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Abstract  31	

 32	

The sea urchin Tripneustes gratilla is ecologically and economically important in the Indo-Pacific 33	

region. We use population genetic methods to investigate the population structure and historical demography 34	

of exploited populations in the Philippines. Sea urchins sampled in 6 localities in western Luzon and 4 outgroup 35	

sites were sequenced for mitochondrial cytochrome oxidase-1 gene (n = 282) and genotyped for seven 36	

microsatellite loci (n = 277). No significant genetic structure was found for either class of markers, indicating 37	

either extensive gene flow across the archipelago, or that populations have high genetic diversity and have not 38	

yet attained equilibrium between genetic drift and migration following large changes in demography. 39	

Interestingly, demographic inferences from the two types of markers were discordant. Mitochondrial lineages 40	

showed demographic expansion during the Pleistocene while microsatellite data indicated population 41	

decline. Estimates for the date of each event suggest that a Pleistocene expansion could have preceded a more 42	

recent population decline, but we also discuss other hypotheses for the discordant inferences.The high genetic 43	

diversity and broad distribution of haplotypes in populations that recently recovered from fishery collapse 44	

indicate that this species is very resilient over evolutionary timescales.   45	
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1. Introduction 61	

The widely-distributed Tripneustes gratilla is a high-value sea urchin in the Indo-Pacific region. This 62	

ubiquitous herbivore occupies a key trophic position in nutrient cycling especially in tropical seagrass 63	

ecosystems (Koike, et al. 1987; Klumpp et al., 1993; Alcoverro and Mariani, 2002). T. gratilla, being an 64	

opportunistic grazer, also functions as a keystone species for coral reef and sea grass communities by controlling 65	

invasive macroalgae (Conklin and Smith, 2005; Stimson et al., 2007). Population outbreaks in some areas, 66	

however, have resulted in overgrazing of seagrasses (Eklöf et al., 2008) and foliose algae (Valentine and Edgar, 67	

2010). This is also an economically-valuable sea urchin species and primarily collected for its high quality 68	

gonad – a specialty food item primarily in Japan (Lawrence and Agatsuma, 2001; Andrew et al., 2002). Many 69	

fisheries for this species have declined over time due to indiscriminate harvesting and lack of management 70	

measures which resulted to economic losses (i.e. Shimabukuro, 1991; Talaue-McManus and Kesner, 1995; 71	

Andrew et al., 2002). While these cases documented significant fisheries impacts on T. gratilla populations, 72	

they need to be placed into a broader spatial and temporal context. What does the regional population structure 73	

of the species look like? What is the demographic history of the species? 74	

A population genetic approach can potentially provide these much needed insights for exploited 75	

invertebrate species (Thorpe et al., 2000). Molecular methods were initially used with marine species to better 76	

understand the effects of larval dispersal on the population structure (e.g. Waples 1987; Doherty et al., 1995) 77	

and determine the spatial scales of population connectivity (Palumbi, 2003; 2004; Hedgecock et al., 2007; 78	

Cowen and Sponaugle, 2009). Development of genetic markers and analysis have since extended the utility of 79	

genetic data to direct measurement of migration, estimation of effective population size, and examination of 80	

population demographic history (Emerson et al., 2001; Pearse and Crandall, 2004; Manel et al., 2005; Hellberg, 81	

2009; Hare et al., 2011). To date, genetic assessments on T. gratilla populations have been limited to broad scale 82	

phylogeographic surveys of its genus (Lessios et al., 2003) and phylogenetic studies (Zigler and Lessios, 2003; 83	

Palumbi and Lessios, 2005). Mitochondrial sequence variation showed very weak regional divergence of 84	

Tripneustes populations across the Indo-Pacific region despite the significant local differentiation among the 85	

populations in this region (Lessios et al., 2003). This implies that T. gratilla in this region belongs to a large 86	

Tripneustes metapopulation (Lessios et al., 2003). The only finer-scale genetic survey on T. gratilla populations 87	

was carried out in western Luzon and eastern Philippines (Malay et al., 2002). This was conducted soon after the 88	

collapse of a local artisanal sea urchin fishery (i.e. Talaue-McManus and Kesner, 1995) to aid management of 89	

the heavily-exploited T. gratilla populations in northwestern Luzon (Malay et al., 2002). Based on six allozyme 90	
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markers, genetic differentiation of sea urchin populations within the western Luzon region was not significant, 91	

indicating extensive gene flow among populations (Malay et al., 2002).This lack of genetic structure of T. 92	

gratilla was initially explained by its potential for long-distance larval dispersal (Malay et al., 2002). This 93	

species has a relatively long planktonic larval duration of 20 to 52 days under culture conditions (Shimabukuro, 94	

1991; Juinio-Meñez et al., 1998; Lawrence and Agatsuma, 2001). The planktonic stage or echinopluteus, though 95	

capable of movement using their ciliated bands (Emlet et al., 2006), is categorized as a weakly swimming larva 96	

and considered passive to the forces of oceanographic processes (Chia et al., 1984 cited in Weersing and 97	

Toonen, 2009). Thus, there is great potential for T. gratilla larvae to be dispersed over large distances before 98	

settlement.  It is possible, though, that limited but significant genetic differentiation was not detected with the 99	

employed genetic marker, sampling design, or analysis (Ward, 2006). The availability of DNA markers for T. 100	

gratilla and recent developments in population genetics analysis presents an opportunity to re-examine the 101	

genetic variation in this exploited species.  102	

Using multiple molecular markers, this study aims to obtain a more detailed characterization of T. 103	

gratilla populations in the Philippines to make inferences about population structure, effective size, and 104	

demographic history and gain insights on the vulnerability of the species to exploitation. Mitochondrial DNA 105	

has been noted for its relatively rapid development of population genetic structure due to its small effective 106	

population size. Based on this, it has become a preferred genetic marker over allozymes for initial examination 107	

of population differentiation (Bowen et al., in press). Given its non-recombining nature, mtDNA has been useful 108	

in gaining some insights on species evolutionary history and population demographic history based on maternal 109	

lineage (Avise et al., 1987; Liu and Cordes, 2004 but also see Ballard and Whitlock, 2004). On the other hand, 110	

microsatellites are inherited as codominant markers and thus provide insights on genetic differentiation of 111	

populations based on gene flow of both sexes (Liu and Cordes, 2004; Selkoe and Toonen, 2006). Highly 112	

polymorphic microsatellite loci also have the potential to reveal contemporary gene flow and effective 113	

population size (Ovenden et al., 2007; Saenz-Agudelo et al., 2011).  The different characteristics of the DNA 114	

markers and new analytical approaches employed in this study should aid in elucidating historical and 115	

contemporary processes that influenced the current pattern of genetic variations in T. gratilla. 116	

