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Abstract 55 

We apply genetic stock identification (GSI) data and models of the catch and sampling process 56 

to describe spatial and temporal patterns in the stock composition and stock-specific catch-per-57 

unit-effort (CPUE) of both tagged and untagged stocks encountered in California recreational 58 

ocean Chinook salmon fisheries during the period 1998-2002. Spatial and temporal distributions 59 

inferred from GSI sampling of stocks with tagged hatchery components were broadly consistent 60 

with those previously inferred from studies of tag recoveries alone, while GSI provided 61 

additional insight into untagged stocks of conservation concern. The catch in all times and areas 62 

was dominated (typically ≥90%) by the “Central Valley Fall” genetic reporting group, which is 63 

comprised primarily of Sacramento River fall run Chinook. Other contributing stocks were more 64 

spread out in space and time with the exception of Central Valley winter run Chinook, which 65 

were rarely encountered by boats fishing in port areas north of Point Reyes. Localized stock-66 

specific CPUE appeared to increase near a stock’s respective natal river while decreasing in 67 

other port areas at the time of adult return to freshwater for spawning. We describe methods for 68 

quantifying uncertainty in stock proportions, stock-specific catch, and determining the statistical 69 

support for proposed management boundaries hypothesized to represent “break points” in the 70 

spatial distributions for stocks of concern, and find at most equivocal support for a proposed 71 

delineation line at Point Reyes in north-central California. 72 

 73 

1. Introduction 74 

 Ocean salmon fisheries on the west coast of North America are generally mixed-stock 75 

fisheries, in that fish harvested in any given area usually come from multiple source rivers 76 

(Winans et al. 2001, Weitkamp and Neely 2002, Weitkamp 2010). While some stocks are usually 77 
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relatively abundant and productive, their harvest is often constrained to protect less abundant or 78 

weaker stocks, including those managed under the U.S. Endangered Species Act (ESA) as 79 

“threatened” or “endangered” (Pacific Fishery Management Council [PFMC] 2012, 2013).  The 80 

goal of “weak stock management,” as practiced for these mixed-stock ocean salmon fisheries, is 81 

to maximize overall harvest opportunity while simultaneously meeting conservation benchmarks 82 

for all managed stocks.  The primary tools used in California for implementing weak stock 83 

management are 1) allowing fishing only in specific times and areas (i.e., time-area fisheries) to 84 

minimize impacts on weak stocks and/or 2) establishing catch quotas.  Currently, spatial 85 

management of salmon fisheries off the coast of California is accomplished primarily through 86 

seasonal openings of fisheries at relatively broad spatial scales, corresponding to the ocean areas 87 

delineated in Figure 1, based on an understanding of stock-specific spatial distributions informed 88 

by tag recoveries from stocks of interest or their proxies.  89 

Until recently, managers have relied almost entirely on coded-wire tags (CWTs) 90 

recovered from harvested fish to obtain information on stock-specific harvest (Nandor et al. 91 

2010).  CWTs provide brood year, hatchery/stock of origin, and other pertinent information 92 

related to its respective release-group. In tandem with CWT recoveries from the escapement and 93 

in-river harvest, this allows cohort reconstructions (Hilborn and Walters 1992, Goldwasser et al. 94 

2001, Mohr 2006) that are used to estimate demographic parameters and stock/age-specific 95 

ocean exploitation rates.  These stock/age-specific exploitation rates serve as the basis for the 96 

management of almost all west coast ocean salmon fisheries (PFMC 2012), with some untagged 97 

natural or less abundant stocks managed on the basis of tagged “proxy” stocks.  Since CWTs are 98 

almost exclusively deployed on hatchery-origin fish, the suitability of this approach relies on the 99 

assumption that tagged proxy stocks act similarly to the untagged stocks of interest, which can be 100 
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comprised of natural-origin fish from nearby watersheds as well as the natural-origin component 101 

of stocks with hatchery supplementation.  Thus, CWT-based management may not include direct 102 

information on the harvest of some stocks or stock components of interest.  103 

Genetic stock identification (GSI) has the potential to identify any individual fish to its 104 

population of origin. Currently, genetic assignments are typically reported at the level of reliably 105 

distinguishable “reporting groups” in the genetic reference database (i.e., the baseline).  Many 106 

genetic reporting groups, however, are composed of multiple genetically-similar populations 107 

(Seeb et al. 2007, Clemento et al. 2014), and reporting group boundaries do not always coincide 108 

with managed stocks, some of which may not themselves coincide with biological populations. 109 

Nevertheless, for convenience, we use the terms “stock” and “reporting group” interchangeably 110 

hereafter. Worldwide, GSI has been applied to multiple management problems in salmon 111 

fisheries, including monitoring and responding to stock composition in terminal fisheries or other 112 

geographically-restricted harvest situations (Beacham et al. 1987, Shaklee et al. 1999, Parken et 113 

al. 2008, Griffiths et al. 2010, Ensing et al. 2013), evaluating the suitability of proxies for 114 

untagged stocks (Bernard et al. 2014, Satterthwaite et al. 2014), estimating the stock composition 115 

of escapement (Hess et al. 2014), determining the composition of discarded bycatch (Wilmot et 116 

al. 1998), determining the source of introduced populations (Di Prinzio et al. in press), and 117 

determining the composition of mixed-stock Atlantic salmon fisheries (Koljonen et al. 2005, 118 

Koljonen et al. 2006, Gauthier-Ouellet et al. 2009). However, GSI has not been as widely applied 119 

in management as some have envisioned (Waples et al. 2008) and applications to open-ocean 120 

fisheries managed primarily with time-area regulations have been limited (Winans et al. 2001, 121 

Crozier et al. 2004, Satterthwaite et al. 2014). Nevertheless, GSI has the potential to inform time-122 

area management, potentially at a finer scale than is currently practiced, especially when capture 123 
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locations associated with individual fish are also recorded (Bellinger et al. in review).  Even at 124 

the coarser spatial scale considered in current time-area management models, GSI has the 125 

potential to provide important information on the relative fishery exposure of untagged stocks for 126 

which direct distributional information is not available from CWT data.  127 

To implement weak stock management using either time-area management or quotas, 128 

information regarding stock-specific spatial distributions is important.  Understanding where and 129 

when certain stocks are more (less) prevalent and large (small) contributors to the fishery allows 130 

structuring of fisheries such that abundant stocks are targeted and impacts to weak stocks are 131 

limited.  132 

We used GSI to analyze the stock composition of California recreational salmon fisheries 133 

between 1998 and 2002 and to define the contributions of individual Chinook salmon 134 

(Oncorhynchus tshawytscha) stocks to these fisheries. Because recreational fisheries tend to be 135 

confined to a relatively small geographic area near their respective home port of landing, harvest 136 

is likely to reflect the local area stock composition. We estimate the spatial and temporal 137 

distribution of multiple stocks, some of which already have distributional information available 138 

from CWT data and some of which are untagged.  We present results as both stock proportions 139 

