[J. Electroanal. Chem., 293, 177 (1990)]

Voltammetric and Spectroscopic Properties of the Ammonia Adduct of Pyrroloquinoline Quinone (PQQox).

Kenji Kano*, Kazuya Mori, Bunji Uno, Masashi Goto

The interaction of PQQ_{ox} , pyrroloquinoline semiquinone (PQQ_{sem}), and pyrroloquinoline quinol (PQQ_{red}) with ammonia has been investigated by cyclic voltammetry, absorption spectroscopy, and electrochemical electron spin resonance spectroscopy. The voltammetric and spectroscopic measurements show that PQQ_{ox} reacts with ammonia, yielding 5-imino— PQQ_{ox} , which is reduced reversibly to 5-amino— PQQ_{red} via a 5-aminyl PQQ_{sem} radical by a two-step one-electron mechanism. Theoretical analyses of the ammonia concentration dependence of the redox potentials and the absorbance give the constants of the ammonia adduct formation of PQQ_{ox} , PQQ_{sem} , and PQQ_{red} as 6.9×10 , 6.5×10^2 , and 9.3×10^2 M⁻¹, respectively, at pH 9.2.

[J. Electroanal. Chem., 283, 187 (1990)]

Electrochemical and Electron Spin Resonance Study on the Interaction between α -Cyclodextrin (α -CyD) and Electrochemically Generated Radical Intermediate of p-Nitrophenolate anion (NP⁻).

KENJI KANO*, KAZUYA MORI, BUNJI UNO, TANEKAZU KUBOTA

The interaction between α -CyD and an electrogenerated intermediate radical (NP²-) of NP⁻ in aqueous solution has been investigated by electrochemical and *in-situ* ESR spectroscopic techniques. Fast scan cyclic voltammetry showed that α -CyD forms a 1:1 complex with NP²- as well as with NP⁻, the formation constant being 20 M⁻¹, and suppresses the subsequent reaction of NP²-. An ESR spectral study of NP²- provided evidence for the incorporation of NP²- into the α -CyD cavity: the addition of α -CyD suppressed the tumbling motion of NP²- and hence enhanced the anisotropic effect due to the hyperfine interaction of the ¹⁴N nucleus.

(Bull. Chem. Soc. Jpn., 63, 516 (1990))

Oxidation and Reduciton Potentials and Electron-Transfer Interaction in Photoexcited States.

Tanekazu Kubota, Bunji Uno*, Kenji Kano, Toshio Kawakita, Masashi Goto

The equations on the oxidation and reduction potentials in excited state are derived, which leads to the important relation between the oxidation-reduciton potentials in ground and excited states. Also, the mutual correlation of oxidation-reduciton potentials in ¹L_a excited state to those in ground stata is discussed for a benzenoid alternant hydrocarbon. Finally the electron-transfer interaction of an electron donor and an electron acceptor has been considered in photoexcited states by virtue of oxidation-reduction potentials. The equation thus odtained is of the same type as that formulated semiempirically by Rhem and Weller. Our treatment provides theoretical background for the Rhem—Weller equation.