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ABSTRACT 

ECOLOGICAL AND REPRODUCTIVE CONSEQUENCES OF MORPHOLOGICAL 
VARIATION IN EGREGIA MENZIESII (TURNER) ARESHOUG 

By Heather K. Fulton-Bennett 

 

 The extensive morphological plasticity of seaweeds has been appreciated since the first 
species were described, however, the costs and benefits of this strategy are not yet well 
understood. Studies have reported that morphological variants differ in reproduction, growth, and 
physiology, in addition to the ways in which they impact surrounding communities. This study 
examined the consequences of morphological plasticity in the intertidal kelp, Egregia menziesii, 
which is common along rocky shores from Baja California to British Columbia. Egregia is also 
considered to be a foundation species due to the dense canopy it forms and the numerous species 
that depend on it for food and shelter. This monospecific genus was previously described as 
several independent species due to variability in blade and midrib (or rachis) morphology. In 
central California, rachi can be either papillated or smooth, with papillated rachi being dominant 
north of Point Conception, and smooth rachi dominant south of Point Conception. The Monterey 
Bay area is home to populations of both morphological forms and this study evaluated the effects 
of rachis morphology on reproduction, desiccation resistance, grazing resistance, and growth 
patterns of Egregia menziesii. These questions were assessed using a suite of field surveys, field 
experiments, and laboratory experiments. The results indicated that reproductive output 
measured over the course of a year was not significantly different between the two 
morphological forms, however, some seasonal differences in the timing of reproductive output 
was observed. Smooth rachi appeared to have higher spore release, but lower settlement success 
than papillated rachi at the same site, indicating potential life-history trade-offs and a 
complicated interaction between morphology and environmental conditions. An obligate limpet 
was observed to occur at similar densities between the two rachis morphologies, however the 
grazing scars it created were significantly larger on smooth rachi, indicating that rachis 
papillations may offer some level of grazer resistance. Rachis morphology also significantly 
affected desiccation rates in the intertidal. Rachi with denser papillations exhibited slower rates 
of water loss over time, perhaps indicating a resistance to drying. This resistance to desiccation 
could also benefit other intertidal organisms sheltering under Egregia canopies. Evaluations of 
the effects of biomass loss on growth demonstrated that the intercalary meristem is much more 
diffuse than previously thought, providing Egregia with a mechanism to recover from physical 
damage that occurs along the rachis. This ability to repair and regrow following physical 
disturbance is a potential advantage in the high stress rocky environment. Overall, my results 
indicated that differences in reproduction, grazer resistance, and desiccation resistance occur 
among two distinct morphotypes of Egregia menziesii. While these two morphotypes may not be 
separate species, their unique characteristics result in physiological impacts, as well as impacts 
on the intertidal community. 
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Introduction 

 Phenotypic plasticity is defined as the ability of an organism to change aspects of its 

form, ecology, or physiology as a result of differential expression of a single genotype, in 

response to environmental variation, or interactions between the two (Price 2003, Miner et al. 

2005). Intraspecific variation in morphology is thought to increase the survival and productivity 

of organisms, especially in highly dynamic environments, where a flexible body plan could serve 

to enhance competitive abilities and ultimately influence the size or spatial distribution of a 

population (Gerard 1987, Slatkin 1987, Sultan 2001). Phenotypic plasticity may increase the 

range of habitable environments that can be occupied by an organism and this may be especially 

important in species with limited dispersal distances and when gene flow is limited between 

environments (Slatkin 1987). Morphological variability also has important consequences for an 

organism’s  surroundings,  especially  in  foundation  species, which provide habitat and energy to a 

community that is disproportionate to their abundance (Hughes 2010, Gaylord et al 2011).  

In macroalgae, intraspecific morphological variation is extremely common, often 

resulting from the patchy and physically variable locations they inhabit (Pielou 1978, Gaines & 

Lubchenco 1982). Geographic ranges may stretch thousands of miles, and distributions along 

continental margins are often extremely elongate, limiting interactions between populations at 

extremes of the range (Reed et al. 1988). Dispersal distances in macroalgae are also commonly 

restricted due to short viability of spores in the water column (Gaines & Lubchenco 1982, Reed 

et al. 1988, Coyer et al. 1997). Populations inhabiting geographic extremes or in isolated habitat 

patches are often characterized by intraspecific variations in morphology (Chapman 1974, 

Dudgeon & Johnson 1992, Fowler-Walker et al. 2006), temperature tolerance (DeWreede 1978, 

Gerard & DuBois 1988), wave exposure tolerance (Wing et al. 2007, Wernberg & Vanderkilft 

2010), photoadaptive responses (Gerard 1987), and responses to nutrient availability (Gagne et 

al. 1982). As a result, a single species may be adapted to local environmental conditions and only 

exhibit limited survival in certain areas of its range due to physical or ecological constraints such 

as herbivory or temperature stress (DeWreede 1978). Wave exposure is one of the most common 

factors that can induce morphological variation in macroalgae, where blades of sheltered 

populations can be wide, thin, and undulate, while wave exposed populations are often 

characterized by narrow, thick, and flat blades (Roberson & Coyer 2004, Fowler-Walker et al. 

2006).  
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Intraspecific variation in macroalgal morphology has long been documented, but the 

consequences of such variants are still being explored (Wattier & Maggs 2001). Many studies 

have focused on the physiological consequences of morphological variation, from temperature, 

nutrient, and desiccation stresses to photosynthetic efficiency (DeWreede 1978, Gagne et al. 

1982, Gerard 1988, Dudgeon & Johnson 1992, Wing et al. 2007). For example, Stewart and 

Carpenter (2003) observed that increased surface area to volume ratios in two species of brown 

algae in the California Channel Islands resulted in increased rates of biomass-specific net 

photosynthesis. In addition, morphological variation corresponded with changes in wave 

exposure, while net photosynthesis was associated with water flow speeds. There is also 

evidence that morphological variation can influence algal responses to hydrodynamic stress 

experienced during development, resulting in higher whole plant mortality among individuals 

with fronds requiring higher breakage forces (Kraemer & Chapman 1991, Demes et al. 2013). 

Hurd et al. (1996) looked at the effect of blade morphology on the uptake of inorganic nitrogen 

in different wave environments and found that blade morphology did not enhance nitrogen 

uptake in an area of low water motion, however blade morphology became important in areas of 

high water motion. While blade morphology can be locally adapted to increase survival (Hurd et 

al. 1996, Stewart & Carpenter 2003, Roberson & Coyer 2004, Fowler-Walker et al. 2006), the 

environmental cause of this variation is often difficult to discern. 

 Ecological and physiological consequences of morphological variation have been 

extensively studied in the kelps (Ochrophyta: Laminariales) due to their global distribution and 

status as foundation species in many marine ecosystems (Wattier & Maggs 2001, Roberson & 

Coyer 2004). One of the most conspicuous examples of the ways in which variable blade 

morphology can impact associated communities occurs in the giant kelp, Macrocystis pyrifera 

(L.). Individuals from wave-sheltered sites possess wide, thin, undulating blades while exposed 

sites are characterized by narrow, thick, flat blades (Hurd et al. 1996). Macrocystis is a well-

known foundation species in coastal temperate waters around the world, forming dense forests 

that provide habitat and structure, while altering physical properties such as light and water 

movement through the bed (Jackson & Winant 1983, Schiel & Foster 1986, Graham et al 2007). 

Differences in blade morphology change the uptake of nutrients and flow of water within a kelp 

bed, affecting other primary producers as well as filter feeders (Jackson 1977, Hurd et al. 1996). 

Holdfast morphology also varies within this species,  with  the  rhizomatous  ‘integrifolia’  form  
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commonly inhabiting shallow subtidal  areas  in  this  kelp’s  range.  The  integrifolia form is 

characterized by a flat, strap-like holdfast that contains less interstitial space and correspondingly 

provides much less habitat than the conically mounded holdfasts of the ‘angustifolia’  or 

‘pyrifera’  forms  that occur in deeper water (Andrews 1945, Scagel 1947, Druehl & Kemp 1982, 

Thiel & Vasquez 2000). The ‘integrifolia’  form  is  also  able  to  grow  vegetatively  in  addition  to  

reproducing sexually, potentially leading to greater genetic connectivity and resource-sharing 

within a Macrocystis bed (Graham et al. 2007).  The affects of morphological plasticity within a 

single species are clear in Macrocystis, but less well understood in other kelp species. 

  One of the less studied members of the Laminariales is the monospecific genus, Egregia. 

Extensive variability in morphology originally resulted in the description o three species (and 

two subspecies) from what is now considered, based on genetics, to be a single species, Egregia 

menziesii (Turner) Areshoug (Chapman 1961, Guiry 2014). Egregia is found from southeast 

Alaska to Baja California, Mexico and is common along rocky intertidal and shallow subtidal 

habitats in both protected and wave-swept areas (Abbott & Hollenberg 1976). Studies on 

Egregia’s  role in the intertidal community are limited, but Hughes (2010) reported significant 

negative effects on the cover of other algal species and diversity with the presence of Egregia at 

a wave exposed site. The strong whiplash motion of the fronds resulted in lower richness and 

total cover of other algal species, with higher cover of sessile invertebrates and crustose and 

articulated coralline algae (Hughes 2010). However, this effect differed at a lower wave energy 

site where the presence of Egregia served as a stress ameliorator and sand trap, positively 

affecting algal diversity and cover. As a foundation species, Egregia also provides habitat and 

food to many intertidal fish and invertebrates, in addition to affecting the surrounding algal 

community (Hughes 2010). Other studies have found that large, foliose brown algae have 

negative effects on the benthic invertebrates and algae through scouring and substrate shading 

(Kennelly 1989, Santelices 1990, Bertness et al. 1999, Taylor & Schiel 2005), but Hughes (2010) 

indicated that the relationship between foundation species and their communities is complex and 

merits further study.  