  117	
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2. Materials and methods 118	

 119	

2.1. Tissue collection and DNA extraction 120	

Samples were collected from 6 sites along the western Luzon coast and 4 outgroup sites from other 121	

regions in the archipelago (Table 1). Only adult sea urchins with test diameter greater than 60 mm (Bangi, 2001) 122	

were collected on snorkel and tube feet and spines were sampled non-destructively. Individual tissue samples 123	

were kept in a vial and preserved in 90% ethanol. DNA was extracted from the tissue samples using a 10 % 124	

Chelex TM (Biorad) solution (Walsh et al., 1991).   125	

 126	

2.2. DNA sequencing of the CO1 region 127	

A region of the mitochondrial cytochrome oxidase subunit 1(CO1) gene was amplified using the 128	

universal forward primer: CO1f 5’ CCTGCAGGAGGAGGAGAYCC and a Tripneustes-specific reverse primer 129	

CO1TR1 5’GGCATTCCAGCTAGTCCTARAAA (Lessios et al., 2003). PCR reactions were carried out in a 130	

final volume of 25-µl containing 1 µl genomic DNA extraction, 2.5 µl 10x PCR Buffer (PE-II), 2.5 µl of 8 mM 131	

dNTPs, 2.0 µl of 25 mM MgCl2, 1.25 µl of each primer (10 mM), 0.125 µl of Amplitaq Gold polymerase 132	

(Applied Biosystems; 5 units/µl) and 14.5 µl of molecular grade water. The PCR temperature profile was as 133	

follows: initial denaturation for 7 min at 95oC, 40 times of the main cycle: 30 s at 95oC (denature), 30 s at 52oC 134	

(anneal) and 1 min at 72oC (extension), and 10 min of final elongation at 72oC. After amplification, PCR 135	

products were run in 1% agarose gels stained with ethidium bromide to evaluate the quality and quantity of the 136	

amplified DNA. Excess dNTPs and primers were removed prior to cycle sequencing using an enzymatic 137	

method.  Five (5) µl of the PCR product was incubated with 0.5 µl (0.5 U) of shrimp alkaline phosphatase and 138	

0.5 µl (5 U) of exonuclease (GE Healthcare) for 30 min at 37oC, 15 min at 80oC, and 1 min at 25oC. Purified 139	

DNA products were cycle sequenced in both directions using BigDye 3.0 terminator chemistry (Applied 140	

Biosystems, Foster City, CA). The cycle sequencing reaction was carried out in a 12-µl volume reaction: 2.5 µl 141	

of ABI 5x sequencing buffer, 0.5 µl of 10 mM primer, 0.5 µl BigDye, 0.5µl DMSO, 7.0 µl molecular grade 142	

water and 1 µl of cleaned PCR product. The sequencing program started with 25 cycles of 95oC for 10 s, 50oC 143	

for 5 s and 60oC for 5 min and a final step of 5 min at 20oC (Barber et al., 2006). Afterwards, the labelled DNA 144	

sequences were precipitated with ethanol, resuspended in formamide, and sent to Life Sciences Core 145	

Laboratories Center at Cornell University for sequencing on an Automated 3730 DNA Analyzer (Applied 146	

Biosystems, Inc.).  147	
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 148	

2.3. Microsatellite PCR amplification and genotyping 149	

Seven out of 11 microsatellite loci developed for T. gratilla (Carlon and Lippé, 2007) were used 150	

(Supplementary Table S1). The other four loci were excluded due to persistence of null alleles in all 151	

subpopulations tested (Carlon and Lippé, 2007). PCR amplifications of three loci: Tgr-B11, Tgr-C117, and Tgr-152	

D134 were carried out in multiplex while the remaining four loci (i.e. Tgr-24, Tgr-A11, Tgr-C11, and Tgr-D5) 153	

were individually amplified in separate PCR runs. The multiplex PCR consisted of 1 µl genomic DNA extracts, 154	

1 µl 10x PCR buffer, 1 µl of 8 mM dNTPs, 1 µl of 1mg/ml Bovine Serum Albumin (BSA A7030 Sigma), 0.8 µl 155	

of 25 mM MgCl2, 0.05 µl of Amplitaq polymerase (5 units/µl), 2.15 µl of molecular grade water, and the 156	

forward and reverse primers (10 mM) of each locus, 0.25 µl Tgr-B11, 1.0 µl Tgr-C117, and 0.25 µl Tgr-D134 157	

adding to a final volume of 10 µl.  158	

For single-locus PCR, the 10-µl reactions contained 4.15 µl of molecular grade water, 0.5 µl of the 159	

forward and reverse primers (10 mM) of a specific locus with same volume of the remaining reagents as 160	

described above. The temperature profile of the PCR was the following: an initial denaturation at 94oC for 7 min 161	

followed by several cycles (38-40 times) of denaturing at 94oC for 30 s, annealing at TA for 30 s (Supplementary 162	

Table S1), and elongation of 5 min at 72oC. PCR products were then electrophorosed in 1% agarose gels, 163	

stained with ethidium bromide, and examined under UV light.  164	

For genotyping, microsatellite loci were divided into two pooling sets of PCR products. One pooling 165	

set was a mixture of 0.5 µl PCR products of locus Tgr-24 and 1.0 µl of the multiplex PCR products. The other 166	

set was comprised of 1.0 µl PCR products of locus Tgr-C11 and 0.5 µl PCR products of each locus, Tgr-D5 and 167	

Tgr-A11. In each well of a 96-well plate, a set of pooled PCR products were combined with 9 µl Formamide-168	

GeneScanTM 500 LIZ® (Applied Biosystems) mixture. The master mix solution was initially prepared in a 169	

microcentrifuge tube by combining 985 µl of formamide and 15 µl of GeneScanTM 500 LIZ®. The latter served 170	

as internal molecular weight standard for allele calling. The PCR products were sent to Life Sciences Core 171	

Laboratories Center at Cornell University and analyzed on Automated 3730xl DNA Analyzer (Applied 172	

Biosystems, Inc.) with a fluorescent-based detection system. 173	

 174	

2.4 Sequence data analysis 175	

Electropherograms were visualized, proofread and compiled in Sequencher v4.8 (GeneCode, Ann 176	

Arbor, MI) and the resulting sequences were aligned in MUSCLE (Edgar, 2004). Sequence data was collapsed 177	
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into unique haplotypes using the web tool, FaBOX (Villesen, 2007).  A haplotype network was created in TCS 178	

v1.21 (Clement et al., 2000) using a statistical parsimony procedure.  A minimum spanning tree based on 179	

pairwise differences was also generated in Arlequin v3.5 (Excoffier and Lischer, 2010) and visualized in 180	