(e.g. Winans et al. 2001, Crozier et al. 2004, Tucker et al. 2009) and stock-specific CPUE (Sato 140 

et al. 2009, Satterthwaite et al. 2014, Bellinger et al. in review) to infer local stock mixtures and 141 

relative stock abundance, respectively.  We then show how a model of stock-specific CPUE, 142 

accounting for the uncertainty introduced by genetic assignment, sampling, and process error, 143 

can be used to test for a hypothesized break point in stock distributions that might serve as a new 144 

delineation line between management areas. Finally, we evaluate the consistency of results 145 

obtained from GSI sampling with those previously obtained from CWT proxy stocks. These data 146 
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offer a relatively unique opportunity to draw inference about the contribution of particular 147 

Chinook salmon stocks to these fisheries, as well as to define stock-specific ocean distribution on 148 

a relatively small scale. 149 

 150 

2. Materials and Methods 151 

2.1. Study System 152 

 Ocean salmon fisheries off the coast of California harvest a mix of Chinook salmon 153 

stocks (retention of coho [O. kisutch] is not currently permitted, and contacts with other 154 

salmonids in this area are minimal).  Both commercial and recreational fisheries are substantial, 155 

with recreational fisheries generally contributing about a third of the total California ocean 156 

harvest, although they have made up as much as 58% of the catch in recent years (PFMC 2013).  157 

Since the mid-1990s, four “major port management areas” have been used by the Pacific Fishery 158 

Management Council (PFMC) when structuring ocean fisheries in California: 1) Klamath 159 

Management Zone (KC) area - Oregon/California border to Horse Mountain, 2) Fort Bragg (FB) 160 

area – Horse Mountain to Point Arena, 3) San Francisco (SF) area – Point Arena to Pigeon Point, 161 

and 4) Monterey (MO) area – Pigeon Point to U.S./Mexico border (Figure 1).  Each major port 162 

area is comprised of several minor ports where fishery monitoring is conducted. Fisheries are 163 

predominantly managed on the basis of time-area closures and minimum legal size limits 164 

(typically 20 or 24 inches total length for recreational fisheries, larger for commercial fisheries), 165 

although quotas occasionally apply to the commercial catch in the two northern management 166 

areas.  167 

Our analysis focuses on six genetic “reporting groups” (Seeb et al. 2007, Clemento et al. 168 

2014) of management or conservation relevance in this region:  1) “Central Valley Fall” consists 169 
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of Sacramento River fall run, San Joaquin River fall run, Sacramento River late fall run, and 170 

Feather River Hatchery spring run.  Sacramento River fall run is far more abundant than other 171 

stocks in this reporting group, is typically dominated by hatchery-produced fish (Barnett-Johnson 172 

et al. 2007, Kormos et al. 2012, Palmer-Zwahlen and Kormos 2013), and makes up a large 173 

proportion of the catch in California and Southern Oregon in most years (PFMC 2013). Late fall 174 

run fish also have a hatchery component and may have a more southerly ocean distribution than 175 

fall run fish (Satterthwaite et al. 2013).  San Joaquin River fall run fish are much less abundant 176 

than Sacramento River fall run (Carlson and Satterthwaite 2011; Kormos et al. 2012; Palmer-177 

Zwahlen and Kormos 2013) and are also supplemented by hatchery production. Feather River 178 

Hatchery spring run are highly introgressed with Feather River Hatchery fall run and thus cannot 179 

be distinguished with GSI (Clemento et al. 2014). All of these components are supplemented by 180 

hatcheries with marking and tagging programs. 2) “Central Valley Spring” consists of naturally 181 

produced spring run fish primarily from Deer, Mill, Butte, Battle and Clear creeks. Feather River 182 

Hatchery spring run (marked and tagged) are excluded from the genetic reporting group but 183 

included in the Central Valley spring run evolutionarily significant unit (ESU), which is listed 184 

under the United States Endangered Species Act (ESA) as threatened (Lindley et al. 2004). There 185 

is no hatchery production in the Central Valley Spring reporting group, although there have been 186 

brief and relatively small-scale efforts to tag natural-origin smolts. 3) “Central Valley Winter” 187 

consists of a mix of naturally spawned and conservation hatchery produced winter run fish from 188 

the upper Sacramento River basin and this ESU is ESA-listed as endangered (Lindley et al. 189 

2004). Winter run fish have also been inferred to have a more southerly distribution than fall run 190 

fish on the basis of ocean fishery recoveries of CWT deployed by an ongoing hatchery program 191 

(O’Farrell et al. 2012a, Satterthwaite et al. 2013). 4) “Klamath River” consists of predominantly 192 
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Klamath-Trinity Basin fall run Chinook but includes the genetically similar spring run as well 193 

(Williams et al. 2013).  Both the fall and spring runs from this reporting group are supplemented 194 

by hatchery production with marking and tagging programs, with the fall run typically much 195 

more abundant than spring run and a substantial contributor to ocean and river fisheries (PFMC 196 

2013). 5) “California Coast” corresponds to California Coastal Chinook ESU, which is ESA-197 

listed as threatened and consists of coastal fall run stocks between the Klamath River (exclusive) 198 

and the Russian River (inclusive). Some of these watersheds formerly contained spring run 199 

stocks as well, but they have been extirpated (Bjorkstedt et al. 2005, Spence et al. 2008).  Since 200 

there is currently no hatchery production or tagging of fish from this ESU (a small number of 201 

tags were released by a since-discontinued hatchery program), the ocean harvest rate of age-4 202 

Klamath River fall run Chinook is used as a management proxy (O’Farrell et al. 2012b). Using 203 

GSI data collected by the commercial fishery, Satterthwaite et al. (2014) found generally similar 204 

spatial patterns in CPUE of Klamath River and California Coast fish in spring and early summer 205 

with some divergence apparent in the late summer and fall.  6) “Rogue River” consists of a 206 

composite of natural-origin fall run fish and hatchery-origin spring run fish with a tagging 207 

program (Seeb et al. 2007). 208 

 209 

2.2. Data collection and genotyping 210 

During 1998-2002, the California Department of Fish and Wildlife (CDFW) collected 211 

approximately 23,000 fin clips during the routine dockside sampling of private skiffs and 212 

charterboats in the California recreational Chinook ocean salmon fishery.  Sampling occurred at 213 

approximately 20 fishing ports located between the Oregon-California border and Point 214 

Conception (Figure 1) and fin clips were stored in ethanol and frozen prior to DNA extraction. 215 
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The amount of fishing effort (angler-days) and catch (retained Chinook salmon from any stock) 216 

corresponding to the number of sampled recreational trips from which genetic samples were 217 

taken was tracked and compiled separately for each month/major port area/year combination 218 