 While Hughes (2010) examined the impact of Egregia on the associated benthic 

community, the study failed to take into account variation in morphology that could potentially 

affect the interaction between Egregia and its intertidal community. Egregia’s  unique thallus 

morphology is characterized by a thick midrib, or rachis, from whose margins hundreds of small 
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blades sprout (Abbott & Hollenberg 1976). The morphology of both the blades and the rachis is 

highly variable throughout its range, with blades ranging from unbranched filaments to highly 

divided to wide strap-like blades (Abbott & Hollenberg 1976, Henkel et al. 2007). The rachis can 

be smooth or covered in dense papillations, with some individuals showing intermediate morphs 

(Henkel et al. 2007). In California, these morphs were previously described as two different 

species: individuals with smooth rachi were termed Egregia laevigata, while papillated 

individuals were described as E. menziesii (Chapman 1961). These two morphs overlap in their 

distribution from  California’s  Channel  Islands  to  southern  Washington,  with  papillated  

individuals  dominant  north  of  Point  Conception  and  smooth  individuals  (‘laevigata’  form)  more  

dominant south of Point Conception (Fig. 1; Henkel et al. 2007). Smooth individuals in the area 

of overlap are generally found in more protected habitats, but may grow alongside papillated 

individuals at some sites (Fig. 1). While several studies have examined the morphological 

differences in detail (Blanchette et al. 2002, Henkel & Murray 2007, Henkel et al. 2007), more 

work is needed to understand potential ecological differences related to Egregia’s  morphological 

plasticity.  

 Current studies have found no genetic basis for the three species and two subspecies of 

Egregia described previously (Abbott & Hollenberg 1976, Lane et al. 2006, Henkel et al. 2007). 

Henkel et al. (2007) reported that Egregia has high genetic variability, however, there were no 

geographic patterns to that variation, and thus no evidence for speciation within the genus. 

Numerous studies have documented morphological variability as a function of latitude and 

attributed that variation to environmental factors such as nutrients and wave exposure 

(Blanchette et al. 2002, Henkel & Murray 2007, Henkel et al. 2007). Blanchette et al. 2002  

conducted reciprocal transplant experiments around Point Conception to examine differential 

survivorship in the face of different nutrient regimes and wave exposure. The authors reported 

that growth of both morphologies (i.e., smooth and papillated) was highest at sites north of Point 

Conception, but that increased rates of breakage of individuals with smooth rachi, when 

transplanted north of Point Conception served to decrease their survivorship. The smooth morph 

of Egregia had lower breaking strength and higher drag, but higher surface area, and thus was 

better adapted to the low nutrient and low water motion environment south of Point Conception 

(Blanchette et al. 2002). However, numerous Egregia populations with smooth rachi persist 

north of Point Conception, and appear to influence the underlying intertidal community, yet the 
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environmental and ecological factors responsible for promoting the persistence of both 

morphologies in central California are not yet known. 

Morphological plasticity has the potential to result in differences in physiological and 

reproductive capacity within a species. With both smooth and papillated populations of Egregia 

being present within meters of each other, it is possible that differences in reproductive timing 

have contributed to the separate populations and their success. Reproduction in Egregia has only 

been closely examined in southern California populations (Black 1974, Henkel & Murray 2007), 

and reproductive output and settlement success may be different north of Point Conception, 

perhaps correlating with morphological variation throughout  the  species’ range. Studies of 

Egregia in southern California have observed that sporophyll production is highest in the winter, 

when water temperatures were lower and more nutrient rich. However, reproductive studies have 

not focused on Egregia north of Point Conception where water temperatures are colder year-

round and nutrients are rarely limiting (Henkel & Murray 2007), yet where physical disturbance 

from waves is much greater in the winter and spring.   

Growth rates in Egregia have been found to vary significantly depending on their 

surroundings (subtidal versus intertidal) as well as across the nutrient and temperature break that 

occurs around Point Conception (Chapman 1961, Black 1974). While growth rates differ, it is 

not know how well Egregia can recover from biomass loss as a result of physical disturbance. 

There is thought to be both a basal meristem found in the holdfast as well as an apical meristem 

in the terminal lamina and transition zone (Chapman 1961, Black 1974). The removal of this 

area should result in the termination of rachis growth, while in some species it may promote 

increased branching or the initiation of new frond growth from the basal meristem (Chapman 

1961, Black 1974). In the intertidal environment, recovery from biomass loss is critical to the 

persistence of individual plants (Dethier 1984, Demes et al 2013, Poore et al 2013), though 

studies have found that self-pruning in Egregia, while resulting in decreased frond density, 

allows for higher survivorship of the entire plant by decreasing drag (Demes et al 2013).  In 

Egregia, reaction to the removal of the terminal lamina may differ between morphotypes, 

resulting in the greater success of papillated individuals north of Point Conception where wave 

forces are considerably stronger (Blanchette et al. 2002, Henkel et al. 2007).  

As a foundation species, Egregia provides habitat and food for a variety of organisms in 

the intertidal, with the most closely linked species being the obligate limpet Lottia insessa. Black 
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(1974, 1976) examined  the  effect  of  the  limpet’s  home  scars on Egregia rachi in Santa Barbara 

and found it to cause up to 30% of plant detachment. Biomechanical strength is thought to be 

higher in papillated individuals (Henkel & Murray 2007), so herbivory may play a different role 

in communities dominated by papillated individuals, while areas of co-occurrence may indicate a 

difference in limpet populations between morphological fomrs. However, L. insessa is only 

found from Baja California to southern Oregon, so the impacts of grazers are likely to change 

with geographic location (Kuo & Sanford 2013). Limpet scars are known to cause up to 36% of 

frond breakages, contributing significantly to rachis mortality and sublethal plant damage in 

southern California (Proctor 1968, Black 1976). Limpet scars can be extensive along the length 

of a rachis, and it is possible that rachis papillations may change the grazing patterns of limpets, 

perhaps slowing grazing or decreasing the damage to the medulla (Proctor 1968, Black 1976). 

While biomechanical consequences of differing rachis morphology have been documented, it is 

still unknown if other ecological differences may be related to morphological traits.  

One of the major stresses in the intertidal is desiccation and while Egregia is susceptible 

to drying out, it also serves as cover for smaller invertebrates and algae (Hughes 2010). An 

organism’s  ability  to  hold  water  is  usually  related  to  its  surface  area  as  well  as  physiological  

characteristics (Dromgoole 1980). Under high temperatures, water retention can also help cool 

the thallus through evaporative cooling, while increased overlapping branches or blades can slow 

desiccation rates (Schonbeck & Norton 1979, Dromgoole 1980, Bell 1995). Egregia’s  varying 

rachis morphology significantly  alters  the  surface  area  of  the  rachis  and  may  change  the  species’  

ability to resist desiccation, though it may be offset by differences in physiology that parallel 

morphological variation.  

 Morphology is important in determining both the ecological role of an organism, as well 

as its interactions with the surrounding community. As a foundation species, Egregia’s  basic 

ecology is not well understood, with few studies conducted north of Point Conception, especially 

on the microscopic stages of the alga. While some studies have examined the causes of and 

trends  in  this  species’  morphology,  little  is  known  as  to  how  the  morphology  may  affect  

Egregia’s  ecology, and this study hopes to address some of those areas of interest (Blanchette et 

al. 2002, Henkel et al. 2007, Henkel & Murray 2007). The primary objectives of the study are to 

evaluate differences between the papillated and smooth rachi of Egregia in terms of physiology, 

competitiveness, and reproduction. As an intertidal organism, Egregia is susceptible to the 
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pressures of grazing and desiccation (Black 1974). It is possible that the presence of papillations 

may change the retention of water in the thallus or alter grazing pressure by Lottia insessa. 

Further, if there are physiological differences between these morphologies, which may account 

for the distributional differences that presently occur. In locations with populations of both 

morphologies, ecological differences could be particularly interesting as the plants are exposed 

to the same environmental conditions, yet persist in different physical forms.  

 This study will focus on the basis for morphological variability in the rachis of Egregia 

menziesii and whether these morphotypes differ in reproduction, grazing resistance, and water 

retention. Specifically, I addressed the following questions: 1) does reproductive output differ 

between rachis morphologies? 2) does resistance to the grazing by the obligate limpet Lottia 

insessa vary between rachis morphologies? 3) does water retention differ between individuals of 

different rachis morphologies? and 4) does the loss of the terminal lamina and transition zone 

affect rachis growth? 