FigTree (Rambaut, 2009). To illustrate the relationships between unique haplotypes, the minimum spanning 181	

haplotype tree was edited to reflect key results from TCS v1.21 (Clement et al., 2000). The dominant haplotypes 182	

were also compared with sequences deposited in Genbank with BLASTN v2.2.24+ (Zhang et al., 2000) at the 183	

nucleotide collection (nr/nt) database. A number of sequences from different localities were downloaded and a 184	

neighbor-joining tree was generated using MEGA4 (Tamura et al., 2007) under nucleotide models of Log-Det 185	

and Kimura 2-parameter (following Lessios et al., 2003) with 1000 bootstrap replicates. 186	

Genetic diversity indexes were calculated for each population with Arlequin v3.5 (Excoffier and 187	

Lischer, 2010): number of haplotypes (Nh), number of polymorphic sites (Np), haplotype diversity (h), and 188	

nucleotide diversity (π).  The same program was used to examine genetic differentiation among populations 189	

using an analysis of molecular variance (AMOVA) based on haplotype frequency and sequence divergence (FST 190	

and FST, respectively). Pairwise genetic distances (FST and FST) between populations were also calculated and 191	

significance values were determined by performing 10000 permutations among the individuals between 192	

population.  193	

The relationship between genetic distance and geographical distance among populations was examined 194	

using IBDWS v3.16 (Jensen et al., 2005). Mantel tests were performed with 10,000 permutations on genetic 195	

distance obtained from Arlequin v3.5 and the measured geographical distances between localities determined 196	

from Google Earth® as the shortest distance over the sea. 197	

The sequence data were further analyzed for information on changes in the long-term effective 198	

population size of T. gratilla. Fu’s FS (1997) generated in Arlequin v3.5 was examined to test for significant 199	

departures from the neutral model.  These analyses were performed for each population as well as for the pooled 200	

Philippines sequences. In addition, a Bayesian skyline plot was generated in BEAST v1.5.3 (Drummond et al., 201	

2005) to estimate past population dynamics over time back to the most recent common ancestor of the gene 202	

sequences. The program utilizes a standard Markov chain Monte Carlo (MCMC) sampling procedure in 203	

estimating a posterior distribution of effective population size through time from sequence data given any 204	

specified nucleotide-substitution model (Drummond et al., 2005). Due to computational constraints for a large 205	

dataset, a subsample of 100 sequences randomly chosen from unstructured populations was analyzed on 206	

processors provided by the Cornell Computational Biology Service Unit web-computing facility 207	
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(http://cbsuapps.tc.cornell.edu/beast.aspx). The subsampled dataset was run 6 times for 40 million steps to 208	

ensure convergence under an HKY+G model of nucleotide substitution, strict clock model (fixed clock rate of 209	

1.0), and linear skyline model (skyline groups = 5) with the default priors for model parameters and statistics as 210	

specified in BEAUti (k: Gamma prior [0.05, 40], initial = 1.0; a: Uniform [0, 1 000], initial = 0.5; 211	

skyline.popSize: Uniform [0, ∞], initial = 0.0030). The mutation model for this sequence data was determined 212	

through jModelTest v.0.1.1 (Posada, 2008) implementing Bayesian Information Criterion selection strategies. 213	

Logfiles and treefiles from the replicate runs were examined for convergence in Tracer v1.5 and were combined 214	

together using LogCombiner. The skyline plot was created in Tracer v1.5 from the combined treefiles and 215	

logfiles (Rambaut and Drummond, 2009). The estimates from BEAST were converted into units of time and 216	

effective population size using a lineage mutation rate of 1.4%, 1.75%, and 2.67% per million years (MY) as a 217	

heuristic values based from studies on Tripneustes (Lessios et al. 2003), Echinometra (McCartney et al., 2000) 218	

and Protoreaster nodosus (Crandall et al., 2012), respectively. 219	

 220	

2.5. Microsatellite analysis 221	

Chromatograms were examined in STRand v2.3 (Toonen and Hughes, 2001) to determine the fragment 222	

sizes (alleles) of each locus per sample. All samples were checked manually and samples with ambiguous peaks 223	

were not scored. Descriptive statistics including number of alleles, allelic richness (standardized to the smallest 224	

sample size, n=29), observed (Ho) and expected (He) heterozygosity (Nei, 1978) were determined for each 225	

population at each locus using FSTAT v. 2.9.3 (Goudet, 1995). For each locus and each sampled population, the 226	

inbreeding coefficient (FIS) was calculated and significance was estimated with 840 randomizations as 227	

implemented in the same program. Genotypic linkage disequilibrium (LD) of all locus pairs and deviations from 228	

Hardy-Weinberg equilibrium (HWE) of each locus in every population were tested using the web version of 229	

Genepop v4.0.10 (Rousset, 2008). For the evaluation of HWE, data for each locus were initially analyzed by 230	

testing for the general probability of departure from HWE. When a significant departure was found, the more 231	

explicit hypotheses of heterozygote excess (He<Ho) and heterozygote deficit (He>Ho) were tested. In all tests, 232	

parameters were set at 1000 dememorizations, 1000 batches, and 10000 iterations per batch. The classical one-233	

stage corrections for the false discovery rate (FDR) method (Verhoeven et al., 2005; Pike, 2010) were applied to 234	

the p-values obtained in tests with multiple comparisons (i.e. HWE, LD, heterozygote deficits, and inbreeding 235	

coefficient) to generate q-values. Micro-Checker v2.2.3 (Van Oosterhout and Hutchinson, 2004) was also used 236	

to identify possible genotyping errors due to null alleles, large allele dropout or mis-scoring of stutter peaks.  237	
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Results of analysis in Micro-checker indicated the possible presence of null alleles in all populations at locus 238	

Tgr-24, Tgr-A11, Tgr-B11; 4 populations at locus Tgr-D5; and 2 populations at locus Tgr-C11 and Tgr-C117. 239	

Among these loci, Tgr-24 was the most likely to have null alleles based on the highest frequency of PCR failure, 240	

significant departure from HWE in all populations, and highest level of inbreeding coefficient.Tgr-24 is thus 241	

considered a deviant locus in this study and subsequent analyses were carried out without this locus.  242	

