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Introduction 

Edgard Varèse once said: “To stubbornly conditioned ears, anything new in music has 

always been called noise. But after all, what is music but organized noises?” (18) In today’s 

musical climate there is one realm that overwhelmingly leads the revolution in new forms of 

organized noise: the realm of software synthesis. Although Varèse did not live long enough to 

see the digital revolution, it is likely he would have embraced computers as so many millions 

have and contributed to these new forms of noise.   

 Computers provide a powerful, convenient, and affordable means of creating music. No 

longer do musicians have to lug around heavy electronics or spend hundreds of dollars on 

instruments each time they seek a new noise. Instead, software synthesizers provide the endless 

exploration of sound at the tips of the fingers.  

 This paper explores the various techniques and tools of software synthesis. Part I deals 

with necessary background information for a thorough understanding of synthesizers. Part II 

delves into the specifics of software synthesis, with an emphasis on forms that are more 

commonly realized in software rather than analog technology. Part III briefly introduces some of 

the environments for realizing such techniques. Ultimately, all of the tools and techniques of 

software synthesis have one thing in common: they provide an affordable and convenient means 

for realizing a virtually infinite number of sounds.    

Part I: Sound, Synthesis, and Digital Audio 

Sound 

 Any discussion of synthesis generally begins with the principles of sound. It is important 

to realize that there are two lenses through which we can view sound. Acoustics studies the 

physical nature of sound waves, while hearing is the perception of these sound waves. At the 
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most basic level, sound waves occur when energy disrupts a physical medium (Pohlmann 1), 

such as water, air, or even concrete. Most of the time, this takes the form of fluctuations in air 

pressure that eventually reach our ears. For example, when a guitar string is plucked, it moves 

upward and compresses the air molecules above it into a region of higher air pressure. When the 

string moves downward, it leaves a region of lower air pressure, called a rarefaction. These 

regions of high and low air pressure propagate, or spread outward, much like the waves from a 

stone dropped into a body of water. Eventually, this acoustic energy reaches our ears, causing the 

eardrum to vibrate, triggering the sensation of sound.  

 Sound is graphically represented as a two dimensional wave, showing fluctuations in 

sound pressure level (the Y axis) over time (the X axis). The resulting wave may take many 

shapes. The simplest possible waveform is a sine wave, which has a natural, smooth shape to its 

motion. In practice, most musical instruments produce complex waveforms. A violin, for 

example, produces a wave that looks similar to a sawtooth, because as the bow is pulled the 

string sticks to the resin on the bow and is pulled too. It periodically snaps back to its 

equilibrium, producing the sudden, downward portion of the waveform (Reid, “Synthesizing 

Bowed Strings: the Violin family”). The number of cycles that a wave completes per second is 

the frequency, which is measured in Hertz (Hz). The frequency determines the pitch of a musical 

sound. The height of the wave is the amplitude, and it corresponds to the loudness of a sound. A 

final important consideration is phase, which is a measurement of how far along one cycle the 

wave is, measured in degrees. One full wave cycle is 360 degrees, so a wave that is 180 degrees 

out of phase with another wave is halfway through its cycle while the other is beginning its 

cycle.   
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 In the early 1800s, a mathematician named Jean Baptiste Joseph Fourier showed that any 

complex periodic waveform can be broken down into a series of sine waves at different 

frequencies and amplitudes (Smith Ch. 8). As the image below shows, enough sine waves at 

different frequencies can be added together to eventually produce a sawtooth (Snoman 7): 

 

This can be witnessed on the vibrating strings of a guitar. When viewed at a slow enough rate, 

there are actually multiple vibrations that are occurring at once across different regions of the 

guitar string. These different frequencies add up to produce the complex tone, or timbre, that a 

guitar generates. 

 The relationship amongst the different sine wave frequencies and their relative 

amplitudes is what gives a sound its particular timbre. The sensation of pitch results from a 

specific series of sine waves known as the harmonic series. The lowest frequency of the 

harmonic series is the fundamental frequency, and it determines the perceived pitch of a sound. 