 To address the first question, I hypothesized that reproductive output would be higher 

among individuals with papillated rachi, due to its likely better adaptation to conditions north of 

Point Conception. Second, I hypothesized that papillated rachi would suffer less damage due to 

limpet grazing as the papillations would make it more difficult for the limpet to attach to the 

rachis and feed. Third, I hypothesized that papillated rachi would retain more water when 

desiccated due to the increased rachis thickness with the papillations and the hydrodynamic 

properties of the papillations that may serve to retain water. Fourth, I hypothesized that the 

removal of the terminal lamina and transition zone would cause the cessation of all rachis 

elongation as the intercalary meristem is thought to be located in the transition zone. The 

ultimate goal is that this study will increase our knowledge of kelp reproduction, as well as the 

population  dynamics  and  interactions  affecting  a  foundation  species  on  California’s  rocky  coasts.   
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Materials and Methods 

Study species and study system  

Egregia’s  morphology  has  been  a  source  of  curiosity and taxonomic confusion for 

decades. While Egregia has been concretely classed in the Order Laminariales, its closest 

relatives remain unresolved due to uncertainty in taxonomic affinity based on analyses of 

characteristics such as mid rib and blade morphology, compared to genetic markers. Egregia has 

a relatively small, dense holdfast, with very little interstitial space between haptera. From the 

holdfast a single cylindrical stalk transitions into the flattened rachis, with branches occurring 

from this base and farther up the fronds. Egregia’s  blades  are  found along both narrow edges of 

the flattened rachis, and extend along the entirety of the frond, which can reach lengths of 15 

meters (Fig. 2; Abbott & Hollenberg). Blade morphology varies greatly, from wide strap-like 

blades to divided filiform blades to very small oval blades (Abbott & Hollenberg 1976, Henkel 

& Murray 2007). Blade and rachis variation was the basis for early descriptions of multiple 

species in the genus. While Egregia does possess pneumatocysts, higher densities of 

pneumatocysts have been reported in intertidal populations compared to deeper subtidal 

populations (Chapman 1961). Sporophylls appear similar to vegetative blades, though these are 

often slightly smaller or are shrivelled in texture, and they are also found along the entirety of the 

rachis (Abbott & Hollenberg 1976). At the end of the rachis is the terminal lamina, a flattened 

single blade with occasional outgrowths, but no distinct blades, sporophylls, or pneumatocysts 

(Fig. 2). This terminal lamina is thought to protect the meristem, found at the transition between 

the rachis and the terminal lamina, from erosion and other damage (Black 1974, Henkel & 

Murray 2007). The removal of this terminal lamina and the transition zone is thought to halt 

growth of the frond and promote branching from the base of the individual (Black 1974, 1976, 

Henkel & Murray 2007). Due to the robust nature of the rachis, whiplash motion from fronds has 

been reported to have significant impacts on the intertidal community structure and diversity 

(Hughes 2010).  

While Egregia commonly occurs along rocky shores from the mid intertidal down to 20 

meters depth (Abbott & Hollenberg 1976), this study focused on intertidal populations in the 

Monterey Bay region. In addition, the Monterey Bay area is unique in that both smooth and 

papillated rachi populations are present. Generally, smooth and papillated populations occur at 
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different locations along the central California coast, as a function of wave exposure (papillated 

forms are more common at wave exposed sites). However, at Stillwater Cove, Carmel Bay, the 

two morphologies overlap in their distribution, with papillated and smooth individuals growing 

co-occurring and growing directly alongside each other. This congruence made Stillwater Cove 

the ideal location to compare reproductive, physiological, and ecological impacts of morphology 

without the complication of different environmental conditions.  In addition to Stillwater Cove, 

four other sites around the Monterey Bay were selected, with three on the north end of the bay, 

and one on the south end in addition to Stillwater Cove (Fig. 1, Table 1). These sites 

encompassed  three  sites  with  papillated  rachi  (Mitchell’s  Cove,  China  Rock,  and  Stillwater  

Cove) and three sites with smooth rachi (Its Beach, Pleasure Point, and Stillwater Cove). While 

Stillwater Cove served as the focus for this research, these additional sites were important in 

broadening our understanding of seasonal reproduction and local geographic variability in rachis 

morphology.  

Morphology and Reproduction 

To determine whether spore release concentrations and settlement densities differed 

significantly between Egregia morphs, 5 reproductive rachi of each morph were collected 

monthly from Stillwater Cove. Rachi were kept dry and in the dark at 25° C for two to three 

hours between collection and processing. From each rachis, 10 sporophylls were haphazardly 

chosen from along the length of the rachis. Each sporophyll then had a 3.1 mm diameter circle of 

sorus tissue removed and all tissue circles for each rachis (n = 10) were placed in 5 mL of 

Provasoli’s  enrichment  solution  (PES;; Provasoli 1968). After 1 hour at 20° C, the concentration 

of spores in each solution was determined using 6 fields of view on a haemocytometer (Joska & 

Bolton 1987). Spore concentrations were tracked for each morphology at Stillwater Cove 

monthly for 14 months. To obtain settlement density, spore solutions were diluted to the lowest 

concentration  obtained  from  that  month’s  sampling, usually 500/mL. These standardized spore 

solutions were then added in 5mL volumes to tripart petri dishes, with one partition representing 

a single individual, with 10 parts total from the two morphologies. Settlement density was 

calculated by counting the number of spores visible after rinsing the petri dishes with PES after 

36 hours in an incubator at 10° C under 12:12 light dark cycle.  
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To determine whether spore release and settlement between morphs would also be 

dependent on geography, 3 reproductive rachi from 3 separate individuals were also collected 

from 5 sites, including Stillwater Cove, seasonally (Table 1). Spore release and settlement were 

induced and calculated using the methods described above for monthly sampling at Stillwater 

Cove. Reproductive output was compared using a 3-way ANOVA, with the factors month, site 

and morph replicated by individual (n=3). 

 

Morphology and Grazer Damage 

Limpet populations were surveyed on both papillated and smooth rachi at Stillwater Cove 

to assess whether grazing pressure differed between the two rachis morphologies. The number of 

limpets and the number of rachi for each individual was counted, and the number of limpets per 

rachi calculated so as to standardize density by size of individual. Limpets were surveyed on 39 

papillated individuals and 59 smooth individuals. The density of limpets per rachi was compared 

using a one-way ANOVA. 

To determine whether limpet scars were more damaging to papillated or smooth rachi, 

scarred rachi were collected from Stillwater Cove. Twelve scars from each morph were collected 

and taken back to Moss Landing Marine Labs for analysis. Rachis type, width, and cross-

sectional depth were measured, as well as the mass, length, and width of the limpet on the rachis. 

Once the limpet was removed from the scar (non-destructively), the length, width, and depth of 

the scar were recorded using calipers accurate to 0.02 mm. The scars were then cross-sectioned 

across the middle of scar. Using a microscope, the depth of the medulla, the unscarred half of the 

rachis, and the scar were measured to the nearest micrometer. The ratio of the depth of the scar to 

the depth of the unscarred half of the rachis was used as a proxy for the amount of damage 

potentially  done  by  the  limpet’s  home  scar, and will be referred to as percent rachis removed in 

following analyses. To compare the damage done by the limpet scars, the scarred area (length x 

width) and percent rachis removed were compared between rachis morphs using one-way 

ANOVAs. The relationship between limpet mass and scar depth, limpet mass and scar area, 

limpet area and scar depth, and limpet area and scar area were analyzed using linear regressions.   
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Morphology and Desiccation 

 To evaluate whether desiccation rates differed between the two rachis morphologies of 

Egregia menziesii, two methods were used. The first test measured desiccation under completely 

controlled conditions. Nine rachi of different papillated and smooth individuals were collected 

from Stillwater Cove and kept for 24 hours in a water table to ensure full hydration was 

achieved. A 5 cm section was then cut from each rachis and any excess water spun off in a salad 

spinner (10 manual turns) to obtain a conservative estimate of water loss during low tide 

exposure. These segments were then placed in aluminum weigh boats of known mass and the 

total wet mass of each segment measured to 0.01 grams. The weigh boats were then placed in a 

drying oven set to 60°C and the mass of each segment measured at 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 

16.5, and 160 hours from the time placed in the drying oven. The rate of desiccation was 

compared between rachis morphs using a repeated measures ANOVA (RM-ANOVA). 

 The second method to calculate desiccation rates between the two morphological forms 

was less controlled (in an experimental sense) but more accurately replicated conditions Egregia 

menziesii experiences naturally in the field. Seven rachi from 14 individuals of papillated and 

smooth rachi were collected from Stillwater Cove and kept in a flowing seawater water table for 

24 hours to ensure full tissue saturation. Each rachis was then removed from the water table and 

excess water removed using a salad spinner (10 manual turns). Rachi were then weighed whole 

to 0.01 g accuracy and placed on concrete in full sun. The day this experiment was conducted 

PAR ranged from 500-1110 micromoles/s/m2 (mostly sunny) with very light winds (2-3 mph) 

and an air temperature of approximately 17°C. Rachi were then weighed whole at intervals over 

two hours. The percent wet weight of the rachis segments was compared between rachis morphs 

using a one-way ANOVA. The decrease in percent wet weight over time was analyzed using 

RM-ANOVA by both rachis morph and site.  