Genetic differentiation among the sampled sea urchin populations was initially examined by testing the 243	

significance of genotypic differentiation for all populations and all pairs of populations in Genepop v4.0.10 on 244	

the web (1000 dememorizations, 1000 batches, and 10000 iterations per batch). In Arlequin v3.5, genetic 245	

differentiation of populations was evaluated under the assumptions of unstructured AMOVA (or single group of 246	

populations) and infinite allele model.  Because high levels of heterozygosity can lower the maximum value of 247	

FST, we also measured G’ST and DEST, which correct for this problem using SMOGD (Crawford, 2010). Another 248	

test of population differentiation was carried out in BAPS v5 (Corander et al., 2008) which was based on a 249	

Bayesian clustering method. This population mixture analysis requires input of the maximum number of 250	

genetically diverged groups (K). In this analysis, clustering of groups of individuals was carried out using 251	

several K values (1, 2, 3, 4, 5 and 6) and analyses were run three times for each K value. In addition we used the 252	

Bayesian coalescent sampler Migrate v3.5.1 (Beerli and Palzewski, 2010) to test a model of genetic structure 253	

(k=2, Guimaras vs. Northern Luzon sites) against no structure (k=1). We used a Brownian motion model of 254	

mutation, and windowed, exponential priors on Θ (1 × 10-4 to 1 × 103) and m/µ (1 × 10-3 to 1 × 104). Each model 255	

was run for 1 million steps, with 10,000 steps removed as burnin, and 10 heated chains ranging in temperature 256	

from 1 to 1 × 105. Model selection was based on Bayes Factors calculated from the marginal likelihood of each 257	

model, as estimated from a Bezier approximation to thermodynamic integration over the heated chains (see 258	

Beerli and Palzewski 2010, Crandall et al., 2012). Based on unbiased genetic distance (Nei, 1978), a UPGMA 259	

(unweighted pair-group method using arithmetic averages) tree of sampled populations was generated (1000 260	

bootstraps) in TFPGA v1.3 (Miller, 1997). A Mantel test was carried out in IBDWS v3.16 (Jensen et al., 2005) 261	

to test for a positive relationship between geographical distance (measured as shortest distance by sea) and 262	

pairwise genetic differentiation obtained from Arlequin v3.5 based on 10000 random permutations. 263	

To estimate contemporary effective population size of the T. gratilla population in Northwest Luzon, 264	

we employed a method that utilizes the mean squared correlation in allele frequencies (i.e. linkage 265	

disequilibrium) implemented in the LDNe software (Waples, 2006; Waples and Do, 2008). We combined data 266	

from all localities except for Guimaras and Lucero (which showed a small amount of non-significant structure 267	
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with other localities), and only included alleles with a frequency greater than 0.02, which Waples and Do (2010) 268	

have shown to balance the precision provided by many alleles with the bias created by rare alleles. Confidence 269	

intervals were determined with a one-delete jackknife over loci. 270	

 To infer past demographic events from the microsatellite data, Bottleneck v1.2.02 (Piry et al., 1999) 271	

was used to determine whether the sampled populations have experienced a reduction in their effective 272	

population size. In principle, a severe reduction of effective population size results in a progressive reduction of 273	

number of alleles and heterozygosity at polymorphic loci. However, the number of alleles is reduced faster than 274	

the heterozygosity (He); hence, a transient excess in He is expected to characterize a bottlenecked population. To 275	

detect heterozygosity excess (He > Heq), this program compares the expected heterozygosity (He) calculated from 276	

allele frequency and expected equilibrium heterozygosity (Heq) (i.e. no bottleneck) derived from the number of 277	

alleles found in the samples. The comparison of these heterozygosity parameters (He and Heq) is in the context 278	

of Nei’s gene diversities (1978). Thus, this heterozygosity excess (He>Heq) should not be confused with excess 279	

of heterozygotes (He<Ho) which compares the proportion of heterozygotes with expectations of Hardy-280	

Weinberg equilibrium. The calculations were performed using the infinite allele model. Since there were fewer 281	

than 20 loci, Wilcoxon’s test was used to determine the significance of the observed heterozygosity excess of 282	

the population (Piry et al., 1999). Bottleneck analyses excluding one or two and all of the putative loci with null 283	

alleles (i.e. Tgr-24, Tgr-A11, Tgr-B11) using the original and Brookfield corrected data were also carried out. 284	

 285	

3. Results 286	

3.1. Genetic diversity  287	

Mitochondrial CO1 sequences were obtained from 282 individuals of T. gratilla sampled from 10 sites. 288	

The 605-bp sequences were aligned without indels and collapsed into 79 unique haplotypes characterized by 69 289	

polymorphic sites (Supplementary Table S2; GenBank accession numbers: JX661089-JX661167). Most of 290	

these haplotypes occurred only once (57 singleton or 72% of the total unique haplotypes). Based on overall 291	

frequency, the haplotypes found to be dominant were sequence 1 (34.8%), 10 (11.7%), and 3 (9.3%) while the 292	

rest of the haplotypes occurred less often (<2.5%). The minimum spanning tree revealed three star-like 293	

polytomies with the dominant haplotypes separated by only one nucleotide difference (Fig. 1). All haplotypes 294	

were closely related as they differed by only 1 to 10 unique mutations. The most frequent and broadly 295	

distributed haplotype 1 was also identified by TCS v1.21 (Clement et al., 2000) as the most probable ancestral 296	

haplotype. A neighbor-joining tree generated from a number of sequences from Lessios et al. (2003) showed 297	
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that the dominant haplotypes in this present study were also shared with other populations from different parts 298	

of the world (Fig. 2).  Interestingly, the most dominant haplotype 1 was shared by T. gratilla and Tripneustes 299	

depressus populations from several localities across the Indian and Pacific Oceans (Fig. 2).  Haplotype 1 was 300	

also the most common haplotype in the global phylogeographic survey comprising about 18% of the pooled 301	

sample of T. gratilla and T. depressus (Lessios et al., 2003).  302	

Geographical distribution and relative frequency of unique haplotypes are shown in Fig. 3. The three 303	

dominant haplotypes comprised the major proportion of the samples in all sites except Burgos where haplotype 304	

3 was not sampled. Minor haplotypes were also shared by 2 to 6 populations.  Private or site-specific haplotypes 305	

were present in each population but comprised a small proportion of the samples (range 9.5 to 23.3%). In each 306	

sampled population, the number of haplotypes ranged from 12 to 20 and number of polymorphic sites ranged 307	

from 12 to 24 (Table 2) indicating high degree of genetic diversity. Overall, the haplotype diversity was high 308	

(mean h = 0.8554±0.0592) while nucleotide diversity was low (mean π = 0.0031±0.0005) (Table 2).  309	

A total of 277 sea urchins from 6 localities were genotyped at seven microsatellite loci (Supplementary 310	

