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Abstract

Population genomic approaches are making rapid inroads in the study of non-model organisms,

including marine taxa. To date, these marine studies have predominantly focused on rudimentary

metrics describing the spatial and environmental context of their study region (e.g., geographical

distance, average sea surface temperature, average salinity). We contend that a more nuanced and

considered approach to quantifying seascape dynamics and patterns can strengthen population

genomic investigations and help identify spatial, temporal, and environmental factors associated

with differing selective regimes or demographic histories. Nevertheless, approaches for quantifying

marine landscapes are complicated. Characteristic features of the marine environment, including pe-

lagic living in flowing water (experienced by most marine taxa at some point in their life cycle), re-

quire a well-designed spatial-temporal sampling strategy and analysis. Many genetic summary

statistics used to describe populations may be inappropriate for marine species with large population

sizes, large species ranges, stochastic recruitment, and asymmetrical gene flow. Finally, statistical

approaches for testing associations between seascapes and population genomic patterns are still

maturing with no single approach able to capture all relevant considerations. None of these issues

are completely unique to marine systems and therefore similar issues and solutions will be shared

for many organisms regardless of habitat. Here, we outline goals and spatial approaches for land-

scape genomics with an emphasis on marine systems and review the growing empirical literature on

seascape genomics. We review established tools and approaches and highlight promising new stra-

tegies to overcome select issues including a strategy to spatially optimize sampling. Despite the

many challenges, we argue that marine systems may be especially well suited for identifying candi-

date genomic regions under environmentally mediated selection and that seascape genomic

approaches are especially useful for identifying robust locus-by-environment associations.

Key words: adaptation, genetic–environment association, landscape, oceanography, population genomics, remote sensing,

seascape genetics.

VC The Author (2016). Published by Oxford University Press. 581
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Current Zoology, 2016, 62(6), 581–601

doi: 10.1093/cz/zow067

Advance Access Publication Date: 6 July 2016

Article

http://www.oxfordjournals.org/


Landscape Genomics in the Sea

Previously formidable questions regarding evolutionary and ecolo-

gical processes in natural populations are quickly becoming tract-

able thanks to genotyping enabled by massively parallel sequencing

technologies (MPS, i.e., next-generation sequencing) (Davey and

Blaxter 2011). In particular, signatures of selection can now be eval-

uated in populations across entire genomes, allowing investigators

to ask questions about how environmental factors influence selective

and neutral genomic diversity within and among natural popula-

tions. By borrowing from the fields of landscape ecology, remote

sensing, and oceanography, many abiotic factors can also be quanti-

fied across relevant spatial scales to describe land or seascape attri-

butes and used to predict intraspecific genomic diversity. These

spatially explicit population genomic investigations are the natural

extensions of landscape (Manel et al. 2003; Balkenhol and Cushman

2015) and seascape genetics (Selkoe et al. 2008; Riginos and Liggins

2013; Selkoe et al. 2015, 2016). Here, we define landscape genomics

as studies that use landscape composition and configuration as

statistical predictors of population genomic patterns (as in

Balkenhol and Cushman 2015), such that landscape genomics might

be considered a specialized subdiscipline of population genomics

(Dyer 2015). We consider landscape genomics to refer to any habi-

tat, not exclusively terrestrial, whereas seascape genomics is the sub-

category of landscape genomics in the marine setting. For marine

taxa, clearly ocean currents are important aspects of the seascape

(Selkoe et al. 2008; Liggins et al. 2013; Selkoe et al. 2015) along

with other spatial factors such as habitat configuration (Riginos and

Liggins 2013) and strong environmental gradients (Schmidt et al.

2008; Selkoe et al. 2016).

Quantifying compositions and configurations of landscapes en-

ables the discovery of spatial, temporal, and environmental factors

associated with local adaptation and differing demographic histories

(Manel et al. 2010). It is well appreciated that correlations between

geographic features and allele frequencies of specific loci can reveal

candidate adaptive loci (a “bottoms up” approach: Barrett and

Hoekstra 2011). But such correlations can also uncover ecological

features that are candidates for causing locus-specific selection

(Rellstab et al. 2015). Furthermore, spatial correlations between

landscape variables and genome-wide variation can identify which

landscape variables influence overall structuring of genetic variation

(sensu Meirmans 2015), which are likely to delineate evolutionarily

distinct groups. In addition to exploratory investigations, explicit

and quantifiable geographic predictors can be used to test a priori

hypotheses. For example, functional assays or quantitative trait

locus mapping might predict environmentally mediated selection on

a given locus so that demonstrating a locus-by-environment associ-

ation would provide an independent test of that prediction. Spatially

explicit landscape variables can similarly be used to reframe trad-

itional questions from population genetics and phylogeography in

terms of testable hypotheses, such as evaluating the permeability of

barriers to gene flow (Treml et al. 2015).

Many population genomic studies include the goal of examining

loci under spatially variable selection, and the marine context offers

several distinct advantages for empirical investigations of how selec-

tion operates in natural populations. A striking aspect of coastlines

in particular is the abundance of strong environmental features such

as intertidal zonation, embayments, estuaries, and freshwater out-

flows (Schmidt et al. 2008; Selkoe et al. 2016). These are landscapes

that lend themselves to sampling paired and environmentally con-

trasting locations at a fine scale, greatly enhancing the statistical

power to detect loci structured across environmental gradients. In

addition, because of their large effective population sizes, marine

species may be especially capable of responding to environmental

changes via natural selection. The efficacy of selection scales with

Ne and therefore strong selection could be characteristic of many

marine species (Allendorf et al. 2010; Gagnaire et al. 2015; Bierne

2016). Large effective population sizes potentially combined with

high capacity for gene flow create a situation in which repeated

adaptations from standing variation appears likely (as in Colosimo

et al. 2005) although adaptation via recurrent mutations and/or dif-

fering polygenic combinations are also probable (Gagnaire and

Gaggiotti 2016). The spatial context of adaptive polymorphisms can

yield insights regarding the sources of selection so that careful spa-

tial sampling design should be an integral component of geographic

adaptation studies.

Although landscape genetic and genomics research is well under-

way in terrestrial settings (see case studies and reviews in Balkenhol

et al. 2015) the uptake of spatially explicit seascape information has

generally been slow for marine genetic studies (Riginos and Liggins

2013; Selkoe et al. 2015). The considerations for undertaking sea-

scape genomic investigations are considerable as the interdisciplin-

ary nature of the enterprise relies on tools from spatial ecology and

oceanography along with genomics. In this review, we first identify

attributes that make seascape genomics distinct from much of terres-

trial landscape genomics. Of course these issues will be shared with

some taxa from other habitats (e.g., asymmetric flows in rivers and

wind pollinated plants) but are routinely encountered among marine

organisms. We describe commonly used tools and approaches for

accommodating these “challenges”, which are delineated by (1) spa-

tial predictors, (2) genetic response variables, and (3) statistical

approaches assessing the response variables in light of the pre-

dictors; this tripartite structure aligns with the three core attributes

of seascape genomic studies under our operational definition

(matching in Balkenhol and Cushman 2015). We then highlight the

few examples of published seascape genomic studies to date and de-

scribe how these studies have approached the three core aspects of

seascape genomic inference. We also discuss how the emerging re-

sults across studies inform our understanding of which spatial fac-

tors are important predictors of genetic structuring and evaluate the

evidence for adaptation from standing genetic variation. Finally, we

propose specific experimental design strategies for efficiently sam-

pling (using a case study of Atlantic Europe), and we suggest some

promising new directions for the field.

Three Notable Challenges for Seascape
Genomics

Quantifying the “sea”scape
Spatial genomic approaches seek to quantify the influence of several

landscape properties on genomic patterns, such as i) habitat suitabili-

ty and composition (i.e., environmental and ecological attributes of a

population’s location), ii) habitat configuration (i.e., relative place-

ment of given habitat relative to other suitable habitat patches), iii)

“matrix” characteristics (i.e., the traversability or cost of dispersing

or migrating between habitat patches), and iv) the spatial (and tem-

poral) scale of these attributes (i.e., to what distance are environmen-

tal parameters influencing populations or individuals and what

geographic and temporal extent is appropriate for the question).

To progress in this multidisciplinary arena, clear and precise spa-

tial terminology is important to avoid misinterpretation and misuse.

Although others have provided spatial ecological glossaries related
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to landscape genetics (Storfer et al. 2007), several key concepts are

revisited here and illustrated in Figure 1: scale, autocorrelation, isot-

ropy, stationarity, and collinearity. The spatial and temporal scale

of the data (or sampling) consists of two aspects, the size of the

study area or extent and the resolution of sampling or grain. In prac-

tice, these spatial aspects of a study should be articulated. For ex-

ample, in a recent study, Saenz-Agudelo et al. (2015) set their extent

based on the entire geographic range size of the focal anemonefish,

the seascape consisting of the Red Sea and Arabian Sea, and used an

implicit grain size of 4 km (9-year mean) based on the available

satellite data for their environmental variables of interest. Ideally, a

genomic sampling strategy should be well aligned with the grain size

(e.g., determining the location and proximity of populations or indi-

viduals) and extent (e.g., determining appropriate study area) of the

environmental data. Unfortunately, there is inconsistency in how the

remote sensing, geography, and ecological communities use the

terms “large” and “small”, therefore we adopt the scale modifiers

fine and broad to specify whether scale is in reference to a small area
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Figure 1. Key concepts relevant to the properties of spatial and environmental variables used in seascape genomic analyses. These properties should be con-

sidered during the project design as they will influence which variables and what representative values of variables may be used. Moreover, these properties will

help determine what methods are appropriate for analysis. The figure displays examples of the concepts in geographic space and their manifestations in analyt-

ical space. Points in the geographic space depict the location of sampling, and dashed lines represent a transect (Anisotropy, Example 1 only).
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with greater detail or a large area with lower resolution, respectively

(Turner and Gardner 2015). Spatial (and temporal) autocorrelation

or dependence describes the common consequence of geographic

(temporal) proximity on environmental and ecological phenomena:

“near things are more related than distant things” (Tobler 1970).

