(Phytochemistry, 28, 2527 (1989))

A Flavonol Glycoside from Epimedium diphyllum

MIZUO MIZUNO,* MUNEKAZU IINUMA, TOSHIYUKI TANAKA, NORIO SAKAKIBARA, MASATOSHI NISHI, AKIRA INADA, TSUTOMU NAKANISHI

In the course of our search for bioactive principles in *Epimedium* species as well as a chemotax-onomic investigation of the genus *Epimedium*, further constituents of the underground parts of *E. diphyllum* (MORR. et DECNE) LODD. (Berberidaceae) were investigated. After repeated silica gel chromatography of the butanol-soluble portion of a 70% methanolic extract, a novel flavonol glycoside named diphylloside C was isolated. Its structure was determined on the basis of spectral analyses (negative inon FAB-MS, $^1H^{-1}H$ COSY, NOESY, INEPT and $^1H^{-13}C$ COSY etc) as des-O-methylanhydroicaritin $^3-O^-\beta$ -D-glucosyl- $^1(1\rightarrow 2)$ - 2 -L-rhamnoside 3 -D-glucosyl- 3 -D-glucoside.

(Phytochemistry, 28, 2811 (1989))

Six Flavanones from the Stems of Euchresta formosana

Mizuo Mizuno,* Koh-ichi Tamura, Toshiyuki Tanaka,
Munekazu Iinuma

Two new flavanones, euchrenones a_5 and a_6 , were isolated from the roots of *Euchresta formosana* in addition to four known flavanones (xambioona, euchrestaflavanones A, B and C) and a pterocarpan (maackiain). By spectroscopic analysis, the structures of euchrenones a_5 and a_6 were determined to be 7-hydroxy-8- γ , γ -dimethylallyl [6''', 6'''-dimethylpyrano (2''', 2''': 4', 3')]-and 5, 7, 2'-trihydroxy-6, 8-di $(\gamma, \gamma$ -dimethylallyl)-[6''', 6'''-dimethylpyrano(2''', 3''', 3'', 3')] flavanone, respectively.

(Bot. Mag. Tokyo, 102, 403 (1989))

Two Chemical Races in Salix sachalinensis Fr. SCHMIDT (Salicaceae)
MIZUO MIZUNO,* MASAYA KATO, MUNEKAZU IINUMA, TOSHIYUKI TANAKA,
AKIRA KIMURA, HIROYOSHI OHASHI, HIDEKI SAKAI, TADASHI KAJITA

High-performance liquid chromatography profiles based on chemical constituents of the leaves of 145 individuals of Salix sachalinensis were classified into two different patterns: one composed of flavonoids (myricetin and dihydromyricetin), and the other composed of phenylpropanoid derivatives (glucose-1-O-trans-cinnamate, glucose-1-O-p-coumarate etc). This led to the conclusion that two chemical races exist in S. sachalinensis with different biosynthetic abilities to produce secondary metabolites.