Table S3) but a number of individuals (no more than 12 per locus) had missing data at some loci due to 311	

technical causes (i.e. PCR failure, ambiguous peaks). There was no significant linkage disequilibrium after 312	

adjustment for multiple comparisons indicating that none of the loci were physically linked.  Overall, there were 313	

153 alleles found in all loci ranging from 9 to 41 alleles per locus. When averaged across populations, the 314	

number of alleles per locus ranged from 7 to 28 alleles (or 6 to 24 alleles in terms of allelic richness). There 315	

were 27 private alleles occurring at low frequency (0.010 to 0.021) across the sampled localities. High genetic 316	

diversity is indicated by the mean and total expected heterozygosities of each locus ranging from 0.658 to 0.952 317	

and 0.663 to 0.952, respectively.  318	

There were significant discrepancies in the observed and expected heterozygotes per locus averaged 319	

across the populations, indicating a high level of deviation from Hardy-Weinberg equilibrium (HWE). Out of 42 320	

single locus tests per population, 27 (64.3%) did not conform to the expectations of HWE (Probability test, 321	

p<0.05, Supplementary Table S3). Further evaluation of HWE showed that majority of the populations that were 322	

not in equilibrium had deficits in the number of heterozygotes (34 out of 42 tests were significant) and none had 323	

heterozygote excesses (data not shown). In all sampled populations, more than half of the microsatellite loci 324	

used in the study had heterozygote deficiency (Supplementary Table S3). Locus Tgr-24 was the most notable for 325	

its significant HWE departure and heterozygote deficiency in all populations. Likewise, Tgr-A11 and Tgr-B11 326	

also exhibited high degree of HWE deviation. The remaining four loci had fewer departures from HWE and 327	
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were at equilibrium in at least three sites. Null alleles have been identified as the most probable technical cause 328	

of observed heterozygote deficit for these microsatellite loci as also reported in the primer note (Carlon and 329	

Lippé, 2007). As we found no evidence for nulls at 4 loci and estimates of FIS were positive at all loci, the 330	

presence of null alleles can only partly explain the HWE departures observed in T. gratilla populations and 331	

other processes (e.g. selection, demographic effects) may still have significant role in reducing heterozygosity. 332	

 333	

3.2. Population genetic structure 334	

Analysis of molecular variance (AMOVA) based on mitochondrial sequence data found no significant 335	

population differentiation among population within western Luzon (FST=-0.004, p=0.696 and FST =-0.004, 336	

p=0.727). Genetic differentiation among sea urchin populations sampled across the archipelago were also not 337	

significant (FST=-0.003, p=0.736 or FST=-0.003, p=0.767).  Pairwise FST values were less than 0.02 and none 338	

were significant (data not shown). The genetic and geographic distance were not positively correlated (Z=-339	

69.6316, r=-0.1081, Mantel test, p= 0.7202). 340	

Similar results were found in the analysis of microsatellite data. The fixation index values were also 341	

very low (FST<0.01) and genetic differentiation among populations were not significant (AMOVA, global 342	

FST=0.001, p=0.719). Per-locus estimates for G’ST and DEST were all below 0.02 (Supplementary Tables S4 and 343	

S5).The UPGMA dendrogram also showed that the clustering of T. gratilla populations did not conform to the 344	

expected grouping based on geographical distance between locations (Supplementary Fig. S1).  This is 345	

consistent with a lack of correlation between genetic and geographic distance (Z=1.4041, r=-0.3958, Mantel 346	

test, p=0.8591). For example, Lucero and Victory populations were not clustered together despite their 347	

proximity of less than 10 km apart. Further analyses also showed that genotypic differentiation for all 348	

populations and pair-wise population comparisons were not significant (Fisher’s method: Chi2=6.072, p=0.965). 349	

The Bayesian approach employed in BAPS v5 was also not able to partition the sampling localities. A model 350	

with a single population (k=1) had a higher marginal likelihood value (logML=-8067.51) than the rest of 351	

population models tested with probability values ranging from -8224.19 to -8916.66. Similarly, the k=1 model 352	

in Migrate had a much higher marginal likelihood (-132,118) than a k=2 model (-775,726), although both 353	

models showed good convergence as evaluated by effective sample sizes greater than 400. 354	

 355	

 356	

 357	
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3.3. Demographic history inferences 358	

Fu’s FS values were significantly negative (Table 2, p=0.0001) in all sites, indicating an excess of rare 359	

haplotypes and the rejection of the null model of neutral evolution. Similarly, the Bayesian skyline plot revealed 360	

population growth in local sea urchin populations (Fig. 4). The abrupt increase of effective population size was 361	

within the range of 30000-55000 years ago (median time) assuming a lineage mutation rate maximum at 2.67% 362	

and minimum at 1.4%, respectively. Long-term coalescent Ne was estimated to range between 0.6 and 13.5 363	

million effective females depending on which mutation rate was used. LDNe estimated contemporary effective 364	

size for Northwest Luzon to be 6535.5 from six microsatellite loci, with a lower bound of 448.4 and an infinite 365	

upper bound. This infinite upper bound is consistent with the absence of significant linkage disequilibrium 366	

found by Genepop (Waples and Do, 2010). Bottleneck analysis of the microsatellite data revealed an excess in 367	

expected heterozygosity, which indicates a decline in the effective population size of T. gratilla. Expected 368	

heterozygosity (He) was generally found to be higher than the expected equilibrium heterozygosity (Heq) in 33 369	

out of 42 comparisons (Table 3) and the multi-locus statistical test showed that the observed heterozygosity 370	

excess was significant in all sampled populations (Wilcoxon test, p=0.008-0.016, Table 3). Analyses that 371	

excluded Tgr-A11 or Tgr-B11, which were also suspected with null alleles, still showed significant 372	

heterozygosity excess in all populations (data not shown). In addition, this result stayed highly significant when 373	

genotype data were corrected for null-alleles (Brookfield, 1996) and with Tgr-24 re-added to the dataset 374	

(Supplementary Table S6). 375	

 376	

4. Discussion 377	

4.1. Non-equilibrium populations and absence of genetic structure in the Philippines  378	

Western Luzon populations of T. gratilla were found to be genetically homogeneous and not 379	

significantly distinct from populations in other regions of the Philippines. These results from seven 380	

microsatellite loci and a mitochondrial locus are consistent with the findings of the previous genetic survey that 381	

used allozyme markers (Malay et al., 2002). The observed genetic homogeneity of T. gratilla populations along 382	

the western Luzon coasts is consistent with its life history features that predict long-distance larval dispersal. 383	