This often results in a lack of independence of data at nearby loca-

tions (Dale and Fortin 2014), obviously violating the independence

assumptions in parametric statistics. The common pattern of isola-

tion by distance is a manifestation of spatial autocorrelation com-

monly observed in population genetic data. Furthermore, this

autocorrelation or non-independence may not be equal in all direc-

tions (isotropic), resulting in directionality in the patterns, or aniso-

tropic spatial patterns. For example, asymmetric winds and ocean

currents may result in more individuals dispersing downstream (e.g.,

east to west along equatorial currents) than across-stream, resulting

in an elongated, or anisotropic, dispersal kernel. In fact, most envir-

onmental data, such as temperature, salinity, and productivity,

show anisotropic patterns and may strongly influence the spatial

genomic patterns we observe across many marine and terrestrial or-

ganisms. The concept of stationarity is also of particular interest and

refers to the property whereby the underlying process generating a

pattern does not change in space or time (i.e., the modeled relation-

ship or response remains constant). Unfortunately, dynamic envir-

onmental and ecological processes (such as, seasonal currents and

temperature, recruitment patterns) are rarely stationary. Stationarity

is largely scale-dependent, a property required to extrapolate from

sampled locations to unsampled sites, and an important assumption

for many spatial statistics. Finally, collinearity refers to the non-

independence of predictor variables and is a common characteristic

of spatial ecological and environmental data. In marine systems,

common examples of collinearity among data layers include latitude

with mean annual temperature, and depth with distance from coast-

line. Collinearity may lead to problems in parameter estimation in

regression-based analyses, making interpretation difficult (Dormann

et al. 2013; Prunier et al. 2015). Text Box 1 along with Figures 2

and 3 and Table 1 describe spatial environmental characteristics for

Atlantic European coastlines as an example to illustrate these

phenomena.

We focus here on five key issues for describing spatial attributes

of seascape environments that accompany the aforementioned

general concerns for analyzing any spatial data. First, the strong

asymmetric physical flows and dynamics that dominate this fluid en-

vironment (like riverine systems) exacerbate all the spatial chal-

lenges highlighted previously. Although physical flows in terrestrial

systems (including, winds, elevation gradients) can influence gen-

omic patterns, the extent, strength, and ubiquity of asymmetry in

marine systems are striking. The spatial-temporal patterns and scale

of autocorrelation (or variability) and anisotropy, in particular, are

largely tied to the dynamics of the physical environment (Figure 1).

Second, these asymmetric dynamics resulting in anisotropic patterns

lead to inherent non-stationarity (Dale and Fortin 2014), particu-

larly as the study extent increases or grain becomes finer. Third, the

vast and continuous extent of the marine environment, in itself, pre-

sents challenges for study design (study extent and sampling design)

and for justifying a priori population structure or barriers to migra-

tion and gene flow. Environmental and genetic sampling in the

Text Box 1. Quantifying the seascape in the Northeast Atlantic

To illustrate the challenges of quantifying the spatial attributes of seascapes, we focus on the Northeast Atlantic, including the North

and Baltic Seas of northern Europe. This region has been the recent focus of considerable seascape genomic research investigating the

environmental drivers of allele frequencies (Table 3). Here, we combine a number of commonly used seascape factors (e.g., sea sur-

face temperature, salinity, depth, and net primary productivity) with other potential drivers of genetic diversity, including a thermal

stress metric and a novel proxy for Pleistocene habitat stability (all listed in Table 1; detailed spatial methods are included in the

appendix). The mean thermal stress frequency (TSF) was derived from a temperature anomaly database (Selig et al. 2010) and repre-

sents the long-term mean frequency at which weekly temperatures exceed the climatological mean by more than 1 degree C in the

previous 52 weeks. The Pleistocene habitat suitability layer (PLEIS) simplistically represents the proportion (0 to 1) of the surround-

ing seascape that remained submerged for the majority of the time during the Pleistocene (2.6 million to 11,700 years ago), based on

the sea level models of Voris (2000). For many benthic-associated taxa (e.g., cod, turbot, sole, hake, and many benthic invertebrates)

this habitat suitability layer may identify regions of the seascape that functioned as stable refugia during this time of sea level

changes. High values (close to 1) in this layer are places where the vast majority of the surrounding benthic environment (100 km ra-

dius) is at a depth of 50 to 250 meters.

These eight environmental layers along with their first and second principal components are mapped and presented in Figure 2.

Collinearity among multiple environmental variables can be accommodated by reducing them down to two (or more) principal com-

ponents (i.e., PCA analysis). Summarising the data using a biplot (Figure 3) highlights uncorrelated environmental variables as per-

pendicular vectors (as with SSS and PLEIS). For variables that are highly collinear for a given landscape, it may be difficult to estab-

lish statistical genetic associations with either variable in isolation; for example, a locus that is statistically associated with sdSST will

also have a statistical association with sdNPP. This collinearity in environmental data may be minimised with a strategic sampling de-

sign (Text Box 2). Spatial autocorrelation across many of the layers is visually apparent in that proximate locations tend to have simi-

lar values resulting in a ‘smooth’ appearance. The degree of this spatial autocorrelation was quantified using the Moran’s I measure

(Table 1), whereby a maximal value close toþ1 for a given distance class indicates that all values within this range are very similar.

The majority of environmental layers are highly autocorrelated (I>0.70) at distances less than 25 km, with this correlation dropping

at increased distances (Table 1). Generally, this would support a spatial sampling strategy across the seascape where sample sites are

located at more than 50 km apart to minimise spatial autocorrelation within layers. See Text Box 2 for sampling strategies to minim-

ise confounding spatial factors and maximise the likelihood for quantifying genetic environment associations within complex

seascapes.
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marine environment, the fourth key issue, is more physically and

technically difficult, more costly, and more susceptible to errors

compared with most terrestrial and freshwater systems. As a result,

the majority of genetic and genomic studies in the marine environ-

ment are confined to the nearshore and near-surface periphery of

the oceans. Indeed, with our strong dependency on data derived

from remote sensing products (Table 2), oceanographic models, in

situ instrumentation, and shipboard measurements, our understand-

ing and quantification of the oceans are equally focused on this

periphery. Finally, the fifth key issue of seascape genomic work re-

lates to the common two-phase life histories of marine organisms

and the two important, yet often quite different, spatial scales of

influence. Although the importance of fine-scale habitat characteris-

tics and demographics are well recognized in the literature, the influ-

ence of the broad-scale intervening and heterogeneous environment

(i.e., the “matrix”) is often ignored or oversimplified (for instance,

distance-based measures used as a proxy for dispersal through the

matrix). The dispersing larvae of many marine taxa are underdevel-

oped (small, limited sensory systems, limited mobility) and spend

some time adrift or traversing this dynamic and heterogeneous ma-

trix where their condition, location, and downstream influence on

genomic patterns are strongly influenced by the broad-scale (yet fine

grained) environmental setting—characterizing the path of these dis-

persing larvae is a key goal of “connectivity” modeling (Kool et al.

2013).

To address these aforementioned issues, biophysical modeling

(i.e., simulation models that combine oceanographic data with bio-

logical attributes) can provide predictions about dispersal that are

specific to the location and species (Treml et al. 2012, 2015; Kool

et al. 2013; Liggins et al. 2013). It is important to keep in mind,

however, that such models are essentially detailed hypotheses about

movement and should be evaluated against other predictors of dis-

persal (such as overwater distance (OWD), least cost paths (LCPs),

etc.). Furthermore, biophysical models (and other predictors of dis-

persal) will typically only model the dispersal trajectory of an

SST sdSST 

TSF SSS 

NPP sdNPP 

BATH PLEIS 

PC1 PC2 

Figure 2. Spatial patterns in environmental variables of Atlantic European

coastal waters. Eight select coastal seascape variables are shown including

mean sea surface temperature (SST), standard deviation of sea surface tem-

perature (sdSST), mean thermal stress frequency (TSF), mean sea surface

salinity (SSS), mean net primary productivity (NPP), standard deviation of net

primary productivity (sdNPP), bathymetry (BATH), and Pleistocene habitat

suitability (PLEIS). In addition, the values for principal components 1 and 2

describing the eight coastal variables are also shown. PC1 and PC2 account

for 47.1% and 17.9% of the variance among variables, respectively.
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Figure 3. Biplot indicating PCA-based loadings of European seascape vari-

ables. PCA results showing environmental variables (vectors) plotted onto

PC1 and PC2 from 10,000 randomly selected points in the seascape.
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Table 1. Descriptive statistics for eight select seascape variables for the northeast Atlantic region

Moran’s I by distance (km)a

Layer Abbrev Min Max Mean Standard

deviation

Units 25 50 100 200 500 Data source

Mean sea surface

temperature

SST 2.197 19.859 10.600 2.916 �C 0.66 0.60 0.50 0.39 0.26 NOAA

Standard deviation

of sea surface

temperature

sdSST 1.201 8.211 3.587 1.595 �C 0.74 0.69 0.63 0.58 0.47 NOAA

Mean thermal stress

frequency

TSF 0.00 22.00 1.10 0.84 freqencyb 0.45 0.39 0.30 0.23 0.15 CoRTAD

Mean sea surface

salinity

SSS 2.108 36.524 29.928 10.607 unitlessc 0.72 0.64 0.57 0.51 0.37 World Ocean

Atlas 2013 v2

Mean net primary

productivity

NPP 478 12,788 2,063 1697 C m�2 day�1 0.73 0.62 0.52 0.44 0.35 Ocean

Productivity

web

Standard deviation

of net primary

productivity

sdNPP 276 15,945 3,521 3,080 C m�2 day�2 0.76 0.67 0.59 0.52 0.39 Ocean

Productivity

web

Bathymetry BATH �5,029 839 �266 654 Metres 0.86 0.71 0.45 0.30 0.17 ETOPO1

Habitat exposure

during Pleistocene

low sea level

stands

PLEIS 0.000 1.000 0.398 0.297 unitlessc 1.00 0.99 0.98 0.87 0.35 Derived from

ETOPO1

aMoran’s I is a measure of spatial autocorrelation and can range from �1 (complete negative spatial autocorrelation) toþ1 (complete positive spatial autocorrel-

ation). Values were estimated from 10,000 random points and values above 0.70 (high spatial autocorrelation) are in bold.
bMean frequency of thermal stress anomalies� 1 �C over the previous 52 weeks.
cSSS: g/kg seawater; PLEIS: proportion.