Frequencies that are integer multiples of the fundamental are called harmonics. For example, a 

piano playing concert pitch A4 has a fundamental frequency of 440 Hz, but it also contains 

harmonics at 880 Hz, 1320 Hz, 1760 Hz, and other multiples of 440. Higher ordered harmonics 



 Powell 5 

tend to be weaker than lower ones. A timbre may also include frequencies that are not integer 

multiples of the fundamental and these are called partials.   

 Certain timbres may be thin and contain only a fundamental frequency and two 

harmonics. Some timbres may be rich and contain the entire harmonic series. Other sounds may 

contain frequencies that do not form a harmonic series at all but are distributed randomly across 

the frequency spectrum. These timbres would not result a sense of pitch but rather noise, such as 

the crash of a cymbal. The human ear can hear frequencies in a range from 20 to 20,000 Hz, 

providing a wide range of possible timbres, both noisy and pitched.  

Synthesis 

 Although forms of electronic instruments have existed since the late 1800s, it was not 

until the 1950s that people began taking full advantage of Fourier’s discovery and synthesizing 

complex signals from sine waves, a process known as additive synthesis. Additive synthesis was 

pioneered by a group of scholars and musicians, most notably Karlheinz Stockhausen, who 

began creating compositions of the style electronische Musik at a radio studio in Cologne. For 

Stockhausen, “the desire to exercise total control over the processes involved in specifying 

timbres led, after some deliberation, to the selection of the sine wave oscillator as the most 

suitable source of electronic material” (Manning 43). A sine wave oscillator generates an 

electrical signal of varying voltage over time, with control over the frequency and amplitude of 

the signal. This electrical signal was then converted into acoustic sound waves via a loudspeaker. 

Using only one sine wave oscillator and multi-track tape machines, Stockhausen recorded 

different sine waves over many different takes. Although tedious, the process offered precise 

control over the resulting timbres, and culminated in two of the defining works of electronische 

Musik: Studie I and Studie II. 
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 Eventually, musicians in Cologne and elsewhere began using oscillators that generated 

complex waves, such as a square or noise waves (Manning 44). These complex sounds were 

generally followed by a filter, a device that boosts or attenuates specific frequencies in a signal. 

This process of filtering complex waveforms is known as subtractive synthesis. One of the 

earliest synthesizers with subtractive capabilities was the Mark II, by RCA. The Mark II 

consisted of a series of modules, including oscillators and filters, that could be flexibly routed 

(96). Other modules included envelope generators, which vary the amplitude of a wave over 

time, and low frequency oscillators (LFOs), which could be routed to create subtle movement in 

pitch or volume. The synthesizer filled an entire room at Columbia University and required 

complex programming to create sounds. Other notable analog synthesizers were created by 

Buchla and Moog and featured keyboards as means of controlling synthesis, thus offering a more 

musical control method (102).  

 Ultimately, synthesizers did not permeate popular music until the digital revolution. The 

first experiments using computers to synthesize audio signals began in the 1950s at Bell 

Telephone Laboratories, where research was being conducted into digitizing phone 

conversations. One of the engineers, Max Mathews, began experimenting with software that 

could produce audio waveforms from scratch. The first program, Music I, was capable of 

producing a single triangle wave. Music II offered 16 possible waveforms, and subsequent 

version of the software, such as Music III and Music IV offered multiple oscillators, filters, and 

envelopes, among other tools (Manning 187).  

 Although a significant historical advancement, only a few experimental and academic 

pieces were composed using the Music N programs. Computing technology of the time was not 

fast enough to generate complex signals in real time, instead requiring time for the waveform 
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calculation results to be stored in a separate digital audio file, which was then played back. 

Complicated processes required longer waiting times to hear the results. Thus, there was no 

physical means of interacting with the sounds, as with a musical instrument, and no means of 

improvisation or live performance (Manning 187-190). 