(stratum), except that Bodega Bay (BB) was analyzed separately from the rest of the SF 219 

management area, which we termed Golden Gate (GG), due to a hypothesized change in stock-220 

specific local density occurring at Point Reyes.  In addition, data from the Klamath Management 221 

Zone was separated into Crescent City (CR) and Eureka (EU), since these subareas are sampled 222 

and reported separately in PFMC salmon documents.  Since the CDFW samples approximately 223 

20% of all salmon landings, and thus only a subset of fishing trips was sampled for genetic 224 

analyses, these catch and effort values are less than those reported in PFMC documents (e.g., 225 

PFMC 2013) for the recreational fishery as a whole. The smaller values used here allow for 226 

direct calculation of CPUE from catch estimates made using our dataset since effort and total 227 

catch are measured for the same subset of the fishery. 228 

Budgetary and staffing constraints only allowed the genotyping of approximately one half of 229 

the samples. Selection of tissues for genotyping was done using stratified random sampling, with 230 

complete sampling of small strata. If less than 111 tissue samples were collected within a 231 

stratum, all tissue samples from that stratum were genotyped. For strata with larger collections, 232 

110 tissue samples were selected at random for genotyping. For this subsampling, FB, BB, GG, 233 

and MO (Figure 1; Table 1) were each treated as distinct areas, while CR and EU were treated as 234 

a single area.  235 

Genomic DNA was extracted from each fin clip with DNeasy 96 extraction kits using a 236 

BioRobot 3000 (Qiagen Inc.). DNA extractions were diluted 1:2 and 1.25 µl of this dilution was 237 

added to a pre-amplification PCR containing 2.5 µl PCR master mix (Qiagen) and unlabeled 238 
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primer pairs from each of the 96 SNP loci used in Clemento et al. (2014), each with a final 239 

concentration of 0.05 µM. Reaction products were diluted ~6:1 and added to 2.5 µl of PCR 240 

master mix and 0.25U AmpliTaq Gold DNA polymerase (Applied Biosystems) following the 241 

manufacturer’s protocols. These were then mixed with 96 TaqMan assays (Applied Biosystems), 242 

on 96.96 Dynamic Arrays (Fluidigm Corporation) using the Fluidigm IFC Controllers to create 243 

9,216 individual PCR reactions that were thermal cycled on a Fluidigm FC1™ thermal cycler, 244 

with products imaged on an EP1 Reader. Genotypes were called and the data compiled using the 245 

Fluidigm SNP Genotyping Analysis software. During this scoring process, the relative 246 

fluorescence of alternate assays at each locus was visualized as a scatterplot for 96 individuals. 247 

Individual points that fell outside of clusters diagnostic of either the heterozygote or alternate 248 

homozygote genotypes were considered to have poor data quality (due to poor sample condition 249 

or laboratory error) and left uncalled for that locus (Clemento et al. 2011). Individual genotypes 250 

with more than 5 uncalled loci were excluded from later analyses as described below. 251 

 252 

2.3. Genetic Stock Identification 253 

The resultant 96-locus genotypes were used to determine the most probable reporting group 254 

of origin using the software gsi_sim (Anderson et al. 2008). This program uses established 255 

genetic stock identification (GSI) methods (Smouse 1990, Rannala and Mountain 1997) to 256 

compare each genotype to allele frequencies estimated for previously-sampled, distinct 257 

populations included in the "reference baseline" (Clemento et al. 2014). In our case the baseline 258 

consists of 68 North American Chinook salmon populations plus California coho (which are 259 

occasionally mistaken for Chinook salmon). Because some populations cannot be reliably 260 

discriminated on the basis of these 96 loci, the populations are grouped into 38 reporting groups 261 
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(37 Chinook groups, plus coho) that can be reliably differentiated. This baseline is focused on 262 

California and Oregon stocks but includes populations from as far north as Alaska and is 263 

expected to include representatives of every stock likely to be encountered in fisheries off the 264 

coast of California. 265 

The gsi_sim program jointly estimates the mixing proportions---the unknown proportions of 266 

fish from each population or reporting group in the baseline present in the stratum being 267 

analyzed---and each individual's posterior probabilities of group membership. These individual 268 

posterior probabilities are influenced by the mixing proportions estimated from the sample in 269 

which the fish was analyzed, and thus the level at which data are stratified or aggregated could 270 

influence the individual fish assignments. We therefore evaluated the effect of aggregating our 271 

data over different temporal and spatial strata, by comparing individual assignments in the 1998 272 

season under five different levels of aggregation against CWT data that were available for 121 273 

fish from that season.  Going from coarsest to finest, the five levels of aggregation were: (1) a 274 

single stratum of all fish from all times and locations, (2) calendar month by area/subarea (Figure 275 

1), (3) calendar month by sampling port, (4) 3-week sliding window by area and (5) 3-week 276 

sliding window by sampling port. The results showed very little difference among these five 277 

levels of aggregation (concordance between GSI and CWT in 119 of 121 fish for all 5 levels of 278 

aggregation) so we used a 3-week sliding window and management area prior because it was the 279 

finest resolution that still yielded sample sizes greater than 20 for most strata.  280 

The baseline includes genotypes from coho salmon, which are fixed for a single allele at 281 

nearly all 96 of the loci, allowing us to identify and remove from analysis a relatively small 282 

number of mis-identified salmon that had been retained by fishermen. The exclusion probability 283 

for the multilocus SNP genotypes was p < 10-20 for unrelated individuals, and identical 284 
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genotypes therefore represent the same fish which was inadvertently sampled more than once. 285 

All but the first instance of an identical genotype was removed from the analysis. Finally, we 286 

removed genotypes with low-confidence assignments from the analysis. Low confidence was 287 

due to poor data quality (individual heterozygosity [iHZ] < 0.16 or > 0.56, indicating allelic 288 

dropout or sample contamination, respectively) or high uncertainty in reporting group 289 

assignment as indicated by the log of a fish's genotype probability falling more than three 290 

standard-deviations from the log-genotype probability expected in the population to which the 291 

fish was assigned and posterior probability of reporting group membership (see below) < 0.9 or 292 

data missing from more than 5 loci (see Clemento et al. 2014 for further details about these 293 

criteria). Following removal of these genotypes, we plotted stock-specific catch for each year-294 

month-area combination both proportionally and scaled as catch per unit effort. 295 

 296 

2.4. Stock-specific catch and distribution model 297 

We assumed that stock-specific CPUE served as a proxy of local density.  Estimates were 298 

made separately each month to encompass the effects of seasonal fish movements, but we 299 

combined information across years, assuming additive effects of area and year on log-CPUE 300 