Table 2. Seascape properties and sample data sources useful for marine population genomic investigations

Parameters Source URL

Latitude & Longitude World Geodetic System 1984 (used for the Global

Positioning System, GPS, satellite navigation

systems)

http://earth-info.nga.mil/GandG/publications/

tr8350.2/tr8350_2.html

Latitude & Longitude ESRI ArcGIS Basemaps https://www.arcgis.com/home/item.html?id¼f11

bcdc5d484400fa926dcce68de3df7

Shoreline representation GSHHG—A Global Self-consistent, Hierarchical,

High-resolution Geography Database

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html

Bathymetry and topography ETOPO1 integrated topography and bathymetry

product

http://www.ngdc.noaa.gov/mgg/global/global.html

Seafloor topography Scripps Institute, UC San Diego http://topex.ucsd.edu/WWW_html/mar_topo.html

Global distribution of coral reefs UNEP WCMC http://data.unep-wcmc.org/datasets/1

Ocean currents HYCOM http://hycom.org/dataserver/

Ocean temperature The Group for High Resolution Sea Surface

Temperature (GHRSST)

https://www.ghrsst.org/

Ocean temperature and derivatives NASA Earth Observations (NEO) http://neo.sci.gsfc.nasa.gov/view.php?datasetId¼
AVHRR_SST_M

Ocean temperature World Ocean Atlas 2013 version 2 https://www.nodc.noaa.gov/OC5/woa13/

Ocean temperature and derivatives The Coral Reef Temperature Anomaly Database

(CoRTAD)

http://www.nodc.noaa.gov/sog/cortad/

Sea surface salinity NASA Earth Observations (NEO) http://neo.sci.gsfc.nasa.gov/view.php?datasetId¼
AQUARIUS_SSS_M

Sea surface salinity World Ocean Atlas 2013 version 2 https://www.nodc.noaa.gov/OC5/woa13/

Surface photosynthetically

active radiation (PAR)

NASA MODIS satellite http://modis.gsfc.nasa.gov/data/dataprod/par.php

Chlorophyll a NASA Earth Observations (NEO) http://neo.sci.gsfc.nasa.gov/view.php?datasetId¼
MY1DMM_CHLORA

Future climate scenarios NCAR’s GIS Program Climate Change Scenarios

GIS data portal

https://gisclimatechange.ucar.edu/

Human population density NASA Socioecomonic Data and Applications

Center (SEDAC)

http://sedac.ciesin.columbia.edu/data/set/gpw-v3-

population-density/

Note: Depending on a study’s objectives, appropriate measures might include means, minimums, maximums, or variance of some parameters.
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organism and will not include environmental variables that influ-

ence subsequent survival and reproduction. In marine systems, larval

settlement and recruitment is a period of particularly high mortality

that undoubtedly influences genetic patterns across the seascape (see

Treml et al. 2015 for an extended discussion). Thus, predictors of

dispersal need to be evaluated alongside other relevant hypotheses.

As a common goal of many population genomic studies is to

identify or corroborate genetic–environment associations, it is also

important to recognize that the environmental differences between

locations are multifarious and thus once candidate loci are un-

covered other methodologies will be required to fully demonstrate a

functional relationship between a specific selective agent and locus-

specific selection. At broad scales there is vastly different structure

in gradients and patterns between environmental variables (e.g.,

compare sea surface temperature (SST) to TSF, Figure 2). As a re-

sult, any associations between environmental predictors and gen-

omic structure quantified in one region may not be transferable to

other regions of the seascape. However, the relatively modest level

of collinearity among marine environmental data (at least for

Europe: Figure 3 and also correlation matrices in Table A2) suggests

that identifying individual environmental predictors in locus-by-

environment associations should often be possible.

Describing marine metapopulation structure using

genomic data
Direct observations of pelagic animals are fleeting and essentially

impossible for planktonic larvae. Thus, population genetic method-

ologies have long been employed with the goal of inferring metapo-

pulation dynamics in marine species. However, most pelagically

dispersing marine species have large ranges, large census sizes, high

levels of dispersal among subpopulations, and life-history strategies

to cope with the stochasticity of the marine environment. This com-

bination of metapopulation characteristics gives rise to four theoret-

ical problems for the inference of marine population structure,

particularly when relying on methods based on conventional popu-

lation genetic models (see also extended discussions in Whitlock and

McCauley 1999; Waples and Gaggiotti 2006; Faurby and Barber

2012; Palumbi and Pinsky 2013; Gagnaire et al. 2015; Gagnaire and

Gaggiotti 2016). First, high levels of gene flow among subpopula-

tions lead naturally to low differentiation that often cannot be statis-

tically distinguished from zero (Waples 1998). Second, these

metapopulation characteristics also translate into large global effect-

ive population sizes (i.e., weak genetic drift) that contribute to high

global genetic diversities, which in turn can greatly decrease the

maximum differentiation value for markers with more than two al-

leles (e.g., microsatellites; reviewed in Meirmans and Hedrick

2011). Third, weak genetic drift with migration slows the approach

to equilibrium such that historical and contemporary gene flows are

difficult to distinguish (Slatkin 1985; Marko and Hart 2011). Non-

equilibrium processes of special concern include asymmetric or

source-sink dynamics and range expansions, often mediated by the

strong physical flows. Finally, at fine scales, geographically incon-

sistent (or chaotic) patterns of genetic structure have often been

attributed to patchy temporal variation in the source of larval re-

cruitment and variance in reproductive success (Johnson and Black

1984; Hedgecock 1994; Eldon et al. 2016). As a consequence, the

seemingly basic problem of delimiting subpopulations and charac-

terizing metapopulation structure has remained largely unsolved in

the marine realm (Waples and Gaggiotti 2006; Gagnaire et al.

2015).

Although landscape genetic studies have focused predominantly

on genome averaged FST or genetic distance estimates between pairs

of populations (or individuals), other summary statistics can be

used. They include measures of site-specific population diversity

(Liggins et al. 2013; Wagner and Fortin 2015), group membership

from clustering or assignment methods (François and Waits 2015),

measures of nestedness in terms of genetic composition (Ulrich et al.

2009; Liggins et al. 2015), or even allele frequencies and individual

genotypes. Some genetic distance estimates can accommodate the in-

herent non-independence of pairwise measures. For example, condi-

tional genetic distance (Dyer et al. 2010) measures the co-variance

among all population pairs that is independent of the co-variance

they have with all other sampled populations. Nonetheless, this fre-

quent reliance on genetic distance measures to implicitly draw con-

clusions about gene flow is problematic as FST and genetic distances

are affected by many factors other than gene flow (Whitlock and

McCauley 1999; Marko and Hart 2011). In principal, gene flow can

be inferred to yield directional estimates of population relationships

by assignment tests or coalescent models, however, in practice esti-

mates of gene flow are rarely included in seascape genetic or

genomic studies (Riginos and Liggins 2013 and Table 3). Although

advances in genotyping technology promise to resolve subtle genetic

structure, methods to measure genetic structure and gene flow that

are coupled with flexible underlying metapopulation models will

also be crucial.

Other practical issues involve the bioinformatic methods

required to pre-process MPS data. For marine species, high levels of

polymorphism are common (another manifestation of large effective

population sizes). When no reference genome is available, this vari-

ability can pose difficulties for clustering orthologous loci and subse-

quent identification of Single Nucleotide Polymorphism (SNP)

variation. For example, bioinformatic pipelines that do not expli-

citly handle indels with an alignment algorithm can erroneously split

reads from the same locus into multiple clusters (Puritz et al. 2014;

Mastretta Yanes et al. 2015). Conversely, alignment-based cluster-

ing approaches (e.g., Eaton 2014) when used with a higher cluster-

ing threshold to account for higher variation and indels are

inherently more prone to falsely joining paralogs as orthologs. In

restriction-enzyme-based approaches (Andrews et al. 2016) null al-

leles can be common for marine species due to polymorphisms in re-

striction sites (as in Ravinet et al. 2016). Furthermore, marine

species are less likely to have additional genetic resources, such as

linkage maps so that physical relationships among contigs are gener-

ally unknown. See Willette et al. (2014) for a more complete discus-

sion of the use of a variety of MPS methods in marine systems.

In summary, complications for both acquiring robust genomic

data and using such data to describe underlying metapopulation dy-

namics persist. Moreover, as inferred metapopulation dynamics are

often used to inform the null expectation for neutral loci from which

locus-specific evidence for natural selection is extrapolated, these

complications will also impinge on investigators’ ability to detect

loci under selection and locus-by-environment relationships.

Statistical links between seascapes and genomes
A key goal for spatial genomic studies is to simultaneously evaluate

the effects of multiple landscape attributes including environmental

gradients, habitat configurations, and matrix characteristics on gen-

etic patterns (see Riginos and Liggins 2013 for a full discussion of

relevant marine spatial variables and Table 3 here for examples

from recent studies). Although clustering methods (including assign-

ment tests) and ordinations based on genotypes alone (such as

Riginos et al.�Navigating the currents of seascape genomics 587
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ü
n
th

er
a
n
d

C
o
o
p

2
0
1
3
);

G
E

S
T

E
(F

o
ll

a
n
d

G
a
g
g
io

tt
i
2
0
0
6
);

G
L

M
is

a
g
en

er
a
l
li
n
ea

r
m

o
d
el

;
S
A

M
/
m

a
tS

A
M

(J
o
o
st

et
a
l.