 

Sublethal Biomass Loss 

 To simulate the effects of physical disturbance on Egregia and to determine whether the 

loss of the terminal lamina results in the cessation of rachis elongation, the growth of plants with 

the lamina removed was compared to unmanipulated control plants. Twenty adult plants at 

Stillwater Cove were tagged and numbered using bird bands and zip ties. One rachis with a 
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terminal lamina was randomly selected from each plant, and plastic clothing tags were inserted 

into the rachis every 10 cm from the base of the rachis to the transition zone to the terminal 

lamina. Ten plants were then selected to have all terminal lamina removed. Growth of the rachis 

was measured approximately every 2 weeks for over 8 weeks by measuring the distance between 

the clothing tags in the rachis. If no growth occurred, the clothing tags would still be the original 

ten cm apart, but if more (or less) than ten cm distance was seen, then growth (or erosion) could 

be inferred. The total growth over 2 weeks was compared between individuals with and without 

terminal lamina using a one-way ANOVA. This experiment was also carried out with 6 long 

(>50cm) and 6 short (<50 cm) individuals, and a 2-way ANOVA was used to compare the effect 

of rachis length and presence of the terminal lamina.  

 

Results 

Morphology and Reproduction 

To examine spatial variability in Egregia morphology, surveys of morphological 

parameters were conducted at five sites around the Monterey Bay area (Table 1, Fig. 1). With 

rachis morphology being of key concern to this study, the density of papillations per square 

centimeter of rachis was calculated for each site, as well as both smooth and papillated rachi at 

Stillwater Cove. Smooth rachi at Its Beach, Pleasure Point, and Stillwater Cove showed the 

expected zero papillations per square centimeter (Fig. 3). Papillated individuals were present at 

Mitchell’s  Cove,  China  Rock,  and  Stillwater  Cove,  however  the  density  of  papillations  differed  

between these sites (Fig. 3; one-way ANOVA: F2,83 = 109.4005, p < 0.0001). Among the sites 

with  papillated  rachi,  Mitchell’s Cove and China Rock were not significantly different from each 

other (one-way ANOVA: F1,30 = 0.8204, p = 0.3723), however, Stillwater Cove had a 

significantly lower papillation density than  either  China  Rock  or  Mitchell’s  Cove  (Tukey’s  HSD:  

p < 0.0001).  

 To evaluate spatial and temporal variability in reproductive traits between populations, 

the surface area of sporophylls and vegetative blades was examined as a function of rachis 

morphology (Fig. 4), season (Fig. 5), and site (Fig.6). A three-way ANOVA was used to 

examine the effects of season, blade type, and rachis type on the average blade area (Table 2). 
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Significant effects of both rachis type and blade type were found, but season was not significant 

(Table 2). There was also a significant effect of the Rachis*Blade interaction term (3-way 

ANOVA: F1,322 = 14.4895, p = 0.0002), but no significant effect of any of the other interaction 

terms (Table 2).  A  Student’s  t-test on rachis type found that papillated rachi have significantly 

lower blade area than smooth rachi (t1,322 = 1.96736, p < 0.0001). As expected, sporophyll area 

was  also  significantly  lower  than  vegetative  blade  area  (Student’s  t-test: t1,322 = 1.96736, p < 

0.0001). The interaction between blade type and rachis type was examined using a Tukey HSD 

pair-wise comparison and found that sporophylls of both smooth and papillated rachi had 

significantly lower blade area than vegetative blades of either rachis morph, but were not 

significantly different from each other (Table 2; Fig. 4). Vegetative blades, while significantly 

larger than sporophylls, were smaller on papillated rachi than on smooth rachi (Table 2; Fig. 4). 

While site could not be compared with rachis type due to the lack of both rachis types at each 

site, a 3-way ANOVA was run to examine the effects of site, season, and blade type on blade 

area (Table 3). A significant effect was found of both Site and Blade Type (as seen above), as 

well as significant interaction terms of Site*Blade Type and Site*Season (Table 3). In comparing 

site and season, vegetative blades in the fall had the highest area, followed by vegetative blades 

in spring, summer, and winter (Fig. 5). Sporophylls were consistently smaller than vegetative 

blades during all seasons (Fig. 5). A Tukey HSD test found that Pleasure Point had significantly 

higher blade area than any other site, followed by Stillwater Cove, while China Rock and 

Mitchell’s  Beach  were  significantly  lower  than  the  other  sites  but  not  significantly  different  from  

each other (Fig. 6, Table 3). The interaction term of Site*Blade Type again found Pleasure Point 

vegetative blades to have significantly higher area than any other site but the blade area of other 

sites and types varied greatly (Fig. 6, Table 3). Overall, blade area was highest on smooth rachi 

found at Pleasure Point, with the highest blade area being found in the fall.  

 No significant differences in reproductive blade area were observed between rachis 

morphologies around the bay, however that metric fails to take into account the actual 

reproductive output of those blades. Instead, I used spore release concentration as an independent 

measure of reproductive output between the two morphologies. A 2-way ANOVA revealed that 

both date and morphology were significant factors affecting spore release concentration, 

however their interaction was not significant (Fig. 7a, Table 2). Date and morph together 

explained 37.7% of the variation in spore release concentration (Table 2, Fig. 7a). Spore release 
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concentrations pooled across the year were found to be higher in smooth rachi individuals than 

papillated individuals, although the effects were not significant (Fig. 7a, one-way ANOVA: F1,137 

= 3.4620, p = 0.0649). The highest concentrations of spores released were seen in smooth rachi 

individuals during the fall and spring, while papillated rachi had lower outputs, but were highest 

in the fall (Fig. 7a). Comparing settlement success between morphs at Stillwater Cove also found 

significant effects of date (p = 0.002), but not of morphology (p = 0.313) (Table 2b, Fig. 7b). 

Settlement success was much more variable seasonally than spore release concentrations, and 

there was no significant difference in settlement success between morphs pooled through the 

year (p = 0.347; Figs 7b, 8).  

 Reproduction was also measured quarterly at four other sites around the Monterey Bay: 

Mitchell’s  Cove,  Its  Beach,  Pleasure Pt, and China Rock (Table 1, Fig. 1). A 2-way ANOVA of 

site and season, found a significant effect of season (2-way ANOVA: F1,3 = 2.8956, p = 0.0015), 

but no significant effect of site on spore release (p = 0.2589; Table 3a, Fig. 9). The interaction 

term of site by season was not significant (p = 0.5989; Table 3a), indicating that sites with high 

or low spore release were consistent across the seasons. Spore release concentrations varied 

seasonally and between sites around the Monterey Bay, however spore release at China Rock 

was significantly higher than all other sites (Tukey HSD ; Fig. 9). Season was also a significant 

factor in spore release concentration (One-way ANOVA: F3,104 = 5.5385, p = 0.0014), with fall 

and spring having significantly higher concentrations than winter or summer (Table 3a, Fig. 9). 

A 2-way ANOVA of settlement success by type and season found a significant effect of season 

(2-way ANOVA: F1,82 = 3.1478, p = 0.0003), but not of type (p = 0.5987) or the interaction of 

season and type (p = 0.9717; Table 3b). Spore settlement success was significantly higher during 

fall  and  winter  than  spring  and  summer  (Student’s  T-test: t3,86 = 1.98793, p values < 0.01; Fig. 

10). Site was not a significant factor in spore settlement success (one-way ANOVA: F4,85 = 

0.8928, p = 0.4719).  

 

Morphology and Grazer Damage 

 At Stillwater Cove, there was no significant difference between the number of limpets per 

rachis as a function of rachis morphology (one-way ANOVA: F1,96 = 1.3817, p = 0.2427; Fig. 

11a). On rachi collected from Stillwater Cove, dimensions of the limpet, rachis, and limpet’s scar 



15 
 

were measured using digital callipers and a digital scale. While the number of limpets was not 

significantly different among rachis morphs (one-way ANOVA: F1,96 = 1.3817, p = 0.2427; Fig. 

11a), the scarred area was significantly different between morphologies (one-way ANOVA: F1,22  

= 9.4334, p = 0.0056; Fig. 11b). Smooth rachi had significantly larger scars by scar area than 

papillated rachi (one-way ANOVA: F1,22 = 9.4334, p = 0.0056; Fig. 11b). Further, there was also 

no significant difference in the percentage of the rachis removed by rachis type (ANOVA: F1,22 = 

0.6872, p = 0.4160; Fig. 11c).  Overall, there was a significantly higher grazing rate on the 

smooth rachi morphology, driven mainly by the larger scar area on smooth individuals paired 

with a similar area of rachis removed.  

There was no significant difference in limpet mass between morphologies (one-way 

ANOVA: F1,22 = 0.8674, p = 0.3360). A regression of limpet mass (g) by scar area (mm2) found 

a significant positive relationship, with limpet mass explaining 39% of the scarred area (linear 

regression; limpet mass = 0.0856624 + 0.000365*scar area, F1,22 = 14.1631, p = 0.0011, r2 = 

0.391646; Fig. 12a). An ACOVA was used to compare the limpet mass on papillated rachi to 

scarred area on smooth rachi (Table 4a). The non-significant interaction term indicated that the 

slopes of the linear regressions of each morph are equal and therefore the limpet mass relates to 

scarred area in the same manner between rachis morphs (ANCOVA: F1,20 = 3.3474, p = 0.0823). 