 The next generation of digital synthesizers overcame these limitations by utilizing the 

silicon transistor and microprocessor, innovations that brought significant advancement in terms 

of the size, cost, and speed of computers. The first of these synthesizers, the Synclavier, was 

developed at Dartmouth College, and was a self-contained instrument complete with a dedicated 

audio microprocessor and keyboard controller. It was capable of producing 24 sine waves to 

form complex timbres and included foot pedals to control the envelope and overall volume of the 

sounds. The next important digital hardware synthesizer, the Fairlight, created timbres from 

previously recorded waveform samples, rather than computing them in real time (224-225). This 

synthesizer found its way into the hands of some mainstream users, such as John Paul Jones and 

Stevie Wonder (Manning 222-223).  

 One of the most important events in terms of expanding digital synthesizers into the 

commercial market was the development of the Musical Instrument Digital Interface, or MIDI. 

Announced in 1982, MIDI was developed after much deliberation amongst several 

manufacturers, including Yamaha, Korg, and Moog (Manning 267). Despite what its name 

suggests, MIDI is not so much an interface as it is a standard protocol for communicating 

musical information in a digital format. MIDI reduces musical information such as pitch, note 

length, and velocity (how hard a note is hit) into a single stream of data, capable of controlling a 

variety of audio-producing software that speaks the MIDI language. It also allows digital devices 
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to communicate via a single cable, meaning that one MIDI keyboard is capable of controlling a 

variety of synthesis software in a computer.  

Digital Audio 

 Before moving on to software synthesis, it is important to have a basic understanding of 

computers and digital audio. Computers take in data about the physical world in the form of 

numbers. They store that information, process it, and spit the results back out. For this reason, 

most computers are thought to have these main parts: input devices, such as keyboards, memory 

for storing data, a central processing unit which performs calculations, an output device such as a 

screen, and perhaps some form of bulk storage, such as a hard drive (Manning 183-185).  

 In the case of audio, the real-world data that is being stored and processed is a series of 

numbers that represent the amplitudes of a sound wave. However, whereas analog electronics 

store a continuous audio signal in the form of varying electrical voltage, digital electronics are 

capable of storing only two voltages: a low or a high state, nothing in between. This means they 

can only store discrete numbers as opposed to the infinite resolution of analog gear. The two 

states of low and high voltage are used to represent the numbers 0 and 1, respectively. It is 

possible to store any value in a binary or base-2 number system using just 0s and 1s. While a 

decimal or base-10 number system has its advantages for humans (we can count with 10 fingers 

and represent large numbers with less digits), binary math is ruthlessly efficient. Binary number 

systems have existed for hundreds of years, although it was not until technological developments 

of the 20th century that people were able to take full advantage of binary math and binary logic 

(Pohlmann 5-7).  

 In short, digital audio is a series of binary numbers representing the amplitudes of a 

sound wave. In the case of digital recording, these numbers are “sampled” from analog signals at 
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regular intervals in time. The number of samples taken per second is known as the sampling rate, 

and it determines the highest frequency capable of being represented by a digital signal. This 

highest frequency is called the Nyquist frequency and is roughly half the sampling rate. So, a 

sampling rate of 44.1 kHz is capable of representing frequencies up to roughly 22 kHz. If 

frequencies above the Nyquist frequency are sampled, they will be inaccurately stored as lower 

frequencies, a type of distortion known as aliasing (Pohlmann 20-25).  

 Another important consideration in digital audio is the bit depth. The bit depth is the 

amount of memory dedicated to storing one sample, measured in binary digits or bits for short. 

Common bit depths include 16-bit, 24-bit, and 32-bit. The bit depth determines the number of 

possible values that can be stored as a sample and thus determines the dynamic range and noise 

floor of a digital audio signal (Pohlmann 28-37).  

 Analog signals are not the only source of digital samples. It is possible to create digital 

audio signals from scratch, using mathematical formulas to generate each sample. This, in a 

nutshell, is digital audio synthesis.  