2
0
0
8
).

c tS
N

P
s:

T
ra

n
sc

ri
p
to

m
e-

d
er

iv
ed

S
N

P
s;

g
l
M

sa
ts

:
g
en

e
li
n
k
ed

m
ic

ro
sa

te
ll
it

es
.

In
p
a
re

n
th

es
es

is
th

e
n
u
m

b
er

o
f

lo
ci

in
cl

u
d
ed

in
a
n
a
ly

se
s

(p
o
st

fi
lt

er
in

g
);

if
st

u
d
y

in
cl

u
d
es

b
o
th

g
en

e
li
n
k
ed

lo
ci

a
n
d

n
o
n
-g

en
e

li
n
k
ed

lo
ci

th
en

2
n
u
m

b
er

s
a
re

re
p
o
rt

ed
,
re

sp
ec

ti
v
el

y
.

d
B

a
y
E

n
v

is
th

e
m

et
h
o
d

o
f

C
o
o
p

et
a
l.

(2
0
1
0
);

B
a
y
eS

ca
n

is
th

e
m

et
h
o
d

o
f

F
o
ll

a
n
d

G
a
g
g
io

tt
i

(2
0
0
8
);

D
et

S
el

is
fr

o
m

th
e

m
et

h
o
d

o
f

V
it

a
li
s

et
a
l.

(2
0
0
3
);

F
d
is

t
is

th
e

m
et

h
o
d

o
f

B
ea

u
m

o
n
t

a
n
d

N
ic

o
ls

(1
9
9
6
)

re
g
a
rd

le
ss

o
f

w
h
ic

h
p
ro

g
ra

m

w
a
s

u
se

d
fo

r
th

e
a
n
a
ly

si
s;

L
F
M

M
is

b
a
se

d
o
n

th
e

m
et

h
o
d

o
f

F
ri

ch
o
t

et
a
l.

(2
0
1
3
)

;
da

di
is

th
e

m
et

h
o
d

o
f

G
u
te

n
k
u
n
st

et
a
l.

(2
0
0
9
).

e A
s

d
efi

n
ed

b
y

a
u
th

o
rs

.

590 Current Zoology, 2016, Vol. 62, No. 6



principal components analysis, PCA) are useful for describing rela-

tionships among individuals and often for discovering emergent spa-

tial patterns, we focus here on methods that support hypothesis

testing: whether hypotheses are couched in terms of landscape attri-

butes predicting genetic patterns for a) select loci (i.e., outliers that

are putatively under environmentally mediated selection); b) sets of

loci in the case of polygenic adaptation; or c) average patterns across

all or most loci. If each genotyped locus is considered as an observa-

tion of evolutionary processes then genomic investigations can po-

tentially have thousands (or more) response variables. Landscape

variables can also be numerous (Table 2), thus spatial genomic ana-

lyses routinely encompass multiple predictive and response vari-

ables. Sets of variables are likely to be collinear and non-stationary,

for example, population densities (and by association, Ne) differing

across a species’ range either spatially or temporally (see Eldon et al.

2016) would be examples of non-stationarity (and discussed for spa-

tial variables in “Quantifying the ‘sea’scape”). Historical relation-

ships also lead to spatial non-independence among genetic loci

(Stone et al. 2011). Therefore, ascribing one-to-one (landscape

attribute-to-locus) relationships may be impossible in many circum-

stances. Taking all these issues into consideration, it is hardly sur-

prising that the question of how to robustly demonstrate statistical

associations between spatial and genetic variables is a topic of lively

debate and discussion. Here, we briefly discuss some of the com-

monly utilized empirical approaches, especially in light of the afore-

mentioned issues, and refer to topic-specific reviews for further

reading. Overall there are no universally superior methods and in-

vestigators need to consider whether the strengths and limitations of

a given approach are appropriate given their aims and study system.

Because population genomic studies typically seek to uncover

and describe the action of natural selection, most studies will try to

identify loci that are candidates for carrying a strong imprint of se-

lection. The goal then may be to examine these putatively selected

loci further and/or to remove such loci from analyses whose aim

is to infer historical relationships and gene flow (see Table 3 for

examples of such approaches in seascape genomic studies). In par-

ticular, outlier methods identify loci with anomalous allele fre-

quency changes among populations and subsequently such outlier

loci are considered as candidates for selection (see recent reviews by

Lotterhos and Whitlock 2014; de Villemereuil et al. 2014; Lotterhos

and Whitlock 2015; Gagnaire and Gaggiotti 2016). Some methods

specifically look for outliers in reference to spatial variables such as

environmental gradients in line with the expectation that such gradi-

ents may promote local adaptation at selected loci (reviewed by

Rellstab et al. 2015). Most of these environmental association

approaches are presently limited to the evaluation of a single spatial

variable at a time (i.e., BayEnv: Günther and Coop 2013; LEA:

Frichot et al. 2013; BayeScEnv: de Villemereuil and Gaggiotti

2015). This limitation will lead to spurious correlations when there

is collinearity among spatial variables. One solution for using outlier

detection methods with multiple spatial variables is to summarize

the common features of the spatial variables as orthogonal principal

components (PCs) (illustrated with case study in Text Box 1) and

undertake outlier analyses using PCs as single spatial predictor vari-

ables (de Villemereuil and Gaggiotti 2015). Specific methods differ

in their sensitivities to spatial correlation structures such as isolation

by distance, range expansions, and hierarchical population structure

(Lotterhos and Whitlock 2014; de Villemereuil et al. 2014;

Whitlock and Lotterhos 2015; Frichot et al. 2015; Gagnaire and

Gaggiotti 2016). To our knowledge there has been no formal

examination of how asymmetric gene flow could bias outlier

detection methods, although range expansions are also directional and

therefore it seems likely that asymmetric gene flow could be an import-

ant source of bias. Thus, pragmatically an investigator should consider

the most likely scenario of population structure and choose outlier de-

tection methods appropriate for that scenario, with joint consideration

of multiple methods advisable (de Villemereuil et al. 2014).

Outlier methods are not well suited to identifying genotypes

with small effects on fitness and since phenotypes are often affected

by many loci (i.e., polygenic), outlier detection methods may over-

look many selected loci. We refer readers to Gagnaire and Gaggiotti

(2016) in this same issue for a detailed discussion of polygenic selec-

tion in marine populations and de Villemereuil et al. (2014) for com-

parisons of specific outlier detection methods under various

scenarios of population structure. Of particular interest in the con-

text of landscape genomics are methods to detect polygenic selection

using multivariate statistics, which can describe relationships among

multiple predictive variables and multiple response variables, such

as multiple spatial variables and sets of loci. For example, Bourret

et al. (2014) used canonical discriminant analysis and general linear

models to partition differentiation among salmon based on river

sampling location, life stage, and cohort year. Thus, multiple pre-

dictors were tested for associations with multiple loci; this approach

could be modified to include multiple spatial variables.

Once outlier or other potentially selected loci are identified, a

common strategy for analysis is to focus on putatively neutral loci or

distinct sets of neutral and outlier loci (examples in Table 3). Often

summary statistics of multiple genetic loci, such as average FST, are

used to reduce the dimensionality of the response data. Such

genome-wide averages are then used to describe relationships be-

tween populations and individuals (see Guillot et al. 2009 and

Wagner and Fortin 2015 for extensive discussions, and Liggins et al.

2013 for a marine perspective). This strategy is aligned with popula-

tion genetic analyses using less numerous loci (e.g., microsatellites,

allozymes, DNA sequences). Most often, sampled locations and

populations (or individuals) are implicitly considered as independent

observations and multiple regression types of methods are invoked

for hypothesis testing using pairwise FST estimates (or genetic dis-

tances) as the dependent variable. The problems arising from non-

independence are most evident in describing relationships between

locations using such pairwise population metrics in that allele fre-

quencies from each location contribute to multiple observations.

Historically, Mantel or partial Mantel tests (Smouse et al. 1986)

have been used most frequently to test significance between the pre-

dictive variable(s) and genetic summary statistics, using permutation

to overcome the assumed non-independence among observations

(i.e., population pairs). However, Mantel tests are prone to false

positives and are not appropriate when there is high spatial autocor-

relation among many samples (discussed by Guillot and Rousset

2013; Legendre et al. 2015). Other multiple regression type methods

have been suggested for assessing multiple spatial variables, includ-

ing standard multiple regression (Spear et al. 2005), multiple regres-

sion on distance matrices (Legendre et al. 1994), linear mixed

models (Pavlacky et al. 2009; Dudaniec et al. 2013), and multivari-

ate analyses with constrained ordinations (discussed further below).

Generalized dissimilarity modeling and decision trees could be use-

ful alternatives to regression type methods (Thomassen et al. 2010).

In general, procedures accommodating correlated error structures

and model selection often differ across studies and further develop-

ment in this topic is needed (Guillot and Rousset 2013).

Of the regression type statistics used in landscape genetics, multi-

variate methods are increasingly popular (see Borcard et al. 1992;
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Jombart et al. 2009; Manel et al. 2010; Wagner and Fortin 2015 for

detailed discussions of multivariate statistics in landscape genetics).

Multivariate statistics are commonly employed in spatial ecology

and have many useful properties in the context of landscape genetics

including flexibility in the types of input data, management of col-

linearity through ordination, and modifications to measure and ad-

dress autocorrelation. Multivariate methods typically use

constrained ordination to reduce the number of variables, with PCA

as a familiar ordination technique. For example, redundancy ana-

lysis (RDA) describes suites of associations between predictive and

response variables with ordination as a key step for reducing dimen-

sionality and describing collinearity. Allele frequencies of sampled

populations can serve as the observed variables themselves (allowing

many response variables) or principal coordinates analysis can be

used to decompose genetic distance matrices into orthogonal eigen-

vectors (distance-based RDA: Legendre and Anderson 1999) so that

dbRDA can be used to describe genome wide genetic structure.