Rachis type was significant suggesting that the y-intercepts (limpet mass with no scar) differed 

between the morphs (ANCOVA: F1,20 = 10.8416, p  = 0.036). Finally, limpet mass was 

significant, indicating that regardless of rachis morph, scar area changed with limpet mass 

(ANCOVA: F1,20 = 9.7680, p = 0.0053; Table 4a).  

A regression of limpet area (mm2) by scar area (mm2) also found a significant positive 

relationship, with limpet area explaining 25% of the scarred area (linear regression: limpet area = 

50.489 + 0.0680*scar area, F1,22 = 7.2864, p = 0.0131, r2 = 0.248; Fig. 12b). To look at the 

amount of tissue removed from the rachis by a limpet, the percentage rachi removed was 

calculated as the percent of the total rachis depth that was missing in the middle of a limpet scar. 

An ANCOVA was used to compare the limpet area on papillated rachi to the scarred area on 

smooth rachi (Table 4b, Fig. 12b). The non-significant interaction term indicated that the slopes 

of the linear regression of each morph are equal and therefore limpet foot area relates to the 

scarred area in the same way on both papillated and smooth rachi (ANCOVA: F1,20 = 1.1610, p = 
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0.2941). Rachis type was again significant, indicating that the y-intercepts (limpet area with no 

scar) differed between the morphs (ANCOVA: F1,20  = 8.9490, p = 0.0072). Limpet foot area was 

also significant, indicating that regardless of rachis morph, scar area changed with limpet foot 

area (ANCOVA: F1,20 = 4.4398, p = 0.0479; Table 4b).  

 

Morphology and Desiccation 

 To examine the effect of morphology on desiccation, experiments were carried out at 

Stillwater Cove, under controlled outside conditions at Moss Landing Marine Labs, and in a 

drying oven at Moss Landing Marine Labs. At Stillwater Cove, the percent decrease in wet 

weight was measured over two hours every thirty minutes (Fig. 13). A comparison of the 

different rachis morphs found the desiccation rate of the rachis morphs to be significantly 

different (one-way ANOVA: F1,45 = 118.561, p = 0.0344), with the smooth morphology losing 

water more rapidly than the papillated morphology. In addition, the final percent of the wet 

weight also differed by morph (one-way ANOVA: F1,16 = 6.8593, p = 0.0186 ; Fig. 13), with the 

smooth morphology weighing less at the end of the simulated drying experiment.  

 To better control environmental factors, desiccation was also measured in a protected 

area outside at Moss Landing Marine Labs. Again, the percent change in wet weight was 

measured over two hours (Fig. 14). A comparison of the rate of desiccation revealed a significant 

difference between rachis morphs (one-way ANOVA: F1,100 = 203.775, p = 0.0051; Fig. 14), 

with the smooth rachi morphology losing water more rapidly than the papillated morphology. At 

Moss Landing Marine Labs, the desiccation rates of papillated rachi at China Rock was also 

compared to that of rachi from Stillwater Cove, and found that the desiccation rate of China 

Rock’s  heavily  papillated  rachi  was  significantly  slower  than  the desiccation rate of the relatively 

less papillated individuals from Stillwater Cove (F2,20 = 285.3130, p < 0.0001; Fig. 15). A 

repeated measure ANOVA was used to compare the percent wet weight of different rachis 

morphs and sites throughout the 2 hour experiment. There was a significant effect of rachis type 

(RM-ANOVA: F1,18 =15.0171, p = 0.0001) and time (RM-ANOVA: F4,18 = 501.6078, p < 

0.0001), as well as a significant interaction of rachis type*time (RM-ANOVA: F2.18 = 15.0171, p 

= 0.0001). The significant interaction term indicates that the wet weight of the rachis is changing 
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over time, but that the change differs between the rachis types. This result is likely driven by the 

differences in the rachis morphology by site, with rachi from China Rock drying out more slowly 

that those from Stillwater Cove, and to a higher percent wet weight (Fig. 15). 

 Finally, desiccation was examined in a completely controlled environment: a drying oven 

set to 60°C for 160 hours. As expected, a linear regression found a significant negative 

relationship between the percent wet weight and time in the dryer (linear regression: percent wet 

weight remaining = 56.68 – 0.2913 * Time (hours), F1,176 = 564.995,  p < 0.0001 , r2 = 0.2359; 

Fig. 16). A comparison of percent wet weight over time found a significant difference between 

rachis morphologies at every time point measured, though the difference decreased as the rachi 

approached their dry weight (Table 6). Comparing the regression lines for each morphology over 

time found no significant difference between either the slopes (F1,176 = 2.007, p = 0.158) or the 

line intercepts (F1,176 = 2.071, p = 0.152). A repeated measures ANOVA examined the change in 

wet weight over time between rachis morphs and found a significant effect of rachis type (RM-

ANOVA: F1,16 = 17.0583, p = 0.0008), time (RM-ANOVA: F9,8 = 21674.045, p < 0.0001), but 

interaction term of rachis type*time was not found to be significant (RM-ANOVA: F9,8 = 2.6853, 

p = 0.0895). The significant effect of rachis type and time indicates that there is a difference 

between the rachis types, as well as the samples over time, however the lack of a significant 

interaction term indicates that the rachis sections change in the same manner over the course of 

the experiment. This result is contrary to that found in the controlled outdoor experiment 

discussed above, likely due to this laboratory study examining the differences of rachi solely at 

Stillwater Cove.  

 

Sublethal Biomass Loss 

 Living in the intertidal, Egregia is subjected to strong wave forces and persistent grazers 

that require the ability to recover easily from sub-lethal rachis damage. To determine the location 

of the meristem, or growth region, the terminal lamina and transition zone of rachi were removed 

from rachi of different lengths. Rachi were grouped as long, greater than 50 cm in length, or 

short, less than 50 cm in length, with half of each group having their terminal lamina and 

transition zone removed. Growth per day was compared between treatments across the top 40 cm 
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of the rachis  (considered  four  ‘zones’;;  Fig. 17).  Growth in all treatments decreased from the tip 

of the rachis (Zone 1) to 40 cm away (Zone 4; Fig. 17, 18). Despite the removal of the terminal 

lamina  and  transition  zone,  rachi  with  the  ‘meristem’  removed  did not have significantly 

different growth rates than those with the terminal lamina present (one-way ANOVA: F1,96 = 

0.4911, p = 0.4852; Fig. 17, 18). Short and long rachi also did not have significantly different 

growth rates (one-way ANOVA: F1,96 = 2.8970, p = 0.0920; Fig. 17). As this experiment showed 

no effect of the length of rachis, a further experiment was carried out to clarify the location of the 

growth region along the rachis of Egregia. With further replication, there was found to be no 

difference in growth between rachi with their terminal lamina and transition zone removed and 

those that were left untouched (one-way ANOVA: F1,148 = 0.0181, p = 0.8933; Fig. 18, Table 8). 

There was no significant difference at any of the zones, from Zone 0 at the tip of the rachis to 40 

cm from the tip (Zone 4) (Fig. 28, Table 8). Despite the removal of what was thought to be the 

meristem, growth rates did not change and elongation occurred well below the transition zone.  

 

Discussion 

 Morphological plasticity is pervasive in seaweeds and differences in morphological form 

within a species have been shown to influence growth, reproduction, and ecology (Chapman 

1961, North 1971, Hurd 2000, Charrier et al. 2012). Egregia menziesii is one of the most 

morphologically and genetically variable kelps, so much so that it was previously described as 

several species and subspecies (Lane et al. 2006, Guiry 2016). Blade and rachis morphology in 

Egregia varies greatly along the California coast, with the Monterey Bay being unique as an area 

of significant overlap of the two morphologies (Blanchette et al. 2002, Henkel et al. 2007). Thus 

I used the Monterey Bay region to examine potential differences in reproduction, growth, and 

ecology between these two distinct rachis morphologies of Egregia.  

While smooth and papillated rachi were clearly significantly different by design, 

papillation density was observed to vary by site, with Stillwater Cove having lower papillation 

density  than  either  China  Rock  or  Mitchell’s  Cove.  This  may  be  due  to  the  lower  wave  exposure  

of the Stillwater Cove population, which is shielded from some winter swells by the Monterey 

Peninsula (Fig. 1). Previous studies on the California coast have found papillations to correlate 
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with more wave exposed areas, however within site variation has not been well quantified 

(Henkel et al. 2007).  

This study found no significant difference in the area of vegetative or reproductive blades 

between the rachis morphologies, however, there were seasonal and geographical differences in 

this measurement. Sporophyll blade area peaked in the spring, whereas vegetative blade area 

peaked in the summer, indicating that sporophylls may develop or mature earlier than vegetative 

blades.  This  finding  parallels  Henkel  &  Murray’s  (2007)  reported similarly that sporophyll 

production in southern California was greatest during periods of colder water and shorter day 

length, though the Monterey Bay population did not show the summer decline described in that 

study. While reproductive area was highest in the spring, it does not necessarily mean that 

reproductive output is highest at this time, as the sporophylls may not all be ripe at that time. 