Part II: Software Synthesis Techniques 

Software synthesis has come a long way since its inception by Max Mathews. Contrary to 

early forms, contemporary software synthesis can be performed in real time on the tiniest of 

computers. Whether realized on a desktop, tablet, or smart phone, the fundamental techniques 

remain the same.  

 The basis of any software synthesizer is the unit generator, an individual module capable 

of performing a simple task (Roads, Computer Music Tutorial 89). Unit generators are 

essentially the software equivalent of analog modules, each performing a distinct task such as 
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waveform generation or filtering. Like modules, unit generators provide flexibility, so that a 

limited number of generators can be routed to create a variety of synthesis instruments. 

 Perhaps the most important type of unit generator is the wavetable oscillator. A 

wavetable is a short array of samples stored in memory, representing one cycle of a waveform. 

The alternative to wavetables is to calculate each sample in real time according to mathematical 

formulas for individual waveforms, such as sine waves. While intuitive, this method requires 

quick and intense processing to calculate each approaching sample, which is not an efficient use 

of computing power. The values stored in wavetables have been pre-computed and simply need 

to be read through at the appropriate sample rate to produce repeating waveforms. This technique 

of cycling through wavetable values is called table-lookup synthesis, and it is at the heart of most 

forms of software synthesis. The only downside is that a small amount of memory must be taken 

up, although this is negligible by today’s memory standards (Roads, Computer Music Tutorial 

90). 

 The envelope is another unit generator that is used to control a certain parameter over 

time, generally the amplitude. Envelopes are usually triggered when a new note begins. It is 

common to speak of ADSR envelopes, which have four distinct stages: attack, decay, sustain, 

and release. The attack portion refers to the time it takes for a sound to reach its highest 

amplitude once a note begins. The decay refers to how long it takes for the signal to drop from its 

peak amplitude to its sustain level. The sustain portion of an envelope is the amplitude at which 

it will stay for as long as a note is held. Finally, the release refers to the time it takes for the 

amplitude to fall to zero once the note is released. The envelope of a sound has a dramatic effect 

on its perceived timbre. Some sounds, such as the pluck of a guitar string, have a fast attack and 

therefore sound up-front and percussive. Sounds with slower attacks include the swell of a violin, 
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and they often appear to be quieter, although they may reach the same peak amplitude. It is also 

possible to assign envelopes to modulate other parameters, such as pitch and filter cutoff 

frequency, to create interesting effects (Roads, Computer Music Tutorial 97).  

 A final notable unit generator is the low frequency oscillator, or LFO. Like a standard 

oscillator, an LFO creates a signal that varies over time, albeit at a rate below the range of human 

hearing. Therefore, rather than create sound of their own, LFOs can be used to create subtle or 

extreme rhythmic variations in certain parameters. LFOs are important because they create 

movement in volume, pitch, or tone, breathing life into otherwise static sounds. Like the analog 

module, a filter boosts or reduces specific frequencies of a complex tone. Other unit generators 

include amplifiers, which simply boost or reduce the amplitude of a signal, and filters, which 

boost or reduce certain frequencies within a signal.  

 These unit generators provide the basis for any form of digital synthesis, including both 

hardware and software synthesis. Digital hardware synthesizers, such as those discussed in the 

history of digital synthesis, feature dedicated signal processing chips that perform necessary 

calculations (Roads, Computer Music Tutorial 100). These chips are specifically designed to deal 

with audio signals, and so they provide reliability and real time results. However, they are often 

not flexible, and can perform only the synthesis tasks that they are designed to perform by the 

manufacturer. Software, on the other hand, is a set of instructions in memory that can be 

executed by a general computer. Software can be reprogrammed to perform a variety of 

synthesis tasks, and thus it provides more flexibility and convenience than hardware. As 

renowned computer musician and scholar Curtis Roads explains: 