The low and non-significant FST values (FST < 0.02) obtained for this species indicate the persistence of enough 384	

gene flow  among the sampled populations of about 10 or more migrants per generation (Lowe and Allendorf, 385	

2010). Based on a passive particle dispersal model in the Western Luzon region (Bernardo, 2011), the estimated 386	

range of dispersal distance for T. gratilla larvae was about 116 to 1060 km after 52 days depending on source 387	
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location and season (L. Bernardo, unpubl data). Considering that T. gratilla is a year-round spawner (Tuason, 388	

1980), larvae can be effectively supplied over a wide range of oceanographic conditions (e.g. Addison et al., 389	

2008), exposing them to current vectors that may move in opposite directions depending on the monsoon 390	

seasons (e.g. Juinio-Meñez and Villanoy, 1994), thereby further enhancing the extent of larval exchange within 391	

the region.  392	

The lack of genetic structure across the archipelago, however, could not be entirely explained by 393	

contemporary oceanographic processes. This is in contrast with the findings of other local genetic studies in the 394	

Philippines on marine species with biphasic life-histories that revealed broad to fine-scale genetic structure 395	

within the archipelago that conformed with current patterns or biogeographic divisions (e.g. Linckia laevigata - 396	

Juinio-Meñez et al., 2003; Siganus fuscescens - Magsino and Juinio-Meñez, 2008; Ravago-Gotanco and Juinio-397	

Meñez, 2010). Perhaps a better explanation for the absence of detectable genetic structure in our data is that the 398	

underlying structure has been obscured by non-equilibrium processes such as the demographic changes 399	

described below (Excoffier et al., 2009; Marko and Hart, 2011). Based on the large effective population size 400	

estimated from microsatellites for the Northwest Luzon population (Ne = 6535.5), and assuming an ecologically 401	

high rate of gene flow (m = 0.1), we estimate that it would take ~4700 generations for FST values to move 402	

halfway to their equilibrium value following any of these demographic changes (Crow and Aoki 1984).The 403	

inferred absence of equilibrium between gene flow and genetic drift is initially evidenced by the lack of 404	

significant correlation between geographic and genetic distance for both markers (Slatkin, 1993). This is further 405	

supported by the observed sharing of the dominant mitochondrial haplotypes with samples from Reunion Island 406	

in Western Indian Ocean and even with its congeneric species, T. depressus in the Galapagos Islands in the 407	

eastern Pacific (Lessios et al., 2003). This lack of divergence across the Eastern Pacific Barrier and the 408	

incomplete sorting of the mitochondrial lineage for the genus Tripneustes indicate the persistence of genetic 409	

patterns shaped by evolutionary events in the past (Benzie, 1999; Lessios et al., 2003).  410	

For the microsatellite data, significant departures from Hardy-Weinberg equilibrium due to 411	

heterozygote deficiency also substantiate the non-equilibrium state of T. gratilla populations. Heterozygote 412	

deficiency has been associated primarily with ecological processes such as inbreeding, recent admixture, 413	

selection, or accumulation of genetically distinct cohorts (e.g. Watts et al., 1990; Addison and Hart, 2004; van 414	

Oppen et al., 2008). Considering that populations in this study were genetically homogeneous and have high 415	

inbreeding coefficients without linkage disequilibrium, the most probable explanation for the heterozygote 416	

deficiency would be the significant genetic differentiation among cohorts or  the temporal Wahlund effect (i.e. 417	
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Watts et al., 1990). This has been suggested to be a consequence of large variance in reproductive success or 418	

differential survival during the planktonic larval stage or immediately after settlement at early benthic stage 419	

(Watts et al., 1990; Hedgecock, 1994; Hedgecock et al., 2007; Hedgecock et al., 2011).This hypothesis, also 420	

known as sweepstakes reproductive success, suggests that this large reproductive variance is due to asynchrony 421	

between oceanographic and biological conditions that may influence larval development, dispersal, and 422	

recruitment (Hedgecock, 1994; Hedgecock et al., 2007, Hedgecock et al., 2011). T. gratilla is predisposed to 423	

large variance in reproductive or recruitment success based on its life history features (i.e. high fecundity, 424	

broadcast spawning, long planktonic larval duration), patchy distribution, and dynamic habitat (Shimabukuro, 425	

1991; Lawrence and Agatsuma, 2001). In support of this idea, preliminary genetic analysis of T. gratilla recruits 426	

and adults sampled from local populations in Santiago Island, Bolinao indicate genetic variability among 427	

cohorts (Casilagan, 2011). Overall, these non-equilibrium results at the archipelagic scale are in agreement with 428	

the chaotic population structure and absence of equilibrium that has been found across the entire species range 429	

(Lessios et al., 2003). 	430	

 431	

4.2. Discordance in demographic trends inferred by mtDNA and microsatellites 432	

Estimates of long-term coalescent effective population size from the mtDNA data were orders of 433	

magnitude larger than estimates of contemporary effective size based on linkage disequilibrium in the 434	

microsatellite data. This is unsurprising, because the two markers and methods are estimating over very different 435	

temporal and spatial scales. The mtDNA data integrates over the coalescent history of the genetic sample, and 436	

therefore reflects the population size of the global T. gratilla population, which may include the entire Indo-437	

Pacific, as indicated by the vast ranges of shared haplotypes in Fig. 2 (Lessios et al., 2003). On the other hand, 438	

linkage disequilibrium is a transient phenomenon that occurs among loci, and Ne estimates from the 439	

microsatellite data reflect only the effective number of parents from which the current sample was drawn. Thus, 440	

this estimate represents the effective size of the breeding population in Northwest Luzon in 2007-2008. The 441	

linkage disequilibrium method has been shown to be robust to migration from outside the sampled region unless 442	

the percentage of migrants from outside is greater than 5%-10% (Waples and England, 2011). 443	

Similarly, demographic analyses of mitochondria and microsatellite data suggested contrasting 444	

demographic events in the history of T. gratilla populations in the Philippines. The mitochondrial lineages 445	

indicated population expansion while microsatellite data exhibited genetic signatures of a population decline. In 446	

particular, the highly negative Fu’s FS, star-like haplotype network, high haplotype diversity and low nucleotide 447	
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diversity provided initial evidence of demographic expansion in the mtDNA. As shown by the Bayesian skyline 448	

plot, the initiation of the abrupt population growth occurred during Pleistocene. Demographic expansion during 449	

the Pleistocene also been reported for other marine taxa in the Indo-Pacific region such as gastropods (Crandall 450	

et al., 2008a), echinoderms (Crandall et al.,2008b; Kochzius et al., 2009), crustaceans (Benzie et al., 2002), and 451	

fish (Rohfritsch and Borsa, 2005; Liu et al., 2007; Ravago-Gotanco and Juinio-Meñez, 2010). The Pleistocene 452	

era was characterized by changing sea levels and temperatures due to glaciations and deglaciations (Roy et al., 453	