Sporophyll area was also highest at China Rock, despite the tiny size of the sporophylls, and at 

Pleasure Point, with much larger sporophylls. This suggests that small sporophyll size can be 

paired with high spore density, resulting in greater reproductive potential than sporophyll size 

would suggest on its own. Despite having a similar blade and rachis morphology to Pleasure 

Point, sporophyll area was lowest at Its Beach. These results essentially uncouple any 

suggestions that the reproductive blade area differs due to the presence or absence of 

papillations, but instead is more dependent on blade density, which is likely determined by 

different wave exposures, temperature regimes, and nutrient availability at each site. Using plant 

density and size estimates collected from my sites the year prior to these experiments, it was 

possible to calculate the density of spores produced per square meter. These metrics yielded the 

highest estimate of spore production at China Rock, followed by Pleasure Point, Its Beach, 

Stillwater  Cove,  and  Mitchell’s  Cove.  Spore density at the site level was primarily driven by the 

average rachis length and the sporophyll area per cm of rachis. China Rock and Pleasure Point 

differ in a number of characteristics, from wave exposure, to substrate type, to Egregia 

morphology, so it is likely multiple factors that are contributing to the high reproductive output 

at these sites. Pleasure Point is inside the Monterey Bay protected from the worst of the winter 

swells, while China Rock faces directly northwest into the face of the winter weather. 

Temperature regimes are also drastically different, with Pleasure Point being bathed by part of a 

warm eddy in the upwelling shadow in the northern part of Monterey Bay, while upwelling is 

much stronger along the exposed edge of the Monterey Peninsula where China Rock is located. 
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These sites also have different rachis and blade morphologies, with Pleasure Point having 

smooth individuals with wide, spatulate blades, while the population at China Rock is made up 

of densely papillated individuals with narrow, dense blades. It may be that these two sites 

provide the best combination of conditions for each of these morphologies to be reproductively 

successful.  

 While sporophyll area varied geographically and seasonally, this does not necessarily 

correspond with reproductive output. Spore concentration from a standardized area of sorus and 

the success of the settlement of these spores are often used as a measure of reproduction in kelps 

(Neushul 1963, Reed 1990, Reed et al. 1996). Similar to reproductive blade area, spore release 

concentrations and settlement success varied across the Monterey Bay, however, spore release 

was again highest at China Rock, especially during the spring and fall. Settlement success of 

these spores showed a much less clear pattern, but with the high sporophyll area and high spore 

output, China Rock appears to be one of the most reproductively successful sites of those I 

sampled. This site is exposed to heavy surf, so despite the evident reproductive success, the 

density of plants is similar to other sites, indicating high levels of mortality between spore 

settlement and adulthood. High levels of spore release also correlated to the seasons of highest 

sporophyll area, indicating that spring and fall are the times of highest reproductive output, likely 

due to the increase in available nutrients from seasonal upwelling, as well as the decrease in 

temperatures and day length from the summer months. This is similar to patterns found by 

Henkel & Murray (2007) as well as Black 1974. This high output is followed by a huge bloom in 

juvenile plants in the late winter to early summer, especially at more protected sites (Black 1974, 

Henkel & Murray 2007). One interesting point of note is also that Egregia in the Monterey Bay 

area is reproductive year-round (this study, Muth pers. comm.), without as dramatic a peak in 

reproduction as reported in southern California populations, including spore output and 

settlement success (Henkel & Murray 2007). This continual reproduction is likely due to not 

being limited by nutrients as is common south of Point Conception (Black 1976, Henkel & 

Murray 2007).  

 To better compare rachis morphologies without the environmental and geographic 

variables, Stillwater Cove offered an excellent setting, due to having populations of both 

papillated and smooth rachi present alongside one another. With spore output and settlement 



21 
 

success quantified monthly, smooth rachi had slightly higher spore release concentrations and 

lower settlement success than papillated rachi, however, these differences were not significant 

across the year. As higher spore release concentrations did not appear to correspond to settlement 

success, it may be that environmental conditions were less favourable for spores from smooth 

individuals during this study or that the quantity of spores was offset by the quality. 

Environmental conditions may be more favourable at different life stages of the morphs as well, 

for example low temperatures may favour spore release and settlement, but egg production may 

require warmer temperatures to occur (Luning 1980). It is also possible that individual variation 

overwhelmed any potential differences between the rachis morphologies. Increased replication 

may also have clarified these results, but would have decimated reproductive populations 

monthly, and at some sites it was difficult to find even three reproductive rachi due to shore 

contours, sand movement, and low plant density at some sites, especially Stillwater Cove. High 

wave  exposure  and  steep  intertidal  benches  made  collecting  especially  difficult  at  Mitchell’s  

Cove during the winter months.  

 While this study found clear trade-offs in spore production and settlement success, it also 

found clear differences in the seasonality and geographic patterns of reproduction add to our 

understanding  of  this  kelp’s  population dynamics north of Point Conception. With the Monterey 

Bay’s  mix  of  rachis  morphologies,  these  populations do not appear to be separated by 

reproductive barriers such as timing or success, but more likely by environmental conditions 

present when reproducing, though both morphs are successful throughout the area. A common 

garden experiment to determine whether offspring of the rachis morphologies would maintain 

the same rachis type was attempted, but was unsuccessful, thus further research on Egregia 

rachis morphology would greatly benefit from the completion of a similar experiment. These 

findings are in contrast to a recent study on reproduction in Macrocystis pyrifera and M. 

integrifolia forms at Stillwater Cove, where significant differences in the reproductive output of 

each form were found, though timing was not significant (Jeffries 2015). Macrocystis has 

recently been synonymised into a single species based on morphological plasticity, so its 

reproductive differences are crucial in understanding the role these different morphs play along 

our coasts.  



22 
 

While reproduction differs significantly between rachis morphologies, these physical 

properties may also have important impacts on Egregia’s  interactions  with  other  intertidal  

species. The obligate limpet grazer Lottia insessa is found grazing on Egregia rachi from Baja 

California through central Oregon, causing numerous scars that can result in frond breakage or 

even whole plant mortality under persistent limpet infestations (Black 1974, 1976, Kuo & 

Sanford 2013). While limpets were not found in significantly different densities on rachi with or 

without papillations, their ability to graze and create home scars may be affected by the presence 

of the papillations. The area of the rachis that was damaged by limpet scars was significantly 

higher on rachi without papillations, perhaps indicating a protective effect of the papillations for 

the individual. This could also be one factor in L. insessa not being found consistently north of 

central Oregon, despite Egregia being found as far north as Sitka, Alaska (Kuo & Sanford 2013), 

because only papillated morphologies occur in the northern part of the range (Abbott& 

Hollenberg 1976). This pattern of increased scarring on smooth rachi did not correspond to 

larger limpets being found on these rachi, so it seems that papillated rachi were simply less 

damaged by limpets of the same size than smooth rachi. Despite the significantly greater scarred 

area, the percent of rachis removed was not significantly different between the morphs, 

indicating that though the amount of rachis removed was similar, smooth rachi had much larger, 

shallower scars, while papillated rachi had smaller but deeper scars. While large scars damage 

more of the rachis surface, the smaller deeper scars on papillated rachi may damage the medulla, 

inhibiting the transport of nutrients through the rachis. Black (1976) found L. incessa to become 

more common on Egregia rachi through the spring and summer, paralleling the period of fastest 

growth. The infestation of these grazers can have significant effects on the reproduction of the 

population as the rachi mature (or break before maturation). Sublethal damage from isopod 

grazing was found to have similar lasting, population-level effects on reproduction in 

Macrocystis pyrifera (Graham 2002). Grazing was also found to have lasting impacts on 

Ecklonia radiata biomass in relation to morphological differences (Steinberg 1995, Wernberg et 

al 2003). The effect of these different types of scars is still unclear, but the clear difference in 

scarring by morphology could be an important factor in breakage and biomass loss in Egregia 

populations from Baja California to central Oregon.  

Limpet grazers are only one of numerous hazards to the persistence of Egregia along 

central California coasts. Biomass loss has been well studied in kelps, due to their habitat-
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forming characteristics, as well as their various methods of recovery (Graham 2002, Thompson 

2010, Geange 2014). Regrowth and regeneration in kelps occurs from the meristem, but the 

location of this region varies with kelp morphology and taxonomy (Graham 2002). In Egregia, 

the meristem was thought to be intercalary between the tip of the rachis and the terminal lamina 

(Black 1974, Abbott & Hollenberg 1976). The removal of this region, by wave activity, grazer 

damage, or other means, was thought to cause the rachis to cease elongation (Black 1974). 

Growth of the plant would continue with new fronds growing from the basal meristem near the 

holdfast, branching of fronds, as well as the growth of fronds where the meristem was still intact 

(Black 1974, 1976). This study found the meristem to be much more diffuse than the narrow 

band between the rachis and the terminal lamina. Elongation of the rachis was found to persist 

even after 40 cm of the end of the rachis was removed (Fig. 20). This diffuse meristem is 

important in allowing Egregia to persist through much higher biomass loss in response to 

disturbance than was previously thought. This adaptation may be important in the intertidal and 

shallow subtidal that Egregia inhabits, due to the intense water motion and abrasion, and 

resulting tissue damage that can occur following, contact with rough rocky substrates (Dethier 

1984, Steneck & Dethier 1994, Poore et al. 2013). The diffuse meristem does bring into question 

the importance of the terminal lamina, as its erosion does not necessarily signal the end of the 

rachis elongation as had been thought (Black 1974). This terminal lamina has been found to have 

significantly higher photosynthetic capacity, however, so it may still serve to take advantage of 

good growing conditions early in the growing season before it is eroded away (Chapman 1961).   