(constant multiplicative effects on CPUE) as in Satterthwaite et al. (2013).  That is, for each 301 

reporting group r in each month m, the mean catch rate (λ) for an assumed negative binomial 302 

process was modeled as 303 

 304 

!"#$% & '()*+,)*-+.)*/        (1) 305 

 306 
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where y indexes years, x indexes fishing areas, βrm is the (stock- and month-specific) intercept, γ 307 

is the year effect, and ρ is the area effect.  Thus year effects were assumed to scale monthly 308 

stock-specific CPUE up or down uniformly through space (i.e., an effect of cohort strength), with 309 

the scaling of relative CPUE across space constant through time. For identifiability, '()*is the 310 

estimate for stock r in month m in GG in 1998, with 011 & 23445 & 0. 311 

We accounted for stochasticity in the catch and sampling process, as well as genetic 312 

assignment uncertainty, as in Satterthwaite et al. (2014), except that, since we had multiple years 313 

of data for a particular month/area combination, we modeled overdispersion relative to a Poisson 314 

catch process by using a negative binomial distribution (Mangel 2006, Satterthwaite et al. 2013).  315 

Briefly, given f units of fishing effort expended in a given area and month/year (subscripts 316 

suppressed), the expected mean for the total catch of fish from a particular stock, Cr, is the 317 

product of effort and stock-specific mean catch rate, λr: 318 

 319 

7"~NegativeBinomialEF'GH & I!", KLMN'OMLPH & QR    (2) 320 

 321 

and thus p(Cr,|λr,k,f) is given by the probability density function of a negative binomial 322 

distribution.  By Bayes’ theorem, 323 

 324 

NE!", Q|7", IR & TEU),VRTEW)|U),V,XR
TEW),XR

       (3) 325 

 326 

and since p(Cr,f) is a constant with respect to λr and k it can be neglected in sampling the 327 

posterior distributions of β, γ, and ρ (the constituents of λr, see equation 1) and k via Markov 328 

Chain Monte Carlo (MCMC; Gelman et al. 2004) sampling methods. For the constituents of λr, 329 



 15

we assumed independent log-uniform prior distributions allowing for lambda values as low as 330 

10-87 and as high as 100 (which is well beyond the bounds of the data), while our uniform prior 331 

on k allowed values as low as 0.2 (highly overdispersed, even lower values were excluded 332 

because they led to convergence problems) and as high as 1000 (essentially equivalent to a 333 

Poisson). 334 

Since only a subset of the catch corresponding to trips from which samples were collected 335 

was genotyped, and assignments to reporting groups are uncertain, Cr is not known with 336 

certainty.  Given n fish successfully genotyped, the vector n of the number of such fish assigning 337 

to each reporting group nr is the sum of multinomial random vectors, each of a single trial with 338 

cell probabilities given by gi, the vector of posterior probabilities that fish i originated from each 339 

of the R total possible reporting groups (gri), expressed as: 340 

 341 

YH3, HZ, … , H\]~∑ MultinomialEaOLGbM & 1, N & Yd3e, dZe, … , d\e]Rf
eg3 .  (4) 342 

 343 

Given C total fish caught over all of the sampled trips (of which n were genotyped and u were 344 

not, C=n+u), the total number of fish from each reporting group Cr is the sum of nr genotyped 345 

fish from that stock and ur un-genotyped fish from that stock, with the composition of u 346 

depending on the unknown proportion of the sample consisting of each stock πr. In the course of 347 

the MCMC, we simulated realized values of the vector of stock proportions π from their 348 

posterior distribution given the currently drawn values of nr (from equation 4) and a unit 349 

information Dirichlet prior, expressed as 350 

 351 

Yh3, hZ, … , h\]~Dirichlet mH3 n 3
\ , HZ n

3
\ , … , H\ n n

3
\o.    (5) 352 
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 353 

We then drew ur from a multinomial distribution with values for π drawn via equation (5), 354 

expressed as 355 

 356 

Yq3, qZ, … , q\]~MultinomialEaOLGbM & q, N & Yh3, hZ, … , h\]R   (6) 357 

 358 

and calculated Cr as the sum of nr and ur, which we used to update k and the components of λr 359 

via MCMC with equation (3) giving the target density. 360 

 We thus have several options for quantifying uncertainty in metrics of stock-specific 361 

catch. We can quantify uncertainty in the composition of the genotyped sample by examining the 362 

posterior distribution of nr/n, we can quantify uncertainty in the catch composition (including 363 

ungenotyped catch) using the posterior distribution of Cr/C, we can describe uncertainty in the 364 

stock composition of the source population being sampled using the posterior distribution for πr, 365 

and we can quantify uncertainty in stock-specific catch using the posterior distribution of Cr. 366 

Similarly, we can quantify uncertainty in stock-specific CPUE using the posterior distribution for 367 

λr. See the Discussion (sections 4.1 and 4.2) for guidance on quantifying uncertainty when no 368 

fish assigning to the stock of interest are recovered from the genotyped sample. We examined the 369 

importance of accounting for assignment error by comparing our posterior credible intervals of 370 

catch proportions to confidence intervals calculated assuming hypergeometric sampling with 371 

known stock identities in a set of illustrative examples varying in sample size and stock 372 

proportion. 373 

 374 

2.5. Hypothesis testing 375 
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We evaluated the strength of evidence for a delineation in stock-specific local density at 376 

Point Reyes by comparing estimates of stock-specific CPUE for sampled recreational trips out of 377 

GG (San Francisco, Sausalito, Berkeley, Emeryville, and Princeton/Half Moon Bay, 378 

corresponding primarily to fishing south of Point Reyes) against trips out of BB (Bodega Bay, 379 

corresponding primarily to fishing north of Point Reyes). For each stock/month, we used the 380 

MCMC chains generated as described above to establish the posterior distribution of the ratio 381 

between stock specific catch rates in the southern (GG) versus northern (BB) portions of the SF 382 

management area: 383 

 384 

r"# & stu	w.),*,/xyyz
stu	w.),*,/x{{z

          (7) 385 

 386 

We used the quantiles of this chain to determine whether credible intervals on this ratio were 387 

entirely above or below 1.0 and used the posterior median as a point estimate of how much the 388 

distribution of a particular stock within the current SF management area (our GG and BB areas 389 

combined) was skewed south of Point Reyes (D > 1) or north of it (D < 1).   390 

Note that if catch of fish assigning to a particular stock was zero or very low in the southern 391 

portion of the SF area (GG), this ratio will be near 0 and the MCMC sampler will typically 392 

converge.  However, if assigned catch is near zero in the northern portion, the ratio will approach 393 

infinity and cause convergence problems.  It is thus informative to inspect cases of poor 394 

convergence to determine whether assigned catch was near zero in both areas or only the 395 

northern portion of the SF management area (BB). 396 

We considered there to be strong support for a change in stock distributions around the Point 397 

Reyes boundary if the median GG/BB ratio was > 2 (for GG) or < 0.5 (for BB), AND the 398 
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lower/upper bound of the 95% credible interval was 0.1 more/less than 1. We considered there to 399 

be moderate support for such a difference if the lower/upper bound of the credible interval was 400 