 [A]ll of the pioneering work in computer music was carried out via software   
 synthesis. Today a variety of synthesis programs run on inexpensive personal  
 computers. …A great advantage of software synthesis is that a small computer  
 can realize any synthesis method—even the most computationally intensive— 
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 provided that the musician has the patience to wait for results. Thus, with little  
 else needed but a musical will, computers are primed and ready for high-quality  
 music synthesis. (Computer Music Tutorial 100) 
 
Even the act of waiting for results is becoming a thing of the past, as personal computers become 

more and more powerful. Today, it is not uncommon to synthesize audio signals in real time 

even on the smallest of computers, such as tablets and smart phones. Thus, software synthesis 

provides the means to create virtually infinite sounds, limited only by time and imagination.  

 Using just the concepts provided so far, it is possible to mimic the two most common 

forms of analog synthesis: additive and subtractive synthesis. There are many available software 

synthesizers, or soft synths, capable of doing just that. Modern software, however, is capable of 

performing new forms of synthesis that are not possible or practical in the analog domain. These 

forms include wavetable modulation, frequency modulation, and granular synthesis, among 

others.  

Wavetable Modulation Synthesis 

 In order to synthesize specific waveforms such as triangle or sawtooth waves, analog 

synthesizers require specialized circuits. These circuits generally produce the same waveform 

cycles over and over again, providing a consistent tone, which may be a building block for 

complex timbres. Wavetables, on the other hand, require only a small amount of memory to store 

one cycle of a waveform (Roads, Computer Music Tutorial 90). Furthermore, digital oscillators 

can easily switch between reading through different wavetables. This means it is fairly easy to 

create evolving timbres by cycling through multiple waveforms in a short period of time - a 

process known as wavetable modulation synthesis.  

 Wavetable modulation synthesis goes by many names, including vector synthesis, 

multiple wavetable synthesis, transitional synthesis, and compound synthesis, though the process 
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is always the same. Whereas subtractive and additive synthesis generate complex timbres and the 

harmonics fade away leaving only the fundamental, wavetable modulation allows a gradual 

change in harmonic content (Wiffen). Through the use of envelopes and LFOs, the sound 

appears to morph from one timbre to another. This is generally achieved by crossfading between 

waveforms. That is, one waveform gradually fades away while another one gradually fades in. It 

is important that the different waveforms being used are closely related in harmonic content. 

Otherwise, the transition will sound unnatural and harsh, possibly introducing clicks and pops. It 

is possible to morph between very different waveforms, although a larger number of wavetables 

should be used to make the transition seem natural.  

 Groups of similar wavetables are referred to as “wave terrains” or “three-dimensional 

wavetables” (Roads, Computer Music Tutorial 164). Often times, wavetables may be drawn in 

by the user to create wave terrains, as was the case with the Fairlight, arguably the earliest 

version of a wavetable modulation synth (Wiffen). In other cases, wave terrains can be generated 

mathematically or simply provided by the manufacturer. Native Instruments’ Massive, for 

example, is one of the most powerful wavetable modulation synths available and provides over 

80 wave terrains to choose from (“Massive Feature Details”). 

 Wavetable modulation is uniquely powerful in its ability to create morphing timbres and 

thus create interest. One of the great challenges of synthesis is to avoid creating static, 

unchanging sounds that often bore or even annoy the ear. While traditional methods can create 

movement by modulating pitch, filters, or amplitude, wavetable modulation provides the ability 

to truly change the timbre of a sound in ways that filters cannot. 

Frequency Modulation Synthesis 

 Frequency modulation is a technique that had been around long before it was a synthesis 
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technique. It was and is the technique used in FM radio, whereby the frequency of a signal is 

modulated at a rate of nearly 100 MHz for the purpose of traveling long distances. However, for 

many years no one had thought of modulating a signal’s frequency at a rate in the range of 

human hearing. In 1967, this all changed. In that year, musician John Chowning was 

experimenting with vibrato at a Stanford studio when he brought the vibrato rate into the range 

of human hearing. When this happened, rather than hearing a distinct movement of pitch, he 

heard an increasingly complex tone take the place of the original one. This was the first example 

of frequency modulation synthesis, or FM synthesis. Due to the instability of pitch in analogue 

synthesizers, FM is almost exclusively implemented in the digital realm (Reid, “Yamaha GS1 & 

DX1”). 