With Egregia being able to withstand substantial biomass loss due to damage from 

limpets or waves, it also faces stresses that cause less obvious damage, such as drying out during 

low tides. As an intertidal foundation species, Egregia’s  presence has a significant effect on the 

community around it due to its whiplash effect, sand retention, and shading (Hughes 2010). As a 

subcanopy or canopy forming species, Egregia forms dense mats directly on the substrate at low 

tides, shading the substrate and underlying species from sun exposure (Black 1974, Friedland & 

Denny 1995), but also preventing water loss and photosynthesis (Dayton 1975, Hughes 2010). 

While this shading and abrasion may inhibit the growth of some species (Hughes 2010), it may 

also protect many from harsh sun exposure and desiccation common during low tides (Hughes 

2010). The papillations on Egregia rachi increase the surface area of the rachis, but also shade 

the rachis interior better. The presence of papillations may have significant impacts on the 
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amount of water retained by Egregia during low tides, to the benefit of both Egregia and many 

surrounding species. This study found that rates of desiccation differed between smooth and 

papillated rachi, with smooth rachi losing a higher percentage of their total wet weight and 

reaching a lower percentage of the total wet weight than papillated rachi. This indicates that 

papillated rachi may retain water better during desiccation events than smooth rachi. However, 

the salad spinner method used gives only a conservative estimate of desiccation as water loss 

would occur more gradually in the intertidal as the tide recedes. Tidal ranges generally increase 

northward throughout Egregia’s  geographic range, leaving the intertidal exposed for longer 

periods of time. Conversely, Egregia is found at deeper depths in the southerly portions of its 

range, reaching depths of 45 feet in San Diego and the California Channel Islands (Chapman 

1961, Abbott & Hollenberg 1976). This change in depth range is likely due to increased light and 

nutrient availability, as well as decreased temperature stress in southern waters. Studies in 

another intertidal algae, Mastocarpus papillatus, found thallus temperature to be highly 

dependent on the thickness and roughness of the thallus, possibly due to the enhanced 

evaporative cooling provided by the increased roughness or the increased amount of fluid 

trapped between papillae (Bell 1992, 1995). With papillated individuals being found more 

commonly at wave exposed sites, the water retention could also play a factor in allowing Egregia 

to survive higher in the intertidal as it does in the more northern parts of its range. It is possible 

that  the  smooth  morphology  has  simply  doesn’t  develop  papillations  under  certain  environmental  

conditions that include low water motion and less desiccation stress. If these conditions occurred 

at a point in early development before morphology was fixed, it could help explain the mixed 

populations at Stillwater Cove, where wave exposure is not extreme, and dense eel grass beds 

retain water over the soft substrate. There are likely other effects of Egegia’s  rachis  morphology 

on its physiology, but  this  study’s  findings  already  indicate  the  importance  of  morphology  in  

determining  an  organism’s  population  dynamics,  physiology,  and  community interactions.  

 While there were no clear differences in reproduction between morphs, there were clear 

ecological impacts of Egregia’s  rachis morphology on it resistance to grazing and desiccation. 

Egregia’s diffuse intercalary meristem and persistent rachis elongation allow it to better 

withstand the stresses of its intertidal habitat. Morphology in kelp is an incredibly plastic trait, 

but its adaptations can tell us far more about an organism than simply its shape and species, and 
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is an important area for further research, as we seek to better understand changes in our oceans 

and how kelps and other algae will respond to these changes. 

 

Conclusions 

 Morphological plasticity is one of the hallmarks of marine algae, especially in foundation 

species like many kelps. While well studied in terrestrial systems, the effects of morphological 

variability are not well understood in marine environments (Price et al. 2003, Miner et al. 2005). 

This study adds to our knowledge of how phenotypic plasticity affects organisms and their 

surrounding communities, in an intertidal foundation species, Egregia menziesii (Hughes 2010, 

Charrier et al. 2012). This study also clarifies the morphological variation in this species in an 

area of high variation, as well as comparing the effects at a site with both morphs present under 

the same environmental conditions.  

 This study found that Egregia with smooth rachi produce more spores, but have lower 

settlement success than papillated individuals. This difference in reproduction may be indicative 

of advantageous environmental conditions occurring at different reproductive stages, or a 

difference in the reproductive strategy of these different morphs. Papillated individuals also had 

smaller scars from the obligate limpet grazer than smooth individuals, indicating an advantage 

against these grazers over individuals with smooth rachi. This study also found that heavily 

papillated rachi lost less of their wet weight during desiccation than smooth individuals, a clear 

advantage in persisting in the mid intertidal. The meristem of Egregia was also found to be more 

diffuse than previously thought, a further advantage against biomass loss from storm damage or 

self-entanglement (Demes et al 2013).  

 As Egregia forms important habitat and plays a large role in structuring intertidal 

communities, it is important to understand the differential roles these rachis morphs may play 

along our shores. Further studies are needed to understand the basis for this variation, and 

whether  it  is  a  heritable  trait,  as  well  as  better  understanding  of  the  morph’s  roles  in  the  intertidal  

community.  
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Figures 

 

 
Figure 1.  Map  of  research  sites  in  the  Monterey  Bay  (from  north  to  south):  Mitchell’s  Cove,  It’s  
Beach, Pleasure Point, China Rock, and Stillwater Cove. Stillwater Cove has populations of both 
papillated and smooth individuals, and was used for all comparative experiments.  
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Figure 2. Thallus morphology of Egregia menziesii adapted from Friedland & Denny 1995.  
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Figure 3. Papillation density by site, arranged from North to South, with Stillwater Cove 
separated by morphology since both smooth and papillated individuals were present. There was 
no significant difference between Mitchell’s  Cove  and  China  Rock, however papillated 
individuals at Stillwater Cove (SWC-P) had significantly lower papillation densities than either 
Mitchell’s  Cove or China Rock. Its Beach, Pleasure Point, and Stillwater smooth (SWC-S) were 
all populations of smooth individuals, with no papillations observed. Letters above bars represent 
significant differences (p<0.05, Tukey HSD). Error bars are ± SE.  
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Figure 4. A comparison of blade area per 1 cm of rachi between blade types (sporophylls and 
vegetative blades) as well as rachis type (smooth or papillated). There is no significant difference 
in sporophyll area between morphs (n = 85, F1,167 = 0.1747, p = 0.6765) or in vegetative area 
between morphs (n = 85, F1,167 = 0.5242, p = 0.4701). Vegetative blades have approximately 2.5 
times the surface area per cm of rachis of sporophylls. Letters above bars represent significant 
differences (p < 0.05, Tukey HSD). Error bars are ± SE.  
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Figure 5. A comparison of the average blade area per centimeter of rachis between blade type 
(vegetative and sporophyll) and season. There is a significant effect of blade type on blade area, 
but no significant effect of season. Letters above bars represent significant differences (p < 0.05, 
Tukey HSD). Error bars are ± SE. See Table 5 for full ANOVA results.  
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Figure 6. A comparison of blade area by blade type (sporophyll, vegetative) and site (Table 1). 
Sporophyll area is significantly different by site (F4,164 = 3.6809, p = 0.0067), with China Rock 
having significantly higher sporophyll area than all other sites except Pleasure Point (p = 
0.1020). Vegetative blade did not differ significantly by site (F4, 164 = 1.6266, p = 0.1699), 
despite China Rock have significantly higher blade area than Its Beach (p = 0.0248). Letters 
above bars represent significant differences (p < 0.05, Tukey HSD). Error bars are ±SE.  
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Figure 7. Effects of morphology and date on two metrics of reproductive output: a) zoospore 
concentration and b) total reproduction (settlement success). Samples were taken approximately 
monthly from September 2014 through January 2016 at Stillwater Cove, dependent on tides and 
weather. Error bars are ±SE, replicated by rachis for each sampling date. (n = 5) 
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Figure 8. Effect of morphology on average reproductive output across the total time sampled at 
Stillwater Cove, CA: a) zoospore output concentration (15 months) (t-test: t1,30=1.39917, p = 
0.1720) and b) total reproduction (settlement success, 12 months) (t-test:t1,24= -0.45478, p = 
0.6534). Error bars are ±SE. 
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Figure 9. Spore output concentration around the Monterey Bay, over 6 quarters, Fall 2014 to 
Winter  2015  from  Mitchell’s  Cove,  Its  Beach,  Pleasure  Point,  China  rock,  and  Stillwater  Cove  
(papillated and smooth). Error bars are ±SE. (n = 3) 
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Figure 10. Spore settlement success around the Monterey Bay from Winter 2014 through Winter 
2015 at  Mitchell’s  Cove,  Its  Beach,  Pleasure  Point,  China  Rock,  and  Stillwater  Cove  (papillated  
and smooth). Values exceed 100% settlement due to the variability in spore concentration 
estimates. Error bars are ±SE. (n = 3) 
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Figure 11. Effects of limpets on Egregia by rachis morph: A) The average limpet density 
between smooth and papillated rachi at Stillwater Cove, CA, with no significant difference 
between morphs (ANOVA: F1,96 = 1.3817, p = 0.2427). B) Average scarred area of rachis by 
rachis morph, with smooth rachi having significantly larger scars than papillated rachi (ANOVA: 
F1,22 = 9.4334, p= 0.0056). C) The percent rachis removed by rachis morph, with no significant 
difference seen between morphs (ANOVA: F1,22 = 0.6872, p = 0.4160).  Error bars are ±SE. 
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Figure 12. Limpet morphometrics compared to the scar area on the rachis, with smooth rachi 
indicated using the (○) and papillated rachi using the (•). A) Limpet mass was positively related 
to the scar area, with the r2 of papillated rachi equalling 0.693, while that of the smooth rachi is 
0.474. The overall r2 value of all limpets and their scars was 0.392. See Table 6a for ANCOVA 
results. B) The  area  of  the  limpet’s  footprint  is also positively correlated with the area of the scar. 
The r2 value for papillated rachi individuals is 0.609, while that for smooth individuals is 0.270, 
while the r2 value for all rachi is 0.249. See Table 6b for ANCOVA results. (n = 24) 
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Figure 13. The decrease in % wet weight of the rachi over 2 hours at Stillwater Cove between 
papillated and smooth rachi. Error bars are ±SE. (n = 5) 
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Figure 14. The decrease in % wet weight of the rachi over 2.5 hours outside at Moss Landing 
Marine Laboratories. Error bars are ±SE. Results of repeated measures ANOVA see Table 5a. (n 
= 7) 
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Figure 15. The decrease in % wet weight of rachi over 2.5 hours outside of Moss Landing 
Marine Laboratories, compared between papillated and smooth rachi from Stillwater Cove and 
papillated rachi from China Rock. Error bars are ±SE. Results of repeated measures ANOVA see 
Table 5b. (n = 7) 
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Figure 16. The decrease in % wet weight of rachis segments in a 60°C oven over A) 160 hours 
and B) the first 2.5 hours of the same experiment. Error bars are ±SE. Results of ANCOVA see 
Table 7. (n = 10)  
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Figure 17. Growth rate (cm/day) along the rachis, from Zone 1 adjacent to the terminal lamina to 
Zone 4, 40 cm from the terminal lamina. Removed rachi had the terminal lamina and transition 
zone (Zone 0) removed at the start of the experiment. Short rachi were those shorter than 50 cm, 
while long rachi were those longer than 50 cm. Error bars are ± SE.  
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Figure 18. Growth rates (cm/day) by zone of rachis, from the transition zone near the tip (Zone 
1) to 40 cm from the transition zone towards the base of the rachis (Zone 5). Rachi with the 
terminal lamina removed are noted by the solid line, while rachi without the terminal lamina 
removed are noted with the dashed line. Error bars shown are ± SE.  
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Tables 