Additionally tests of, and corrections for, spatial correlation struc-

tures can be accommodated within a multivariate framework such

as using Moran’s eigenvector maps (MEMs) (Borcard and Legendre

2002; Dray et al. 2006). Thus, because the theory for ecological spa-

tial analyses is well-developed, such multivariate methods can be

easily modified for landscape genomics. In the case of seascape gen-

omic studies, there is starting to be some uptake of multivariate

methods (Vandamme et al. 2014), yet Mantel tests are still com-

monly encountered (Table 3).

Standard multiple regression and multivariate methods (re-

viewed above) assume isotropy and stationarity, which are poorly

aligned with the presumed asymmetric larval dispersal and gene

flow driven by the ocean currents. Asymmetric eigenvector maps

modeling (Blanchet et al. 2008) is a technique for extending multi-

variate analysis for directional processes but has not yet been used in

a genetic context. An alternative to conventional statistical analyses

is to construct specific population genetic scenarios and use simula-

tions to yield predictions that can be compared against empirical

genetic data. Such models can be fully customized, using informa-

tion from oceanography, habitat configuration, and species’ early

life histories and can include directional vectors of migration and

differing population sizes (as in Crandall et al. 2012; Foster et al.

2012; Blanco-Bercial and Bucklin 2016). Although such integrated

model comparisons are well established in population genetics

(Knowles 2009), they are largely absent from the landscape genetic

literature. Such an approach could be especially useful in situations

where anisotropy or non-stationarity are likely, including asymmet-

rical gene flow and varying population sizes. In addition, expanding

simulation approaches to uncover outlier loci would have great util-

ity for landscape genomics. In summary, statistical and customized

model-based approaches that can both capture spatial properties

and genetic variation across thousands (or more) loci are sorely

needed in landscape genomics, with anisotropy an issue of key rele-

vancy for advancing genomic inferences in marine systems.

Findings from Empirical Seascape Genomic
Studies

To date, only a few studies strictly fall within the purview of seascape

genomics. We surveyed the literature for studies that used multiple

spatially explicit variables and genotyped populations or individuals

for a large number of loci (see the Appendix for detailed search meth-

ods). For inclusion in this review, the spatial analysis had to be more

sophisticated than a simple isolation by distance analysis or

qualitative examination of clustering (including assignment tests).

We did, however, retain studies that contrasted one habitat against

another in spatially paired comparisons. Studies employing amplified

fragment length polymorphism (AFLPs) or microsatellite loci were

not considered except if some of the loci were specifically selected

with an a priori expectation of being more likely to encompass tar-

gets of selection, such as studies that contrasted transcriptome

derived microsatellites versus anonymous microsatellites. Despite

using extremely permissive definitions of both seascapes and gen-

omics, we found a surprisingly low number of published studies with

only 16 studies that fit our criteria (Table 3). In this section, we de-

scribe common elements of published seascape genomic studies and

illustrate how spatial analyses can identify the seascape attributes

associated with selective and neutral genetic variation.

Favored seascapes, loci, and analyses
Most studies targeted northern Europe, especially the transition be-

tween the North Sea and Baltic Sea. By and large, spatial explana-

tory variables have been relatively simple with OWDs, mean SST,

and mean sea surface salinity (SSS) predominating. OWD measures,

which are basic LCP metrics, implicitly assume that all intervening

parts of a marine landscape are equally traversable, isotropic, and

are weighted by geographic distance alone. Biophysical models

(Cowen and Sponaugle 2009; Treml et al. 2012) attempt to quantify

dispersal probabilities and thus could be more biologically realistic

(Crandall et al. 2012) and such biophysical distances were included

among explanatory variables in a few studies (Table 3). For nektonic

species that can move against currents as adults, the intervening sea-

scape could also be explicitly quantified in other manners (using

habitat configurations, environmental attributes, etc.) to develop re-

sistance surfaces that may be more relevant to adult movement than

geographic distance alone. The only marine study to implement

such a habitat-based resistance approach used habitat suitability

modeling to yield an along-coast LCP distance between adult cod

populations and spawning grounds; the study showed that the

suitability-based distances were better than OWD in terms of pre-

dicting individual genotypes (Bonanomi et al. 2015) suggesting that

the predicted resistance captured attributes of the ocean environ-

ment that were more relevant to cod migration than distance alone.

Thus, there are substantial opportunities to consider more biologic-

ally relevant spatial explanatory variables and to quantify the habi-

tat and environmental matrix surrounding sampled locations.

Because a central goal of landscape genomics is to identify loci

showing strong associations with environmental features, one might

expect to find sampling designs include replicated environmental

features (Lotterhos and Whitlock 2015; Rellstab et al. 2015).

Furthermore, where multiple environmental factors are investigated,

sampling design should seek to minimize the collinearity among

those factors. Aside from studies using paired habitat contrasts

(Table 3: Nominal seascape variables) few studies reported purpose-

fully planning their sampling to capture replicated environmental

contrasts or examined correlations among spatial variables (with

Limborg et al. 2012 and Therkildsen et al. 2013 as exceptions).

Thus there is scope to increase power to detect genetic–environmen-

tal associations by considering the sampling design more carefully.

Another notable aspect of sampling was that population-level sam-

pling predominated in these evaluated studies in contrast to terres-

trial landscape genetics where individual-level approaches are

common (Dyer 2015).

The most commonly used genetic markers were targeted SNPs

typically designed from transcriptomic data and thus mostly in gene
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coding regions. Several studies similarly employed targeted micro-

satellites linked to gene coding regions. Only a few published studies

used MPS to obtain contig sequences and SNPs (such as ddRAD and

RADseq). Although some lag time is expected in the uptake of new

technologies, the penetrance of MPS methods for terrestrial taxa

suggests some possible additional impediment for marine studies.

These early seascape genomic studies have focused predominantly

on commercially fished species (cod, herring, hake, sole) that have

been the focus of substantial previous genetic research, especially

transcriptome sequencing, and for some, the focal loci were inte-

grated with linkage maps (e.g., cod, sole, sticklebacks). This slow

progress of using genomic approaches for non-model marine organ-

isms may well reflect their phylogenetic distance from the closest ref-

erence genome as well as the technical difficulties associated with

highly polymorphic marine species (as discussed previously).

In seeking to uncover statistical links between seascape features

and specific loci, outlier locus identification methods have been used

extensively, including methods that can include spatial variables

(Table 3). Most studies identify several such outlier loci (1–23% of

loci), matching percentages reported from terrestrial genomic stud-

ies. Given that many marine populations are likely to be hierarchic-

ally structured and out of migration-genetic drift equilibria, false

positives are a concern and perhaps prevalent (de Villemereuil et al.

2014; Lotterhos and Whitlock 2014). Some studies preliminarily

used non-spatial outlier tests, with the identified outlier loci then

tested for associations with environmental variables (Table 3);

nearly all such studies report statistical associations between the out-

lier loci and environmental variables. Although this two-step ana-

lysis should not necessarily be problematic, the high potential for

covariance among multiple spatial factors (including geographic dis-

tance) has been largely overlooked, weakening the correlative infer-

ence and the problem of false positives remains.

A few seascape genomic studies have implemented analyses

where multiple predictive variables are jointly evaluated. For ex-

ample, constrained ordination methods (RDA and partial RDA)

were used to estimate the influence of environmental variables on in-

dividual genotypes of turbot (Vandamme et al. 2014) and sole

(Diopere 2014). Environmental variables were considered in com-

bination with (or for partial RDAs, conditioned upon) longitude,

latitude, and MEMs (an approach using ordination to describe auto-

correlated spatial structure: Dray et al. 2006). The total proportion

of variation explained was small and, hence, consistent with high

gene flow in these pelagic fishes, but significant. Thus, these analyses

demonstrated significant associations between genotypes of individ-

ual fishes and their location of capture, with additional significant

variation for combinations of environmental variables. In a different

approach, Saenz-Agudelo et al. (2015) used a modified linear model-

ing method to evaluate the strength of putative barriers on popula-

tion pairwise FST values, with OWD and environment (PC1 of

combined environmental variables) as spatial variables, to show that

both barriers and environmental distance contribute to population

differentiation. These few examples highlight the importance of

multiple spatial factors in describing observed genetic structure.

The geography of variation for outlier and non-outlier

loci
The expectation that locally adapted alleles will co-segregate with

specific environmental attributes suggests that spatial patterns for

outlier loci will differ from spatial patterns of unlinked neutral loci.

In a hypothetical situation where only selected and unlinked neutral

loci are examined, one would, therefore, expect to find contrasting

spatial patterns between outlier and non-outlier loci with genetic dif-

ferentiation at selected loci correlating with environmental features

and neutral differentiation correlated with landscape attributes that

diminish gene flow. In reality, genetic hitchhiking via physical link-

age on a chromosome will yield environmental associations for loci

that are physically linked to selected loci (reviewed by Gagnaire

et al. 2015). Both selected loci and linked neutral loci can get

“trapped” by geographical locations of low gene flow (Barton 1979;

Gagnaire et al. 2015) and if there is some reproductive isolation be-

tween semi-differentiated taxa, alleles associated with reproductive

isolation can become “coupled” with locally adapted alleles (Bierne

et al. 2011). Causing further complications, there is no simple way

(using only spatial data and genotypes) to demonstrate that an out-

lier locus is the direct target of selection and therefore outliers them-

selves have the potential to be linked to unknown selected loci.

With these important considerations in mind, what are the

emerging empirical patterns among seascape genomic studies? Are

spatial patterns of outliers different from those of non-outlier loci?