0.1 more/less than 1.  We considered there to be weak support for a difference if the lower/upper 401 

bound of the credible interval was 0.01 more/less than 1, or if zero fish plausibly assigning to the 402 

applicable stock were sampled in one of the two areas (GG or BB). 403 

All MCMC chains were “burned in” for at least 5,000 iterations and run for at least 25,000 404 

iterations in the retained chain.  Additional burn-in iterations were performed if a Geweke (1992) 405 

diagnostic on the posterior chain for the ratio returned a |z|>2.0 when comparing the first 10% to 406 

the last 50% of the retained chain, and additional iterations were performed if a Raftery and 407 

Lewis (1995) diagnostic indicated that the retained chain was not sufficient to identify the 0.025 408 

quantiles to an accuracy of ±0.02 with probability of at least 0.95, with diagnostics implemented 409 

using the R (R Core Team 2013) package “coda” (Plummer et al. 2006). 410 

 411 

3. Results 412 

We successfully genotyped 10,278 fish that were sampled during the five-year 1998-2002 413 

period, representing between 1 – 12% of the total recreational landings in these areas each month 414 

(Table 1; month/area strata with landings < 15 are excluded from this range). Of these fish, 189 415 

were genetically identified as coho salmon and removed from further analysis. An additional 406 416 

genotypes were removed from the dataset for poor data quality and 41 were removed due to high 417 

uncertainty in group assignment, leaving a total of 9,642 genotypes for further analysis. To 418 

assess whether the fish removed due to low-confidence assignments were not representative of 419 

all the fish genotyped, we compared the maximum a-posteriori assignments of the 41 fish 420 

removed due to high uncertainty in reporting group assignments to those of all 9,642 fish that 421 
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were not removed.  There was no significant difference in the distribution of assigned reporting 422 

units amongst the two groups (χ2 test, p > 0.25, by simulation). For all years combined, our 423 

genetic assignments were concordant with coded-wire tag data for 292 out of 298 cases (Table 424 

2), indicating a discordance rate of 2.0% between GSI and CWT. 425 

 426 

3.1. Stock Proportions and Stock-Specific Total Catch 427 

Stock proportions were dominated by fish from the Central Valley Fall reporting group for 428 

nearly all times and areas for which data were available, with the exception of CR during August 429 

and September, which, in some years, showed a high proportion of Klamath River fish (Figure 430 

2).  However, it should be noted that the sample size for CR during these exceptional years was 431 

small (<35 fish per stratum). In the interest of legibility, Figure 2 does not reflect uncertainty in 432 

the individual stock proportion estimates, but uncertainty in both proportions and catch are 433 

addressed in section 4.1 of the Discussion. 434 

 435 

3.2. Spatial and Temporal Variability in Stock-Specific CPUE 436 

Other than the Central Valley Fall group, all stocks were caught at less than 0.5 fish per 437 

angler-day in all time-area combinations, and catch rates above 1.0 fish per angler-day were rare 438 

even for Central Valley Fall (Figure 3).  These fisheries had a bag limit of two fish per angler 439 

day, which may cause the relationship between local abundance and CPUE to be concave down 440 

at high density. At the same time, the relationship may be concave up at low density if higher 441 

abundances make it easier for fishermen to cue in on dense aggregations. As a result it is unclear 442 

whether we are likely to be overestimating or underestimating differences in fish densities 443 

among management areas.  444 
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The location of highest CPUE for Central Valley Fall fish tended to vary across months: it 445 

was typically highest in southern areas in April and May, with a more even north-south 446 

distribution in June and July, and with relatively low CPUE in the north in August and 447 

September.  Similarly, CPUE of Klamath River fish was highest near EU and CR (located just 448 

south and north of the Klamath River mouth, respectively), and was often zero or near zero in 449 

southern ports during August and September.  Instances of nonzero CPUE were also more spread 450 

out earlier in the year. 451 

There was no consistent time-area combination for the highest within-year CPUE of Central 452 

Valley Fall fish.  While the highest CPUE was observed in July for all years except 2002, the 453 

location of highest CPUE varied among GG, BB, and FB. In 2002, CPUE of Central Valley Fall 454 

fish was highest in GG for all months except April (FB) and September (CR). In the interest of 455 

legibility, Figure 3 does not reflect uncertainty in the individual stock-specific CPUEs, but 456 

factors contributing to uncertainty in CPUE are addressed in section 4.2 of the Discussion, and 457 

section 3.3 describes inference about statistical support for differences in CPUE.  458 

 459 

3.3. Changes in Stock-Specific CPUE Across Point Reyes 460 

Fish assigned to the Central Valley Winter reporting group were never sampled north of FB 461 

and very rarely sampled north of Point Reyes.  Thus in most months there appeared to be support 462 

for a hypothesized difference in local density of winter run fish north (i.e., BB) and south (i.e., 463 

GG) of Point Reyes (Table 3), although the small number of winter run fish sampled limit the 464 

strength of conclusions that we can draw.  There appeared to be strong support for higher CPUE 465 

of Central Valley Spring fish in BB during June but higher CPUE in GG during September.  466 

There was strong support for higher Central Valley Fall CPUE in GG during May but not in 467 
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other months.  There was strong support for higher CPUE of California Coast fish in BB during 468 

April, contrasted with weak support for higher CPUE of California Coast fish in GG during May.  469 

There was weak support for higher CPUE of Klamath River fish in GG in May, but strong 470 

support for higher CPUE in BB during July and weak support for higher CPUE in BB during 471 

September.  There was moderate support for higher CPUE of Rogue River fish in GG during 472 

April, and weak support for the same pattern in June and September. 473 

 474 

4. Discussion 475 

 Genetic stock identification methods provided the ability to estimate spatial and temporal 476 

variation in stock proportions and stock-specific CPUE for a suite of untagged and partially 477 

tagged stocks of conservation concern, including untagged California Coast and Central Valley 478 

Spring stocks (both listed as threatened) and the partially tagged Central Valley Winter stock, 479 

and to evaluate the consistency of observed patterns with previous assumptions or inferences 480 

made from tagged proxy stocks. It also allowed analysis of partially tagged stocks (Central 481 

Valley Fall, Klamath River, Central Valley Winter, Rogue River) and comparison of these 482 

observed patterns to those determined in previous studies utilizing just the tagged components of 483 

these stocks.  These results allowed for a relatively comprehensive characterization of the stocks 484 

that contributed to the California recreational ocean salmon fishery during the five year study 485 

period. 486 

 The 298 fish with known stock of origin provided via CWT suggested a discordance rate 487 

of 2.0% (6/298), similar to the 1.05% rate reported by Clemento et al. (2014, 11/1052, χ2 = 1.75, 488 

p > 0.18) for a fishery sample that allowed substantially more comparisons due to a large 489 

increase in the Central Valley Fall CWT tagging rate starting in brood year 2007 (Buttars 2012). 490 
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Discordant assignments were too rare to identify particularly problematic stocks with high 491 

confidence, although apparent misassignments either to or from the Rogue River stock made up 492 