Table 1. Field sites for seasonal reproductive output monitoring, from south to north. 

Site Rachis 
Type(s) 

Location Wave 
Exposure 

Average 
Plant Density 
per sq meter 

Average 
Plant Size (# 
of rachi) 

Stillwater 
Cove 

Smooth, 
Papillated 

36°  33’  55.21”  N 
121°  56’  43.32”  W 

Medium-low 0.61 9.8 

China Rock Papillated 36°  36’  18.49”  N 
121°  57’  36.93”  W 

High 1.25 17.5 

Pleasure Pt Smooth 36°  57’  16.11”  N 
121°  58’  26.70”  W 

Low 3.69 6.9 

Its Beach Smooth 36°  57’  5.25”  N 
121°  1’  53.86”  W 

Medium 1.47 9.7 

Mitchell’s  
Cove 

Papillated 36°  57’  0.88”  N 
121°  2’  40.27”  W 

High 2.44 16.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

 

Table 2. Results of a three-way Analysis of Variance (3-way ANOVA) comparing rachis 

morphology, blade type, and season effects on blade area around the Monterey Bay.  

 df MS F p 

Rachis Type 1 18873435 39.9392 < 0.0001 

Blade Type 1 48787530 103.2421 < 0.0001 

Rachis*Blade 1 6847076 14.4895 0.0002 

Season 3 306886.67 0.6494 0.5838 

Season*Rachis 3 597256.67 1.2639 0.2868 

Season*Blade 3 167923.33 0.3554 0.7853 

Season*Rachis*Blade 3 245892.33 0.5203 0.6686 

Error 322 472554   

 

Tukey HSD Multiple Comparison Test: 

     p 

Smooth, vegetative v Papillated, sporophyll < 0.0001 

Smooth, vegetative v Smooth, sporophyll < 0.0001 

Smooth, vegetative v Papillated, vegetative < 0.0001 

Papillated, vegetative v Papillated, sporophyll < 0.0001 

Papillated, vegetative v Smooth, sporophyll 0.0349 

Smooth, sporophyll v Papillated, sporophyll 0.2862 
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Table 3. Results of a 3-way ANOVA comparing the effects of site, blade type, and season on 

blade area around the Monterey Bay.   

 df MS F p 

Site 4 6952814 16.4588 < 0.0001 

Blade Type 1 21040851 49.8082 < 0.0001 

Site*Blade Type 4 2123881 5.0277 0.0006 

Season 3 1034620 2.4492 0.0638 

Site*Season 12 988113 2.3391 0.0071 

Blade Type*Season 3 362072 0.8571 0.4637 

Site*Blade Type*Season 12 432479 1.0238 0.4267 
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Table 4. Results of two-way Analysis of Variance (ANOVA) tests comparing morphology and 
day effects on reproductive output from reproductive surveys at Stillwater Cove: a) average 
zoospore concentration, and b) average spore settlement success.  

a) Average spore concentration 

 df MS F p 
Date 15 500462893 3.0566 0.0004* 

Morph 1 664831382 4.0605 0.0464* 
Date*Morph 15 160091674 0.9778 0.4835 

Error 107 163732742   
 

a) Average spore settlement success 
 

 df MS F p 
Date 12 13944.08 2.8288 0.0022* 

Morph 1 5070.22 1.0286 0.3128 
Date*Morph 12 4064.70 0.8246 0.6249 

Error 104 4929.29   
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Table 5. Results of two-way Analysis of Variance (ANOVA) tests comparing morphology and 
season effects on reproductive output from surveys around the Monterey Bay: a) average 
zoospore concentration, and b) average spore settlement success.  

a) Average zoospore output 

 df MS F p 
Season 3 1523483024 5.5226 0.0015* 
Morph 1 355654450 1.2882 0.2589 

Season*Morph 3 219583504 0.7960 0.4989 
Error 100 275861960   

 

a) Average spore settlement success 
 

 df MS F P 
Season 3 30825.190 7.1414 0.0003* 
Morph 1 1204.586 0.2791 0.5987 

Season*Morph 3 336.845 0.0780 0.9717 
Error 82 4316.416   
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Table 6. Results of Analysis of Covariance (ANCOVA) tests comparing a) the effects of limpet 
mass and morph (papillated, smooth) on the rachis scar area (mm2) and b) limpet foot area (mm2) 
and morph (papillated, smooth) on the rachis scar area (mm2). 

a) 

 df MS F p 
Morph 1 186390.60 10.8416 0.0036* 

Limpet Mass (g) 1 167933.91 9.7680 0.0053* 
Morph*Limpet Mass 1 57549.91 3.3474 0.0823 

Error 20 17192.23   
 

b)  

 df MS F p 
Morph 1 2624.0269 5.0405 0.0362* 

Limpet Foot Area (mm2) 1 4573.4727 8.7852 0.0077* 
Morph*Foot Area 1 2563.0998 4.9325 0.0382* 

Error 20 2385.80   
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Table 7. Comparisons of % Wet Weight remaining between rachis morphologies at Stillwater 
Cove over 160 hours. 

Time (hrs) Papillated Avg % 
Wet Weight 

Smooth Avg % 
Wet Weight 

ANOVA results 

0.25 86.8964 81.9642 F1,16 = 11.2641, p = 0.0040* 
0.5 77.6219 71.3840 F1,16 = 20.2031, p = 0.0004* 
0.75 70.1180 62.7399 F1,16 = 17.6725, p = 0.0007* 
1 63.3565 54.9541 F1,16 = 15.3631, p = 0.0012* 
1.5 48.5363 39.5287 F1,16 = 12.2891, p = 0.0029* 
2 35.7440 27.7115 F1,16 = 11.7583, p = 0.0034* 
2.5 26.0567 19.8304 F1,16 = 13.2679, p = 0.0022* 
16.5 15.9854 14.0223 F1,16 = 6.4003, p = 0.0223* 
160 15.6167 13.6719 F1,16 = 6.8593, p = 0.0186* 
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Table 8. Comparisons of growth (cm/day) between rachi with the terminal lamina and transition 
zone removed and control rachi.  

Zone Unremoved Growth 
(cm/day) 

Removed Growth 
(cm/day) 

ANOVA Results 

0 0.596970 0.496970 F1,28 = 0.3690, p = 0.5485 
1 0.124242 0.136364 F1,28 = 0.0280, p = 0.8683 
2 0.048485 0.033333 F1,28 = 0.5087, p = 0.4816 
3 -0.00303 0.01818 F1,28 = 2.7661, p = 0.1074 
4 -0.03030 0.01818 F1,28 = 2.2770, p = 0.1425 
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