GEOL Geology type with largest % cover within the watershed derived from a simplified version of Reed and
Bush (2001): Generalized Geologic Map of the Conterminous United States

ELVcv_PT Coefficient of variation of elevations within a radius of 5 digital elevation model cells (30 3 30-m
resolution) of the sample site

ELVmax_WS Maximum watershed elevation (m)
ELVmean_WS Mean watershed elevation (m)
ELVmin_WS Minimum watershed elevation (m)
HYDR_PT GIS raster calculated as (MINxi)/(MAXxi), where xi = mean monthly discharge for month i for the period

of record and xi § 12 mo of record; values were calculated for each of 9,941 USGS gauging stations in
the western USA, and values for unmeasured locations were interpolated using inverse-distance-
squared weighting of the 12 closest gauging stations within 100 km; each interpolated value represents a
4 3 4-km cell

HYDR_WS Mean of all HYDR_PT values within the watershed
NEAR_AG % watershed within 5 km of sample location classified as agricultural (Homer et al. 2007)
NEAR_URB % watershed within 5 km of sample location classified as urban (Homer et al. 2007)
Max_ResVol The volume (km3) of the largest reservoir within the watershed (USACE 2009) standardized by dividing

by watershed area
MgO_Mean Mean of all cells within the watershed, where cells represent % underlying bedrock composed of

magnesium oxide (MgO); percentages are the average % MgO for all lithologies within a cell, weighted
by lithology prevalence; lithologies and their prevalences were derived from the USGS Preliminary
Integrated Geologic Map of the United States

MINEperSQKM Watershed mine density calculated as the number of mines divided by watershed area (USGS mineral
resources data system; http://mrdata.usgs.gov)

Pmax_PT Sample site value from the GIS raster calculated as
P

(MAXxi)/30 at the sampling point, where xi = the
modeled total precipitation (mm) for month i (1–12); values based on 30 y (1971–2000) of PRISM
(http://www.prism.oregonstate.edu) climate estimates; each value represents a 900 3 900-m cell

Pmax_WS Mean of all Pmax_PT values within the watershed
Pmin_PT GIS raster calculated as

P
MINxi/30 at the sampling point, where xi = the modeled total precipitation

(mm) for month i (1–12); values based on 30 y (1971–2000) of PRISM climate estimates; each value
represents a 900 3 900-m cell

Pmin_WS Mean of all Pmin_PT values within the watershed
PrdCond Expected conductivity at sampling point (Olson and Hawkins 2012)
RHmean_PT Sample-site value from the GIS raster calculated as

P
(SUMxi/12)/30 at the sampling point, where xi = the

modeled mean relative humidity (%) for month i (1–12); values based on 30 y (1961–1990) of PRISM
climate estimates; each value represents a 2 3 2-km cell

RHmean_WS Mean of all Rhmean_PT values within the watershed
S_Mean Mean of all cells within the watershed, where cells represent the % underlying bedrock composed of S;

percentages are the average % S for all lithologies within a cell, weighted by lithology prevalence;
lithologies and their prevalences were derived from the USGS Preliminary Integrated Geologic Map of
the United States

Slope_WS Watershed slope measured as the (ELVmax_WS – ELVmin_WS)/maximum flow length; calculated from
statistics produced by the multiwatershed delineation tool (Chinnayakanahalli et al. 2006)

Sum_ResVol The total volume (km3) of all reservoirs within the watershed (USACE 2009) standardized by dividing by
watershed area

Tmax_PT Sample-site value from the GIS raster calculated as
P

MAXxi/30 at the sampling point, where xi = the
modeled monthly average maximum air temperature (uC) for month i (1–12); values based on 30 y
(1971–2000) of PRISM climate estimates; each value represents a 900 3 900-m cell; note that these values
are modified from the PRISM annual maximum air temperature grid (http://www.prism.oregonstate.
edu), which are calculated as

P
(SUMxi/12)/30, where xi = the modeled monthly average maximum air

temperature (uC) for month i (1–12)
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APPENDIX 1. Continued.

Variable Description

Tmax_WS Mean of all Tmax_PT values within the watershed
Tmean_PT Sample site value from the GIS raster calculated as

P
(SUMxi/12)/30 at the sampling point, where xi = the

modeled mean air temperature (uC) for month i (1–12); the modeled monthly mean air temperature (xi)
is the average of the minimum and maximum monthly air temperatures (http://www.prism.
oregonstate.edu/faq.phtml). Values based on 30 y (1971–2000) of PRISM climate estimates; each value
represents a 900 3 900-m cell.

Tmean_WS Mean of all Tmean_PT values within the watershed
Tmin_PT Sample site value from the GIS raster calculated as

P
MINxi/30 at the sampling point, where xi = the

modeled monthly average minimum air temperature (uC) for month i (1–12); values based on 30 y
(1971–2000) of PRISM climate estimates; each value represents a 900 3 900-m cell; note that these values
are modified from the PRISM annual maximum air temperature grid (http://www.prism.oregonstate.
edu), which are calculated as

P
(SUMxi/12)/30, where xi = the modeled monthly average minimum air

temperature (uC) for month i (1–12)
Tmin_WS Mean of all Tmin_PT values within the watershed
UCS_Mean Mean of all cells within the watershed, where cells represent the average of uniaxial compressive strength

(UCS) of the underlying bedrock; cell values are the average UCS for all lithologies within that cell,
weighted by lithology prevalence; lithologies and their prevalences were derived from the USGS
Preliminary Integrated Geologic Map of the United States

URB_WS % area of watershed classified as urban (Homer et al. 2007)
WSA Watershed area in km2
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APPENDIX 2. Partial dependence plots of all
stressors on land uses and natural characteristics.
EC = electrical conductivity. See Appendix 1 for
other abbreviations.
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