Are environmental factors more closely associated with outliers and

suppressors of dispersal associated with non-outlier loci? For the

limited data to date, there are examples of both concordance and

contrasting spatial patterns for outlier and non-outliers. For in-

stance, spatial clustering groups for outlier loci matched that of non-

outlier loci for both herring (Limborg et al. 2012) and sole (Diopere

2014) but with more pronounced spatial structure for the outliers;

similarly, DeFaveri et al. (2013) showed much greater spatial struc-

ture in stickleback microsatellites linked to functional genes than

non-gene-linked loci. Dissecting gradients of differentiation, how-

ever, multivariate analyses demonstrated that environmental vari-

ables explained a significant amount of variability in sole among

outlier loci but not among non-outlier loci when analyses were con-

ditioned upon spatial variables (Diopere 2014). In turbot, SST, SSS,

and bottom shear stress explained significant genotypic variation for

both outlier and non-outlier loci but additional environmental fac-

tors were also significant for outlier genotypes (Vandamme et al.

2014). With a limited number of studies for comparison, it appears

that spatial correlations between outlier and non-outlier loci are

common. Whether or not specific environmental factors can en-

hance spatial predictions for outlier loci remains to be determined.

For studies to have the greatest sensitivity for detecting associations

with environmental factors, we recommend that spatial covariance

in relevant environmental factors be examined as part of the project

design to best guide sampling efforts and subsequent comparative

analyses (see Text Box 2). In particular a priori predictions of where

dispersal might be low (Treml et al. 2015) could be used to test the

prediction that many alleles will not traverse such low dispersal lo-

cations (Barton 1979; Bierne et al. 2011; Gagnaire et al. 2015) and

these low dispersal locations could be contrasted against strong en-

vironmental gradients where gene flow should not be impeded.

A related issue regarding the spatial properties of adaptive vari-

ation centers on the importance of parallel adaptive evolution, or to

what extent the same alleles are reused in multiple locations with

similar environmental characteristics. Addressing this issue suggests

an experimental design whereby a series of population pairs from

contrasting habitats are sampled (Rellstab et al. 2015; Meirmans

2015; Lotterhos and Whitlock 2015) and examined for overlapping

outlier loci across habitat contrasts (Table 3: Nominal seascape vari-

ables). Because many gradients in marine habitats are replicated at

local scales including tidal height of intertidal zones, exposed head-

lands to sheltered embayments along coastlines, and open coastlines

to estuaries, seascapes offer natural spatial replications for such
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investigations (Schmidt et al. 2008). If habitat-specific alleles can be

identified and shown to have different origins, then this is evidence

for independent adaptive evolution (convergence) whether by new

mutations or via selection on pre-existing variants (Le Moan et al.

2016). Habitat-specific alleles that are identical or related indicate

that there is a shared historical origin to the adaptation and because

gene flow should be more extensive for marine taxa, reuse of the

same alleles from standing genetic variation may be more prevalent

in marine taxa when compared with terrestrial or freshwater taxa.

Whereas the spatial distributions of alleles can shed some light on

the spread of related alleles, the observation of replicated genetic en-

vironment associations for some loci is not sufficient for distinguish-

ing between primary differentiation by habitat from shared

ancestral polymorphism and secondary contact between differenti-

ated taxa (Bierne et al. 2013). As noted previously, a typical scenario

involves genotyping many loci across a genome without knowing

definitively whether outliers are direct targets of selection or linked

to selected loci and therefore inference regarding independent or

shared ancestry of specific alleles is weak.

Nonetheless, several studies have employed a replicated habitat

design to look for parallel adaptive evolution. For example, paired

sampling designs have been used by both Ravinet et al. (2016) and

Westram et al. (2014) for adjacent ecomorphs in the littorine snail

Littorina saxatilis (so-called wave and crab habitat types) and for

open water and coastal anchovies (Le Moan et al. 2016). Littorine

snails and anchovies differ substantially in their dispersal potential,

as littorine snails are direct developers (no pelagic larval phase),

whereas anchovy are large mobile fish with planktonic larvae. In all

cases, only a few shared outlier loci were found among multiple

habitat contrasts (but more than expected by chance alone). This

suggests that at least some shared variation is used in parallel in mul-

tiple habitats. For anchovy, this inference was strengthened by mod-

eling that supported a scenario of isolation between the open water

and coastal ecotypes followed by secondary contact and gene flow,

implying that adaptive alleles predate recent connections between

the ecotypes (Le Moan et al. 2016). It is impossible to directly com-

pare proportions of shared outliers across studies, as experimental

designs were substantially different including type of loci and filter-

ing thresholds. The finding that some markers have consistent asso-

ciations with habitat across population pairs, however, points to

standing genetic variation as being a source for adaptation for mar-

ine species even for species with greatly contrasting natural

histories.

Comments on seascape genomic studies to date
The prevailing emphasis of seascape genomics studies on single spa-

tial predictors (per analysis) indicates that greater scrutiny for collin-

earity among seascape variables is warranted. It is still common

practice for seascape genomic studies to evaluate a series of models

each with a single predictive spatial variable (including serial imple-

mentations across several spatial variables, with analysis such as

BayEnv, SAM, as well as Mantel tests based on population pairwise

distances) or partial Mantel tests for two spatial variables. Only two

marine population genomic studies that we encountered estimated

asymmetric directionality of gene flow (Blanco-Bercial and Bucklin

2016; Saenz-Agudelo et al. 2015). Although we have argued that the

often replicated environmental gradients in marine systems provide

an excellent backdrop for testing theories regarding the geography

Text Box 2. Developing sampling strategies in complex seascapes

When designing sampling for seascape genomic studies, adopting some a priori yet simple spatial approaches may increase the likeli-

hood of identifying clear genetic-environmental associations. Demonstrating such associations is likely to be impaired with ad hoc,

opportunistic, or other non-spatial sampling strategies. Targeting paired sample sites at distances beyond high autocorrelation thresh-

olds within an environmental data layer can be the first step in this direction (Text Box 1). However, developing spatially-explicit

sampling strategies may be more powerful, such as implementing a stratified-random design across multiple environmental gradients

and a range of distance classes when possible. We illustrate this approach using two contrasting sampling goals: 1) an exploratory

study to identify broad genetic environment associations, and 2) sampling to test a priori hypotheses regarding the influence specific

environmental factors have on the spatial structure of candidate loci. Mapping environmental gradients within the seascape is central

to both goals, allowing ‘hotspots’ of environmental change to be visualised and targeted.

To explore broad genetic-environment associations (first goal), one could map PC scores from a principal components analysis

(Figure 2) and use a moving window analysis to identify regions of strong environmental gradients or ‘hotspots’ (Figure 4: with a

75 km-window implemented representing a grain that exceeds the strongest signals of spatial autocorrelation). These hotspots derived

from the mapped PC scores would be strong candidate regions (e.g., coastal Portugal, southern North Sea) to sample and explore

genetic-environmental associations while considering the distance of the species’ dispersal potential. This targeted strategy may maxi-

mise the likelihood of finding these associations while allowing one to sample at appropriate distances to minimise strong autocorrel-

ation among sites and accommodate the dispersal scales of interest.

An analogous approach would also be helpful for testing a priori hypotheses regarding the influence of specific environmental fac-

tors (second goal). For illustration, consider if one was interested in quantifying the influence of SSS and NPP. These layers are highly

(negatively) collinear in Europe (correlation ¼ - 0.77, Appendix Table 2) and both are strongly autocorrelated at distances to 25 km.

Again, one could overcome these challenges by mapping the strong environmental gradients (as above) in both layers (Figure 4) and

consider sampling where hotspots exist in one layer and strong gradients are absent in the other. Although the strong environmental

gradients found near the North Sea – Baltic Sea transition area are present in both layers, other hotspots in the NPP data that overlay

non-hotspot regions in the SSS layer may represent opportunities for targeted sampling. These regions (e.g., coastal Portugal, inner

Baltic Sea) may allow the differential influence of NPP spatial genetic patterns to be quantified. As there are no obvious regions where

hotspots exist in the SSS layer and not in the NPP layer, the direct effect of SSS on the genetic structure may be difficult to distinguish

in this seascape.
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of genetic variation, how to discern the relative influence of selection

on loci and how their genetic architecture (including recombination

with linked loci and interactions among loci) remain a substantial

challenge in population genomics especially for non-model organ-

isms (Gagnaire and Gaggiotti 2016). As the field of seascape gen-

omics moves forward, it will be important to capitalize upon

developments in population genomics and also to develop and util-

ize analyses suited to the inherently complex and spatio-temporally

variable attributes of seascapes. In the following section we highlight

potentially useful solutions to select issues.

Project Design Considerations and New
Directions of Inference

Strategic sampling for genetic–seascape associations
Although concerns for sampling an adequate number of loci for

non-model organisms are now diminished with breakthroughs in

genomic technologies, as always, field sampling remains an import-

ant aspect of a study’s design. The spatial configuration of sampling

can greatly affect an investigator’s ability to statistically distinguish

among potentially correlated spatial factors. For example, a sea-

scape genomic approach could be used in an exploratory manner to

generate hypotheses about a number of distinct spatial factors and

their associations with genetic patterns. In which case, optimizing

collecting locations to minimize correlations among these spatial

factors would be sensible, for example targeting sites that maximize

the distance in environmental PC-space while minimizing geo-

graphic distance (see case study in Text Box 2 and Figure 4).

Alternatively, an investigator might have an a priori hypothesis re-

garding a specific spatial (usually environmental) factor and could

leverage the greatest statistical power by including proximate sam-

pling locations that differ by the factor of interest, for example sam-

pling across environmental gradients (Text Box 2 and Rellstab et al.

2015; Lotterhos and Whitlock 2015).

Importantly, the ability of different sampling designs to discrim-

inate among hypotheses can be statistically evaluated based on sea-

scape data alone, ahead of any genomic inquiries. After the broad

seascape setting and ecological elements have been aligned with the

study objectives, specific spatial properties should be considered.