1996; Rohling et al., 1998; Siddall et al., 2003). Particularly in Southeast Asia, sea levels were reduced to more 454	

than 120 m below the present levels (Voris, 2000) which would have exposed reef flats causing local extinction 455	

especially of species in shallow habitats. Following the Last Glacial Maximum (~20000 years BP), flooding of 456	

the shelves provided newly-available habitat for re-colonization and subsequent population expansion (e.g. 457	

Crandall et al., 2008a, 2008b; Ravago-Gotanco and Juinio-Meñez, 2010). The populations of T. gratilla, being a 458	

shallow-water echinoid, were likely been influenced by these historical events.  459	

On the other hand, microsatellite data indicate demographic decline in T. gratilla populations. 460	

Significant heterozygosity excess was observed in most loci in all populations, and indicates a deficiency in 461	

alleles that characterizes bottlenecked populations. It might at first be thought that, because microsatellites 462	

evolve relatively faster than the mitochondrial markers, the bottleneck might be of anthropogenic origin, 463	

associated with the recent collapse in the T. gratilla fishery (Talaue-McManus and Kesner, 1995). However, the 464	

method used here detects bottlenecks that happened around 0.2-4.0 Ne generations ago (Cornuet and Luikart, 465	

1996). Based on our estimates of contemporary effective size, this means that the bottleneck could have 466	

occurred between 90 to more than 26,000 generations ago or similar values in years ago, assuming 1 year 467	

generation time (Bangi, 2001; Lawrence and Agatsuma, 2001). This estimate suggests that the bottleneck 468	

detected by the microsatellites cannot be attributed to the most recent collapse of the T. gratilla fishery, which 469	

occurred in the 1990's, but might be attributed to earlier undocumented anthropogenic pressure, or else to 470	

environmental changes during the late Pleistocene. 471	

The seemingly discordant inferences of a population expansion in mtDNA and a bottleneck in 472	

microsatellites can be reconciled in a number of ways.  First, microsatellites are better suited for detecting 473	

population declines than they are for detecting expansions (Cornuet and Luikart, 1996), so both inferences may 474	

be correct. Given the rough range of dates that we inferred for each type of marker (expansion at 30-55 kya in 475	

mtDNA, contraction at 0.009 – 26 kya in microsatellites), it is probable that a population decline detected by the 476	

microsatellites occurred after the expansion detected in the mtDNA. Second, due to lack of recombination, it is 477	
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also possible that the mitochondrial genome had undergone a selective sweep or introgression (Ballard and 478	

Whitlock, 2004). The sharing of dominant haplotypes among Indo-Pacific T. gratilla and eastern Pacific T. 479	

depressus suggests recent introgression among these species, especially since a recent global survey of 480	

Tripneustes using microsatellite markers revealed that T. gratilla can be genetically distinguished from the T. 481	

depressusat nuclear loci (Carlon, pers comm). Hence, the observed genetic signature of population growth could 482	

also be a consequence of selective sweep following introgression. Finally, it is possible that departures from the 483	

neutral model detected in both mtDNA sequence and microsatellites could be the result of purifying selection. 484	

While the mtDNA and microsatellite variation that we measured is putatively neutral, selection could have 485	

occurred on nearby linked genes (i.e. background selection). Background selection has been shown to produce 486	

patterns similar to population growth in sequence data (Fu, 1997) as well as to cause a loss of rare alleles that 487	

might indicate a bottleneck in the microsatellite data (Charlesworth et al., 1993). Discordant inferences between 488	

mtDNA and microsatellites have been noticed in a number of other marine taxa as well, and likely have to do 489	

with the large variance in genealogies that is possible in species with large effective population sizes (DiBattista 490	

et al., 2012). To disentangle the signals of historical processes related to demographic fluctuation from those of 491	

selective processes, it might be necessary to obtain sequence data from multiple nuclear regions (e.g. Calderón 492	

et al., 2008) 493	

 494	

4.3. Conservation implications 495	

Conservation of T. gratilla as a species is a relevant concern because it is the top target echinoid 496	

species for commercial harvesting in the tropical and subtropical region. In this context, identification of 497	

evolutionary significant units (ESUs, Moritz, 1994) and evaluating species vulnerability would be important. 498	

The genetic analysis did not reveal distinct ESUs or indications of cryptic speciation based on the absence of 499	

deep phylogenetic divergence. Based on the species’ wide distribution range and the estimates of population 500	

genetic diversity and variability (i.e. high genetic diversity, broad distribution of major haplotypes, and 501	

extensive genetic exchange), the vulnerability of the species to extinction is low. Our data, however, also 502	

suggest that populations in the Philippines have undergone large demographic fluctuations in the past, perhaps 503	

similar to the anthropogenic changes that we are seeing now. Although recent recovery of overharvested 504	

populations was observed (Juinio-Meñez et al., 2008), the persistent harvesting and habitat degradation still pose 505	

a serious threat of local depletion. With the absence of genetic structuring particularly in western Luzon region, 506	

a precautionary approach to management (e.g. McCook et al., 2009) should be practiced with a degree of 507	
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“spatial bet-hedging” (sensu Larson and Julian, 1999). This would entail region-wide management interventions 508	

to protect adequate spawning stocks and ensure reliable recruitment in the localities. This can be carried out, for 509	

example, by establishing network of marine protected areas and sea urchin grow-out cage culture sites along the 510	

western Luzon coasts which serves as reproductive reserves and recruitment sites (Malay et al., 2002; Juinio-511	

Meñez et al., 2008; 2009). Consideration of genetic impacts is also still vital especially in implementing the 512	

culture-based management interventions such as the release or grow-out culture of hatchery-produced juveniles 513	

(Ward, 2006). As with all fisheries species, hatchery-based supportive breeding efforts should aim to maximize 514	

genetic diversity in the captive population released into the wild (Ryman and Laikre 1991). Integration of these 515	

insights with other information (i.e. recruitment patterns, demographic data) would facilitate the development of 516	

an effective management scheme that would ensure sustainability of the T. gratilla fishery.	517	

 518	

  519	
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Fig. 1 Minimum spanning tree for the CO1 haplotypes of T. gratilla. Filled circle represents a unique haplotype 829	

which was sized proportionally to its absolute frequency, ranging from 1– 98.  The dominant haplotypes were 830	

identified by their sequence number. The asterisk denotes the most probable root haplotype while the square 831	

represents unsampled haplotypes as revealed by TCS v1.21 (Clement et al. 2000). 832	