33% of discordant results in this study despite the overall small proportion of Rogue River fish. 493 

Similarly, Clemento et al. (2014) reported only a 45% GSI~CWT agreement rate for Rogue 494 

River, noting that Rogue River fish are genetically similar to fish from the Klamath River and 495 

North California / South Oregon Coast reporting groups. 496 

 497 

4.1. Stock Proportions 498 

 Stock proportions did not vary in any consistent way across years, with the proportion of 499 

Central Valley Fall fish consistently high relative to all other reporting groups including Klamath 500 

River.  While Klamath River and other non-Central Valley Fall stocks often contribute to 501 

fisheries in the northern areas of California, even constituting the majority of the catch on 502 

occasion, the same was not observed for the southern areas.  In all years, months, and areas 503 

considered here, areas south of FB rarely had substantial contributions from stocks originating 504 

outside of the Central Valley. However, a separate study showed that in 2007, a year of 505 

unusually low Sacramento River fall Chinook abundance, fish assigning to the Central Valley 506 

Fall reporting group made up only 71% of a sample of 340 fish collected from the MO 507 

recreational fishery (Lindley et al. 2009).  During this study, the average proportion of Central 508 

Valley Fall fish in the MO fishery was 92% among all months and years.  509 

 Uncertainty in stock proportion estimates depends primarily on the sample size and the 510 

magnitude of stock proportions, with smaller relative error as sample sizes increase or stock 511 

proportions increase (Allen-Moran et al. 2013). Additionally, if the interest is in composition of 512 

the catch per se (sampled without replacement) as opposed to the source population from which 513 
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the catch was sampled (generally large enough to consider as sampled with replacement), 514 

uncertainty decreases for a given sample size when that sample size makes up an increasing 515 

fraction of the total catch. Thus for illustrative purposes we present uncertainty calculations for 516 

two sampling strata: MO in July 1999 which had a relatively large sample size that constituted 517 

approximately 20% of the total harvest (the target sampling rate for the current CWT program), 518 

and CR in September 2001 which had a small sample size but nevertheless genotyped 519 

approximately 40% of the total harvest for that stratum. 520 

 For CR in September of 2001, 29 total fish were harvested by sampled trips, of which 12 521 

fish were successfully genotyped.  Of these 12 fish, 7 assigned with high probability to Central 522 

Valley Fall, 4 assigned with high probability to Klamath River, and 1 indeterminate fish assigned 523 

with moderate probability to either Klamath River or Rogue River (but almost certainly one of 524 

those two). Resultant 95% credible intervals on the proportion of catch from each reporting 525 

group were 0.34-0.76 Central Valley Fall, 0.21-0.59 Klamath River, and 0.0-0.10 Rogue River. 526 

Assuming all assignments were certain and that the indeterminate fish assigned to Rogue River, 527 

the methods described in Allen-Moran et al. (2013) applying a normal approximation to a 528 

hypergeometric sampling model yield approximate 95% confidence intervals of 0.37-0.80 for 529 

Central Valley Fall, 0.20-0.63 for Klamath River (assuming the indeterminate fish was Klamath 530 

River, otherwise the bounds drop to 0.13-0.54), and 0-0.20 for Rogue River.  These differences 531 

appear to result largely from propagating the uncertainty associated with assignment error, but in 532 

part because the normal approximation employed by Allen-Moran et al. (2013) breaks down with 533 

small numbers of fish, and because our method explicitly accounts for the simultaneous 534 

estimation of multiple proportions. An exact solution implemented via the "Sprop" function in R 535 

package "samplingbook" (Manitz et al. 2013) yields confidence intervals of 0.31-0.83 for Central 536 
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Valley Fall, 0.17-0.69 for Klamath River (or 0.14-0.62 if the indeterminate fish is of Rogue 537 

River origin), and 0.03-0.34 for Rogue River (assuming the indeterminate fish is of Rogue River 538 

origin). 539 

 For MO in July 1999, 574 total fish were harvested by sampled trips, of which 108 were 540 

successfully genotyped. 102 assigned with high probability to Central Valley Fall, 4 assigned 541 

with essential certainty to Central Valley Winter, and 2 fish assigned to Rogue River with high 542 

probability. Resultant 95% credible intervals on the proportion of catch from each reporting 543 

group were 0.88-0.97 Central Valley Fall, 0.01-0.07 Central Valley Winter, and 0.0-0.05 Rogue 544 

River. Assuming all assignments were certain, the methods described in Allen-Moran et al. 545 

(2013) applying a normal approximation to a hypergeometric sampling model yield approximate 546 

95% confidence intervals of 0.91-0.98 Central Valley Fall (0.89-0.98 using exact method), 0.01-547 

0.07 Central Valley Winter (0.01-0.09 using exact method), and 0-0.04 Rogue River (0.004-0.06 548 

using exact method). Thus in this case accounting for assignment error causes relatively little 549 

change in the estimated uncertainty. 550 

 These results suggest that future GSI sampling programs should employ larger sample 551 

sizes (and/or sample a large fraction of the catch) if confident inference about rare stocks is 552 

desired. In general, the sample size required scales inversely with the target proportion (i.e. a 553 

proportion half as small requires twice the sample size) and with the square of the desired 554 

precision (i.e. halving the standard error requires quadrupling the sample size, Allen-Moran et al. 555 

2013). 556 

 Uncertainty in stock-specific catch is similar to uncertainty in catch stock proportions 557 

when total catch is assumed known, as was the case in this study. The MCMC sampler we 558 
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developed could be readily expanded to account for uncertainty in total catch by integrating over 559 

the plausible range of variability in the number of ungenotyped fish u. 560 

 A related concern is the detection of rare stocks. For detection of stocks present in the 561 

sampled ocean area, the sampled fish can be treated as taken with replacement and modeled 562 

using a binomial, such that the probability of sampling at least one fish (Q1) with a sample of 563 

size n given stock proportion p is: 564 

 565 

|3 & 1 } E1 } NRf          (8) 566 

 567 

And the required sample size to achieve a specified probability of detection is: 568 

	569 

n =
log 1−Q1( )
log 1− p( )

           (9) 570 

 571 

 When determining the presence of a stock in the catch catch (totaling C), sampling is 572 

without replacement and modeled as a hypergeometric process: 573 

 574 
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          (10) 575 

 576 

And the required sample size is approximately (see Allen-Moran et al. 2013 for an exact 577 

solution): 578 
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 579 
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        (11) 580 