Ideally in formulating a sampling strategy, spatial and temporal

autocorrelation (Getis and Ord 1992) should be quantified within

the (ecologically meaningful) environmental data layers at multiple

scales. An appropriate spatial sampling interval to maximize statis-

tical power to distinguish among competing seascape variables

should strive to span and exceed the distance of spatial autocorrel-

ation among the variables, while considering the “known” spatial

extent of the species’ dispersal potential. Similarly, the spatial (and

temporal) patterns in stationarity may be evaluated by mapping the

mean and variance of environmental data (Figure 2, e.g.). If there is

strong spatial structure representing non-stationarity, then compart-

mentalizing the analysis for different regions (e.g., geographically

weighted regressions across Ecoregions: Spalding et al. 2007) may

be advantageous. In planning for multivariate analyses, the covari-

ance and correlation structure between predictors must be con-

sidered. If predictors are highly correlated (collinear), decisions will

need to be made to reduce (i.e., remove the less meaningful corre-

lated predictor) or accommodate (e.g., eigenanalysis, PCA) this col-

linearity (Wagner and Fortin 2015). Thus, in some seascapes it will

be impossible to treat pertinent landscape features as independent

predictors, a limitation probably best realized at the project design

phase. After identifying the spatial structure in autocorrelation,

PC1

SSS

NPP

A

B

C

Figure 4. Hotspots of spatial gradients in seascape variables. Regions of

strong environmental gradients or “hotspots” were identified using a moving

window analysis to quantify the level of variation in the surrounding sea-

scape. The hotspot regions could be targeted for genetic sampling to increase

the likelihood of quantifying genetic environmental associations. (A)

Hotspots for PC1 would be useful for exploratory analyses of many spatial

variables simultaneously; gradients for (B) SSS and (C) NPP could be targeted

to confirm predicted relationships between environmental variables and se-

lect loci.

Riginos et al.�Navigating the currents of seascape genomics 595

Deleted Text: s
Deleted Text: D
Deleted Text: C
Deleted Text: &amp; 
Deleted Text: N
Deleted Text: D
Deleted Text: I
Deleted Text: 1. 
Deleted Text: -
Deleted Text: -
Deleted Text: `
Deleted Text: ' 
Deleted Text: for example


stationarity and collinearity within and among the predictors, a

sampling strategy can then be developed with these constraints in

mind (see case study in Text Box 2).

Coincident with evaluating potential sampling locations is the

issue of total sample number (and associated costs). Individual-

based sampling schemes can be more effective for increasing spatial

coverage than population sampling schemes as the number of loca-

tions (and therefore landscape heterogeneity) can be better sampled

for the same genotyping expenses, and simulations suggest that as

few as 3–6 individuals per site might be sufficient to detect genetic

differentiation (Prunier et al. 2013) and even to accurately discern

outlier loci for biallelic markers such as most SNPs (Lotterhos and

Whitlock 2015). Genetic differences between pairs of individuals

can be used in spatial analyses like conventional population statistics

(Rousset 2000) or multilocus genotypes (especially with bi-allelic

SNP loci) can be described with ordination (Jombart et al. 2009).

Outlier detection based on genotyped individuals is possible using

the methods LFMM (Frichot et al. 2013) and PCAdapt (Duforet-

Frebourg et al. 2014), although outlier detection based on individual

genotypes is prone to false positives (de Villemereuil et al. 2014).

For multiallelic loci such as DNA sequences, however, larger popu-

lation sample sizes are advisable (Gaggiotti OE, personal

communication).

Another approach that can be cost-effective (reducing molecular

costs) for increasing locations is to use a pooled sequencing ap-

proach (Schlötterer et al. 2014) where libraries are constructed for a

mix of individuals. Methods for estimating population statistics tail-

ored to sampling issues arising with pooling procedures are well de-

veloped (Kofler et al. 2011) and once population parameters are

estimated, spatial analyses can proceed as with a typical population

study. The major disadvantage of the pooling approach is that co-

variance among loci (including linkage disequilibria) within the

population cannot be estimated and thus analyses based on individ-

ual genotypes such as admixture or parentage detection cannot be

conducted, a problem if cryptic taxa are present.

Selecting appropriate genomic loci
Although genomic methods for non-model organisms are now tract-

able, there is a growing array of choices regarding the exact nature

of the markers and the subsequent analyses that they would support

(see Davey and Blaxter 2011; Andrews et al. 2016). These methods

can be largely divided into targeted and non-targeted approaches,

and vary in recovering hundreds of loci to genetic variation across

the entire genome. Targeted approaches include arrays and sequence

capture for predetermined SNPs (e.g., SNP arrays: Seeb et al. 2011),

exons (e.g., exon bait capture: Bi et al. 2012), transcripts (e.g., tar-

geted RNA-seq: Mercer et al. 2012), or informative sequence loci

flanking ultra-conserved elements (Faircloth et al. 2012). The ad-

vantages of these approaches are that they allow for much greater

control of the number of loci (therefore also ensuring optimal cover-

age), usually work with varying degrees of DNA quality and quan-

tity, and are less likely to return contaminant loci (a pervasive

problem for symbiotic marine invertebrates such as corals). The

disadvantage of these approaches is that they require initial develop-

ment (and often optimization), which is usually costly and

time-consuming (and therefore less attractive for one-off projects).

Non-targeted approaches range from whole-genome shotgun (WGS)

resequencing, transcriptome sequencing (RNA-seq: De Wit and

Palumbi 2012), to reduced representation methods (reviewed by

Andrews et al. 2016) targeting sequence regions adjacent to restric-

tion sites (e.g., RAD-seq, GBS and CROPS) or other repetitive

sequences (e.g., nextRAD). These methods do not require any prior

development, and they provide a panel of loci “randomly” distrib-

uted across the genome (or transcriptome). Whereas the number of

loci can be reasonably well determined in reduced representation

methods, problems with obtaining sufficient locus coverage are fre-

quent, there is no protection against sequence contamination, and

DNA input requirements can be relatively high.

A related issue to consider is whether individual SNPs or DNA

haplotypes are better suited to the study goals and analyses.

Although many analytical methods are designed for unlinked SNPs,

DNA sequences provide a historical context that can greatly expand

inferences regarding selection. For example, DNA sequencing of

long haplotypes can reveal whether divergence between alleles is an-

cient or recent and provide insights regarding the nature of selection

(as in Bierne 2010). Moreover, coalescent analyses and other emerg-

ing methods can retrieve more genealogical information from haplo-

typic data than from unlinked SNPs (see below).

Including metrics and analyses that incorporate

asymmetric movement
To date, seascape genomic studies have primarily based their spatial

inferences on classical allele-frequency measures of population di-

versity and population structure and assessed these genetic estimates

against single or multiple landscape attributes, implicitly assuming

symmetric exchange among equally sized populations. The rise of

genomic sequencing methods provides access to new types of infor-

mation that, together with new theoretical methods, have the poten-

tial to relax these assumptions and provide greater insight into

underlying metapopulation processes, including asymmetric (aniso-

tropic) gene flow. Thus, these methods could be especially useful for

landscape genomics in systems likely to experience asymmetric gene

flow such as marine taxa.

Such new population genomic methods that infer complex dy-

namics including asymmetric gene flow can be categorized by the

type of information they access. Coalescent samplers reconstruct the

genealogical relationship among alleles, calculating the likelihood of

the data given defined metapopulation models via simulations that

vary population genetic parameters of interest (Beerli and

Palczewski 2010; Baele et al. 2012; Robinson et al. 2014). The mod-

els can include population divergence, asymmetric gene flow, and

population size changes, and thus can be quite powerful in a model

selection framework (Carstens et al. 2009). These methods also pro-

duce Bayesian posterior distributions for each model parameter that

integrate the (often considerable) uncertainty in the parameter esti-

mate; the Bayesian posteriors can be subsequently used as response

variables in a regression framework (Crandall et al. 2012). With the

increase in sampled loci leading to a linear increase in computation

time, approximate Bayesian computational methods, wherein pos-

terior distributions are constructed via a rejection algorithm based

on summary statistics rather than intensive likelihood computations

are becoming attractive for coalescent models and other methods

(Hickerson et al. 2005; Beaumont 2010; Roux et al. 2013).

Still more theoretical approaches are emerging as genomic sam-

pling becomes denser. Allele frequency spectra contain the empirical

distribution of thousands or millions of SNPs; the likelihood of fre-

quency spectra for joint population analyses can be quickly calcu-

lated under a variety of demographic models that include range

expansions, demographic growth and asymmetric migration and

through coalescent modeling or a diffusion approximation

(Gutenkunst et al. 2009; Peter and Slatkin 2013; Xue and Hickerson

2015; Le Moan et al. 2016). A related method uses SNP frequency
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data to build a maximum likelihood tree of populations (Pickrell

and Pritchard 2012). Directional migration events are then inferred

between populations with a higher than expected covariance, and

added to the tree to create a population graph. Another class of

methods considers the length of haplotypes that are identical by des-

cent, with haplotypes from older migration events expected to be

shorter due to recombination (Pool and Nielsen 2009; Palamara and

Pe’er 2013). Clinal analyses using large haplotype blocks, especially

when there is introgression from a genetically distinct source, could

be used to estimate how connectivity differs by spatial location

(Gagnaire et al. 2015). In summary, it is likely that spatial hypoth-

esis testing will continue to rely on both (i) multiple regression type

tests with genomic-derived population estimators, and (ii) custom

models informed by landscape attributes and based on coalescent

and population genetic principles for evaluating empirical data

against specific processes. In all, the many theoretical and analytical

advances in population genomics hold promise for relaxing the as-

sumptions of symmetrical gene flow and gene flow-drift equilibrium

and will be especially useful to marine researchers.