 833	

Fig. 2 Neighbor-joining tree illustrating the relationship of the major CO1 haplotypes in this study and the CO1 834	

sequences from Lessios et al. (2003) based on LogDet substitution model. Numbers next to nodes indicate 835	

bootstrap support from 1000 iterations and nodes with less than 50% support have been collapsed. 836	

 837	

Fig. 3 Relative frequency of mitochondrial haplotypes per population. Represented in the pie graph are the 838	

major haplotypes (sequence 1, 10, and 3), minor haploytpes (pooled haplotypes with frequency of 2 to 7), and 839	

private haplotypes (haplotypes found in only one site). 840	

 841	

Fig. 4 Bayesian skyline plots of effective population size (Ne) scaled by generation time for CO1 mitochondrial 842	

DNA. The plots run from the present to their median time to most recent common ancestor (TMRCA). Grey dotted 843	

lines represent the 95% CI for Net.  844	
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Table 1  
Sampling location, population code, collection dates, and the number of individuals (n) screened at mitochondrial 
(CO1) and microsatellite markers. 

Sampling sites Lat (N) Long (E) 
Population 

Code 

Mitochondrial  Microsatellite  

Collection 
date  n 

Collection 
date  n 

Study Region: Western Luzon       

Bubon, Burgos, Ilocos Norte  18o30’31” 120o34’45” Burgos 
(BUR) Nov-08 29 Nov-08 34 

Dadalaquiten, Sinait, Ilocos Sur 17o53’34” 120o26’28” Sinait 
(SIN) Dec-08 28 n.d. n.d. 

Lucero, Bolinao, Pangasinan 16o24’09” 119o54’30” Lucero 
(LUC) Nov-08 21 Nov-09 50 

Victory, Bolinao, Pangasinan 16o23’35” 119o57’59” Victory 
(VIC) Nov-08 24 Nov-09 49 

Panglit Is., Masinloc, Zambales 15o29’42” 119o55’09” Masinloc 
(MAS) Apr-09 30 Apr-09 48 

Matuod, Lian, Batangas 13o59’11” 120o37’40” Lian   
(LIA) Feb-09 30 Feb-09 47 

Outgroup Sites        

Bacon, Sorsogon  13o02’24” 124o02’56” Sorsogon 
(SOR) Jul-08 21 n.d. n.d. 

Lawi, Jordan, Guimaras 10o32’45” 122o31’16” Guimaras 
(GUI) Jan-09 47 Dec-09 49 

Cantaan, Guinsiliban, Camiguin 09o06’25” 124o48’14” Camiguin 
(CAM) Mar-09 32 n.d. n.d. 

Simunul, Tawi-Tawi 04o54’03” 119o50’56” Tawi-tawi 
(TAW) May-09 20 n.d. n.d. 

 
 
Table 2  
Summary statistics of Tripneustes gratilla populations based on CO1 sequences. Population, sampling size (n), 
measures of genetic diversity (Nh = no. of haplotypes; Np = no. of polymorphic sites; h = haplotype diversity; π = 
nucleotide diversity; s.d. = standard deviation), and Fu’s neutrality test (Fu 1997). All FS values were found to be 
significant (p=0.0001) indicating deviation from neutral equilibrium model.	 

Population n Nh Np h (s.d.) π (s.d.) Neutrality 
test (FS) 

Burgos 29 13 15 0.7660 (0.0816) 0.0030 (0.0020) -7.851 
Sinait 28 15 16 0.9101 (0.0370) 0.0033 (0.0022) -10.583 
Bolinao 45 20 21 0.8737 (0.0415) 0.0030 (0.0020) -17.172 
     Lucero 21 11 11 0.9143 (0.0380) 0.0029 (0.0020)  
     Victory 24 14 16 0.8333 (0.0767) 0.0031 (0.0020)  
Masinloc 30 13 12 0.7678 (0.0749) 0.0022 (0.0015) -10.235 
Lian 30 15 21 0.8736 (0.0498) 0.0035 (0.0022) -9.610 
Sorsogon 21 12 13 0.9095 (0.0479) 0.0036 (0.0023) -6.915 
Guimaras 47 18 23 0.8372 (0.0403) 0.0026 (0.0018) -14.628 
Camiguin 32 17 24 0.8347 (0.0646) 0.0036 (0.0023) -12.468 
Tawi-tawi 20 13 13 0.9263 (0.0431) 0.0033 (0.0021) -9.810 

 
 



Table 3  
Bottleneck analysis on Tripneustes gratilla microsatellite data from 6 loci (without Tgr-24) under the assumption of 
infinite allele model. Asterisk (*) indicate heterozygosity excess (He>Heq) based on the comparison of expected 
heterozygosity (He) and expected equilibrium heterozygosity (Heq) of each locus per population. Wilcoxon’s test 
determined the significance of heterozygosity excess across loci in a population. All p-values were significant 
(p<0.05).  

Population Tgr-A11 Tgr-B11 Tgr-C11 Tgr-C117 Tgr-D134 Tgr-D5 Wilcoxon’s test (p-value) 
Burgos * * * * * * 0.008 
Lucero * * * - * * 0.008 
Victory * * * - * * 0.016 
Masinloc * * * * * * 0.008 
Lian * * * * * * 0.008 
Guimaras * - * * * * 0.016 
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Fig. 1 Minimum spanning tree for the CO1 haplotypes of T. gratilla. Filled circle represents a unique haplotype 

which was sized proportionally to its absolute frequency, ranging from 1– 98.  The dominant haplotypes were 

identified by their sequence number. The asterisk denotes the most probable root haplotype while the square 

represents unsampled haplotypes as revealed by TCS v1.21 (Clement et al. 2000). 

 

Fig. 2 Neighbor-joining tree illustrating the relationship of the major CO1 haplotypes in this study and the CO1 

sequences from Lessios et al. (2003) based on LogDet substitution model. Numbers next to nodes indicate 

bootstrap support from 1000 iterations and nodes with less than 50% support have been collapsed. 
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Fig. 3 Relative frequency of mitochondrial haplotypes per population. Represented in the pie graph are the 

major haplotypes (sequence 1, 10, and 3), minor haploytpes (pooled haplotypes with frequency of 2 to 7), and 

private haplotypes (haplotypes found in only one site). 

 

Fig. 4 Bayesian skyline plots of effective population size (Ne) scaled by generation time for CO1 mitochondrial 

DNA. The plots run from the present to their median time to most recent common ancestor (TMRCA). Grey dotted 

lines represent the 95% CI. 
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