 581 

 Equations 8 and 10 suggest a way of quantifying uncertainty about rare stock presence, 582 

given no recoveries of that stock in a sample.  Subtracting the relevant equation from 1.0 yields 583 

the probability of obtaining 0 recoveries from a stock, given it is present at proportion p; and this 584 

can serve as a likelihood function for determining the probability of any value of p, given 0 585 

observed recoveries and some prior on p, in a Bayesian framework. The prior merits careful 586 

consideration and one might want to consider an approach that shares information across space 587 

and/or time, such that an observation of 0 recoveries for a particular stock is considered stronger 588 

evidence for absence if the same stock has been consistently undetected in adjacent areas and/or 589 

the same area at different times. 590 

 591 

4.2. Spatial and Temporal Variability in Stock-Specific CPUE 592 

 Consistent with earlier studies of CWT recoveries, Central Valley Winter fish appear 593 

most concentrated in the south (O’Farrell et al. 2012a, Satterthwaite et al. 2013) and are almost 594 

never recovered from samples north of the SF management area.  Central Valley Fall fish appear 595 

to concentrate in the Gulf of the Farallones, near the mouth of the Central Valley river network 596 

in the fall, with CPUE in northern areas dropping at the time adult spawners return to the Central 597 

Valley, as previously inferred from CWT (Satterthwaite et al. 2013).  These results suggest that 598 

inferences based on tagged hatchery fish from these stocks are representative of the hatchery plus 599 

natural origin composite, at least in terms of coarse scale spatial distribution (see also Weitkamp 600 

and Neely 2002, Weitkamp 2010). However, since Central Valley Fall appears dominated by 601 
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hatchery-origin fish (Barnett Johnson et al. 2007, Kormos et al. 2012, Palmer-Zwahlen and 602 

Kormos 2013), little difference between hatchery-origin fish and the composite would be 603 

expected even if natural-origin fish differed in their distribution. Still, the Central Valley Winter 604 

composite is primarily natural-origin (Winship et al. 2014), suggesting that the tagged hatchery 605 

fish are similar in distribution to their natural-origin counterparts.  Despite considerable variation 606 

in the reconstructed abundance of Sacramento fall run Chinook salmon over these years 607 

(O'Farrell et al. 2013), peak CPUE of Central Valley Fall fish was between 1.0 and 1.5 fish per 608 

angler day in all years, with limited predictability in when and where the peak CPUE occurred.  609 

 In August and September of most years, CPUE of the untagged California Coast stock 610 

was highest in Fort Bragg while CPUE of Klamath River fish was highest in Eureka and 611 

Crescent City, similar to the pattern found by Satterthwaite et al. (2014) using commercial data 612 

collected in 2011 and 2012 and consistent with the results in NMFS (2000) derived from CWT 613 

recovery data from a since-discontinued hatchery program.  Thus the potential for these stocks to 614 

diverge in their spatial distribution, likely to the mouths of their natal rivers in the fall, appears to 615 

be supported for an extended time period and across fishery sectors. The reinforcement of this 616 

result supplied by this study is particularly relevant because an upper limit to the expected age-4 617 

Klamath River fall run harvest rate is used to constrain the ocean fisheries for the purpose of 618 

protecting the California Coast stock (O’Farrell et al. 2012b). 619 

The apparent, but weak, tendency for higher CPUE of Rogue River fish in GG than BB 620 

was unexpected since the Rogue River is the northernmost source river among the stocks 621 

analyzed.  Given all of the factors besides stock that can influence CPUE (e.g. weather 622 

conditions, nonrandom spatial sampling by fishermen), these patterns in CPUE should not be 623 

over-interpreted as reflective of absolute spatial distributions, but they are reflective of spatial 624 
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patterns of overlap with fisheries, which may be more relevant from a management perspective 625 

than absolute spatial distribution. 626 

Uncertainty in CPUE is affected by the same considerations as stock proportions and 627 

catch (described in section 4.1) and also by the amount of fishing effort, with uncertainty 628 

decreasing as fishing effort increases (Satterthwaite et al. 2013).  Because Equation 3 has a 629 

nonzero value for positive λr even when Cr=0, the posterior distribution for λr calculated using 630 

our methods will always account for the possibility that a stock was present (had some nonzero 631 

probability of being caught) even if it was not sampled, becoming more confident at ruling out 632 

all but very low probability of presence as fishing effort increases.  As with stock proportions, 633 

careful consideration should be given to prior specification and/or sharing information across 634 

space or time when making inference about rarely sampled stocks. 635 

An additional challenge in interpreting either stock proportions or stock-specific CPUE 636 

results from this study are the effects of minimum size limits in the fishery. Since fish sampled in 637 

this study were not aged, and there is not detailed information on size-at-age available for all of 638 

the stocks studied here, we were unable to adjust catch on the basis of stock-specific expected 639 

proportions of fish that are legal size (Satterthwaite et al. 2013) and thus underestimating 640 

contacts with stocks of fish with smaller body size such as Central Valley Winter, for which age-641 

3 fish (those most commonly encountered in the fishery) have mean total lengths growing from 642 

approximately 21 to 28 inches over the course of the fishing season with a standard deviation of 643 

about 2 inches (O'Farrell et al. 2012a).  In addition, the minimum size limit in effect varied both 644 

spatially and temporally throughout the study period, ranging from 20 to 24 inches total length.  645 

It was also common for the minimum size limit in the KC to be less than the limit in effect for 646 

the southern areas, especially during the spring fisheries.    647 
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 648 

4.3. Suitability of Point Reyes as a Management Delineation Line  649 

 This study yielded limited support for using Point Reyes as an additional management 650 

delineation line.  Although marginal statistical support was found for changes in local CPUE for 651 

some stocks, these differences were not found consistently for all months. The most consistent 652 

pattern was found for Central Valley Winter fish, which were almost never sampled north of 653 

Point Reyes, but contact rates with Central Valley Winter fish tend to be low in GG as well, and 654 

without more intensive sampling it is difficult to quantify how much lower CPUE of Central 655 

Valley Winter fish might be in BB versus GG. A general decrease in CPUE moving north would 656 

be expected based on previous results (O’Farrell et al. 2012a, Satterthwaite et al. 2013), but these 657 

studies also reported occasional winter run fish even further north than BB.  Only 1% of all 658 

Central Valley Winter CWTs recovered in California ocean recreational fisheries have been 659 

taken north of BB.  660 

 661 

4.4. Fishery Implications 662 

The consistently high proportions of Central Valley Fall fish in all times and areas 663 

demonstrate how vitally important this stock is to California recreational fisheries. Central 664 

Valley Fall abundance was relatively high during the study period, yet a rapid decline a few 665 

years after the end of the study period culminated in the lowest recorded abundance of this stock 666 

(Lindley et al. 2009) and the closure of nearly all ocean salmon fisheries in California and 667 

Oregon during 2008 and 2009.  While other stocks, such as the Klamath River and Central 668 