Conclusions and New Directions for Seascape
Genomic Studies

The major challenge of seascape genetics is to deduce the key spatial

processes that affect spatio-temporal genetic structure in an environ-

ment that is highly variable in both space and time, and where sim-

ple spatial or oceanographic metrics are unlikely to capture the

inherent biological complexity of dispersal and population sizes

(previous sections of this paper and Liggins et al. 2013; Riginos and

Liggins 2013; Selkoe et al. 2015). Indeed the relevant seascape attri-

butes are likely to differ by spatial scale and species biology: grain

size, extent, and temporal durations of organizing spatial processes

can vary by orders of magnitude (Figure 1 in Riginos and Liggins

2013). The high temporal variance of marine systems is matched by

the observation of seemingly chaotic genetic patterns within species

(Johnson and Black 1984; Hedgecock 1994; Eldon et al. 2016).

However, for temporally variable spatial factors that can be quanti-

fied (such as ocean currents using data from remote sensing and ob-

servation buoys) seascape genomics could provide a framework for

testing these predictors against genetic observations using appropri-

ately matched spatial-genetic time series.

Multispecies comparisons can uncover spatial factors that have

broad scale effects across ecological communities, in that shared pat-

terns across species (whose age at reproductive maturity is likely to

differ) could filter out short-term chaotic variability. Indeed, idio-

syncratic species genetic patterns are common (Ayre et al. 2009;

Dawson et al. 2014) but consistencies are also observed particularly

over large geographic scales (Pelc et al. 2009; Toonen et al. 2011;

Altman et al. 2013; Gaither and Rocha 2013; Liggins et al. 2016).

Thus, whether or not spatial patterns of outlier loci will also be

species-specific or reveal commonalities either in terms of spatial

concordance or gene function remains to be seen. Regardless, deduc-

ing which landscape attributes shape genomes is an important and

tractable goal (Thomassen et al. 2010; Meirmans 2015). Such gener-

alities can be inferred only from comparative studies, even if un-

covering the ultimate sources of selection and their relationships to

genome architectures remains a substantial challenge (Bierne et al.

2011; Gagnaire and Gaggiotti 2016: with compounded difficulty

when considering multiple species). Approaches from seascape gen-

omics are well suited to identifying the overarching spatial factors

that affect microevolutionary dynamics across suites of species.

Moreover, repeat sampling across multiple species could be espe-

cially useful for gaining insights to these processes. For example,

transition zone locations where genetic discontinuities are observed

among many taxa often are subject to fluxes in oceanographic and

environmental conditions. These fluxes create conditions for natural

experiments where the genomic responses of different species (differ-

ing in sensitivity to such changes) could be monitored and used to

test specific hypotheses. For instance, in turbot, changes in allele fre-

quencies at the hydrographically active Baltic/North Sea transition

showed significant correlation with environmental shifts

(Vandamme et al. 2014).

If marine species do have greater sensitivity to selection, they

may be especially well suited for detecting relatively fast responses

to altered selective regimes, including those arising from human im-

pacts (Allendorf et al. 2010). At present, climate change induced

range shifts are underway for many marine species with greater

velocities than those that typify terrestrial taxa (Poloczanska et al.

2013). These rapid changes to the range structures of marine species

could yield important insights to the evolutionary dynamics of range

expansions (and contractions), especially the role of adaptation in

facilitating range expansions. Moreover, for some harvested species,

there may be historical fisheries data (including tissue samples) to

contrast spatial dynamics at different time points (Nielsen et al.

2009a, 2009b; Bonanomi et al. 2015). Because natural selection and

range changes are inherently spatial processes, the inclusion of tools

and approaches from seascape genomics can enhance such

investigations.

As a field, we are riding a wave of genomic enthusiasm with

many new studies underway that seek to capitalize upon our new-

found powers to reveal and learn from genomic diversity. However,

similarly revolutionary technological innovations are reshaping

oceanography and remote sensing. While daunting to consider both

fields, a deeper understanding of the fundamental questions sur-

rounding dispersal, gene flow, and selection will be achieved by rec-

ognizing and embracing the spatial and temporal complexity of

structuring processes in the marine environment.

Major Points

• Seascape genomic studies test for associations between landscape

configuration or composition of marine systems and allelic vari-

ation across many loci.
• Marine landscapes are spatially complex and variable over time.
• Large population sizes and high dispersal are prevalent among

marine taxa obscuring the interpretation of common population

genetic metrics and causing practical difficulties for applying gen-

omic genotyping methods.
• There has been much recent development of methods to statistic-

ally evaluate landscape and genetic associations; investigators

need to carefully consider the importance of underlying assump-

tions among methods, some of which are certain to be violated in

any analysis.
• Empirical seascape genomic studies have identified correlations

between environmental factors and spatial genetic structures par-

ticularly for outlier loci, however, the small number of studies to

date precludes inferring general trends.
• Seascape genomic studies can greatly increase their power to de-

tect genetic-environment associations by implementing spatial

analyses as part of the sample design planning.

Riginos et al.�Navigating the currents of seascape genomics 597

Deleted Text: N
Deleted Text: D
Deleted Text: S
Deleted Text: G
Deleted Text: S
Deleted Text: <xref ref-type=
Deleted Text: <xref ref-type=


• Methods that estimate asymmetric gene flow, especially those

based on coalescent and allele frequency spectra, could be espe-

cially valuable for seascape genomic studies.
• Basic principles and analyses from spatial ecology can be readily

incorporated in population genomic studies to increase inferen-

tial strength and yield new insights regarding evolutionary

processes.
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Appendix

Specific methods: Environmental data analysis
methods

We downloaded environmental data layers (sources listed in Text

Box 1, Table 1) in their native format, projected them all to a global

Molleweide projection and resampled to a 5 km by 5 km grid cell

size. Sea surface temperature (GHRSST, 0.25deg, 7-day running

mean, NOAA’s NCDC, L4 Blended product using AVHRR and

AMSR) and net primary production data were downloaded for

2010 only. For all other environmental data layers, the full suite of

available dates was used (see individual data providers, Table 1).

Data were then extracted for the coastal zone to exclude those re-

gions outside our area of interest (marine habitat within 100 km of

the coastline or less than 250 m deep). Layer statistics were calcu-

lated on these extracted data, mapped, and used for all spatial ana-

lyses. Spatial autocorrelation statistics (Moran’s I) were calculated

for each environmental data layer and across a range of distance

classes (reported in Textbox 1, Table 1). All resampled environmen-

tal data were rescaled before completing the PCA in ArcGIS (ESRI

2015. Environmental Systems Resource Institute, ArcMap Release

10.2. Redlands, CA).

Recent publications in seascape genomics

Initially we queried the Web of Science (WOS, Thomson-Reuters:

search conducted 26 August 2015) for relevant papers. Pilot

searches revealed that there were few papers in this topic area and

also that there were no consistent sets of keywords being used by

authors to identify their work to this topic area. For example,

searches for “seascape genomics” or “marine landscape genomics”

[Boolean terms: TS¼ (seascape genomic* OR marine landscape gen-

omic*)] yielded zero papers. Replacing the genomic root word with

“genetics” yielded 126 papers in total. Because we knew that some

suitable papers existed and were not being found with these specific

terms, we expanded our keywords to capture spatially explicit mar-

ine landscapes [TS¼ (seascape OR marine landscape)) and popula-

tion genomic data (TS¼ (population genomic* OR next generation

sequencing OR RAD OR genotyping by sequencing OR SNP*)].

This combination of search terms yielded 37 papers, of which 18

were completely spurious, 6 were review or theoretical papers with

only 2 of those touching on marine specific issues, and 11 were em-

pirical with 5 fitting into the purview of seascape genomics. Of these

5 papers, 2 employed SNP markers (�98 loci: Nielsen et al. 2009b;

Limborg et al. 2012) and three used microsatellites with some of

those microsatellites targeting gene coding regions (�17: DeFaveri

et al. 2013; Teacher et al. 2013; Vandamme et al. 2014). Given that

standard keyword searching was failing to locate suitable papers,

we took a more informal approach and searched WOS based on au-

thors known to us to be undertaking genomic research programs,

emailed many researchers directly (asking them to forward our re-

quests, and solicited advanced copies of in press publications). We

excluded studies of anadromous species such as salmon and eels be-

cause these life histories with adult migration are substantially dis-

tinct from the life histories of most marine taxa, and the spatial

variables examined in these studies tended to focus on the fresh-

water environment. Studies including brackish populations (notably

the Baltic Sea), however, were retained.

Table A1. Covariance matrix for 8 select seascape variables for the Northeast Atlantic region

Layer SST sdSST TSF SSS NPP sdNPP BATH PLEIS

SST 0.307 �0.098 �0.074 0.113 �0.098 �0.094 �0.104 �0.010

sdSST �0.098 0.188 0.044 �0.139 0.136 0.133 0.052 �0.036

TSF �0.074 0.044 0.191 �0.058 0.050 0.050 0.025 0.000

SSS 0.113 �0.139 �0.058 0.175 �0.137 �0.139 �0.035 0.012

NPP �0.098 0.136 0.050 �0.137 0.182 0.170 0.047 �0.044

sdNPP �0.094 0.133 0.050 �0.139 0.170 0.182 0.044 �0.031

BATH �0.104 0.052 0.025 �0.035 0.047 0.044 0.203 0.044

PLEIS �0.010 �0.036 0.000 0.012 �0.044 �0.031 0.044 0.203

Table A2. Correlation matrix for 8 select seascape variables for the Northeast Atlantic region

Layer SST sdSST TSF SSS NPP sdNPP BATH PLEIS

SST 1 �0.41 �0.31 0.49 �0.41 �0.40 �0.42 �0.04

sdSST �0.41 1 0.23 �0.76 0.73 0.72 0.27 �0.18

TSF �0.31 0.23 1 �0.32 0.27 0.27 0.13 0.00

SSS 0.49 �0.76 �0.32 1 �0.77 �0.78 �0.18 0.07

NPP �0.41 0.73 0.27 �0.77 1 0.93 0.24 �0.23

sdNPP �0.40 0.72 0.27 �0.78 0.93 1 0.23 �0.16

BATH �0.42 0.27 0.13 �0.18 0.24 0.23 1 0.22

PLEIS �0.04 �0.18 0.00 0.07 �0.23 �0.16 0.22 1
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