Valley Winter, have more frequently constrained California ocean salmon fishing opportunity, 669 

the much lower relative CPUE of other contributing stocks demonstrates that the abundance of 670 
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the Central Valley Fall stock is the primary driver of the recreational fishery in terms of catch per 671 

angler day and suggests that fishery success would not be buffered by these stocks during times 672 

of low Central Valley Fall abundance. 673 

 674 

4.5. Utility of Approach 675 

 The ability of GSI to produce stock proportion estimates could be useful in forecasting 676 

impacts of quota fisheries, which are currently rare in California but are more frequently 677 

employed in other areas.  However, because the observed proportions of the stocks of greatest 678 

conservation concern (e.g., Central Valley Winter, California Coastal) were quite small, large 679 

sample sizes would be required to estimate these proportions with precision or to be confident 680 

that a sample not containing any fish from the stock of interest equates to a very low proportion 681 

of that stock existing in the ocean fishery being sampled (Allen-Moran et al. 2013).  682 

Understanding the full impacts of the ocean fisheries would also require increased spatial 683 

coverage since many of these stocks are also harvested in appreciable numbers in fisheries off 684 

the coast of Oregon (Satterthwaite et al. 2013).  Representative sampling of both commercial and 685 

recreational fisheries would need to occur simultaneously to get a complete picture of tagged and 686 

untagged stock distribution by time and area; however, because the current management 687 

framework does not directly limit impacts on untagged stocks, it is not immediately clear how 688 

such information could be used.    689 

The documentation of spatio-temporal variation in stock-specific CPUE is largely 690 

consistent with previous inferences from CWT recoveries.  This suggests that the common 691 

practice of extrapolating from tagged proxy stocks to untagged surrogates can be appropriate in 692 

at least some cases, although the total number of comparisons made to test this assumption is still 693 
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limited, and the Central Valley Fall case may not be very informative given the predominance of 694 

hatchery-origin fish in the aggregate stock.  New insights into the spatial distribution of untagged 695 

stocks is somewhat limited by their rarity.  The CPUE of Central Valley Spring fish was so 696 

consistently low that differences between strata with low CPUE and strata with zero catch are 697 

generally statistically indistinguishable (Satterthwaite et al. 2013).  This is a general problem 698 

with inference about rare stocks, regardless of the type of tag employed, and reiterates the need 699 

for large sample sizes (Allen-Moran et al. 2013) when rare stocks are of interest.  An additional 700 

complication in interpreting our estimates of stock proportions or CPUE is that these estimates 701 

are not age-specific. Thus, the collection and analysis of supplemental age data (e.g., scale aging, 702 

Kormos et al. 2010) is necessary to gain information on the strength of specific cohorts and to 703 

conform with the current age-specific harvest management goals in place for many of these 704 

stocks (PFMC 2012). 705 

 706 
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Figure Captions 923 

 924 

Figure 1. Map of California salmon fishery management areas (KC, FB, SF, MO), sub-areas 925 

defined in this paper (CR, EU, BB, GG), sampled ports, and natal rivers of major Chinook 926 

salmon populations. 927 

 928 

Figure 2. Chinook salmon stock proportions by year, month, and area. Numbers below bars 929 

indicate the number of Chinook salmon successfully genotyped. Blank bars indicate no data (due 930 

either to fishery closure or lack of samples collected). (color required) 931 

 932 

Figure 3. Stock-specific CPUE (fish per angler-day) for sampled fish. Blank bars indicate no data 933 

(due either to fishery closure or lack of samples collected). (color required) 934 

 935 



Table 1. California ocean recreational fishery Chinook salmon landings: total fish landed 

for the period 1998-2002 compared to the number of Chinook salmon analyzed. Landing 

data provided by CDFW. Blank cells indicate fishery closures.   

 
  Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

CR 
Genotyped 

   
86 105 106 136 49 

  Landed 
   

4,458 13,113 6,177 14,712 3,852 
  Prop. Genotyped    0.02 0.01 0.02 0.01 0.01   

EU 
Genotyped 

   
199 405 229 321 87 

  Landed 
   

4,458 13,113 6,177 14,712 3,852 
  Prop. Genotyped    0.04 0.03 0.04 0.02 0.02   

FB 
Genotyped 2 82 252 363 410 373 375 172 2 1 

Landed 14 664 3,712 9,923 21,441 32,684 21,599 2,621 6 2 
Prop. Genotyped 0.14 0.12 0.07 0.04 0.02 0.01 0.02 0.07 0.33 0.50 

BB 
Genotyped  9 87 80 152 176 106 100 32 3 

Landed  9 3,955 5,312 13,042 49,639 11,347 7,287 569 14 
Prop. Genotyped  1.00 0.02 0.02 0.01 0.004 0.01 0.01 0.06 0.21 

SF 
Genotyped 

 
7 434 362 371 346 398 350 298 123 

Landed 
 

779 20,232 32,170 48,162 66,104 46,101 21,311 14,001 3,184 
Prop. Genotyped  0.01 0.02 0.01 0.01 0.005 0.01 0.02 0.02 0.04 

MO 
Genotyped 

 
234 443 436 423 468 327 122 

  Landed 
 

7,371 86,439 36,806 30,186 28,693 5,100 1,847 
  Prop. Genotyped  0.03 0.01 0.01 0.01 0.02 0.06 0.07   

 
 

Table 1



Table 2. Concordance between CWT and GSI assignments to stock of origin. The 

"Concordant CWT" column gives the number of CWT'd fish for which the GSI stock 

assignment matched the reporting group corresponding to the CWT release code, while 

the "Discordant CWT" column lists the other stocks from which CWT were recovered, 

and how often, for fish assigning to a given reporting group. 

Reporting group  Concordant CWT Discordant CWT 
Central Valley Spring 1 none 
Central Valley Fall 281 Klamath River (1),  

Upper Columbia Summer/Fall (1) 
Klamath River 4 Rogue River (1),  

Central Valley Fall (2) 
Rogue River 3 Central Valley Fall (1) 
Mid Oregon Coast 1 none 
Mid Columbia River Tule 1 none 
Snake River Fall 1 none 
 

 

Table 2



Table 3. Stocks with significantly greater CPUE south of Pt. Reyes (GG) or north of Pt. 

Reyes (BB). ++ indicates that the median GG/BB ratio is > 2 (for GG) or < 0.5 (for 

BB), AND the lower/upper bound of the 95% credible interval is 0.1 more/less than 

1. A + indicates that the lower/upper bound of the credible interval is 0.1 more/less 

than 1.  If there is no additional mark, but an area is reported, the lower/upper 

bound of the credible interval is 0.01 above/below 1, or zero fish plausibly assigning 

to the applicable stock were genotyped in either GG or BB. Blank cells showed little 

or no evidence of a difference. 

 
 April May June July August September 
Rogue R. GG+  GG   GG 
Klamath R.  GG  BB++  BB 
CA Coast BB++ GG     
CV Fall  GG++     
CV Spring   BB++   GG++ 
CV Winter GG GG GG  GG GG 
 

Table 3
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