 FM synthesis requires at least two oscillators which are called operators in this technique. 

One operator is the carrier, which is the signal that gets modulated. The other is the modulator, 

the signal that gets routed to the frequency of the carrier. As the amplitude of the modulator 

increases, so does the energy of the additional partials added to the signal. These partials are 

known as “sidebands” in FM synthesis, because they occur both above and below the 

fundamental frequency. This fact is one of main reasons FM synthesis can create such unique 

timbres.  

 There are a few main parameters in FM synthesis that affect the resulting timbre. The 

frequency of the carrier determines the fundamental frequency of the resulting signal. The 

frequency of the modulator is the rate at which the modulation occurs. This parameter 

determines how far apart the sidebands will be. Finally, the modulation index is the peak 

deviation of the carrier’s frequency divided by the amplitude of the modulator (“FM Index”). 

Peak deviation refers to the maximum change in frequency undergone by the carrier. For 
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example, if the carrier’s frequency is 1000 Hz and it is being modulated up to 1100 Hz and down 

to 900 Hz, the peak deviation is 100 Hz. With an amplitude of 1, the index would be .1. The 

index is directly proportional to the amplitude of the modulating wave. In other words, 

increasing amplitude of the modulator results in a larger total amount of modulation, thus 

increasing the strength of sidebands (Reid, “An Introduction to Frequency Modulation”). It is 

largely the index and the relationship between the frequencies of the operators that determine the 

resulting timbre. For this reason, it is common to express the modulating frequency as a ratio to 

the carrier’s frequency rather than in absolute terms, so that the timbre remains constant over a 

wide range of notes.  

 With an index of 0, the resulting signal is simply the output of the carrier. As the index 

increases, energy is gradually “stolen” from the fundamental and given to an increasing number 

of sidebands (Chowning 527). At relatively low indexes of say .1 or .2, only those sidebands 

nearest to the fundamental will be heard. At higher indexes, more extreme sidebands begin to 

gain energy. If the modulating frequency is 100 Hz, then these sidebands will occur at regular 

intervals of 100 Hz away from the fundamental.  

 Given this information, the relationship between the three main parameters and the 

resulting spectra can be summarized by the following formula: F(c) ±K*F(m), where F(c) is the 

carrier frequency, F(m) is the modulating frequency, and K is all whole numbers beginning with 

0 (“Bessel Functions”). To give an example, take a carrier with a frequency of 440 Hz, and a 

modulator with a frequency of 44 Hz. The location of first-order sidebands will be 396 Hz and 

484 Hz, or 440 ± 44 Hz. The second-order sidebands will be located at 352 Hz and 528 Hz, or 

440 ± 88 Hz, and the third-order sidebands will be located at 308 Hz and 572 Hz, or 440 ± 132 

Hz, and so on. At low index levels, only the first order sidebands will be heard. It takes high 



 Powell 16 

index levels for the higher order sidebands to start emerging.  

 One important concern that is relevant at high indexes is phase. In our previous example, 

the 11th order sidebands would consist of frequencies at 440Hz ± 484 Hz, or 924 Hz and what 

would appear to be -44 Hz. A negative frequency simply indicates that same frequency but phase 

inverted (Reid, “More on Frequency Modulation”). In simple FM patches, this is not relevant 

and would just be perceived as a partial at 44 Hz, however in patches involving many operators it 

is something that must be considered.  

 A final important consideration is the relationship between the modulator and carrier 

frequencies. When ratios of integer numbers are used, such as 2:1, the resulting spectra will be of 

the harmonic series (Chowning 529). Ratios of odd numbers, such as 3:1, can create only odd-

ordered harmonics, while ratios of say 4:1 would produce only every 4th harmonic. Ratios 

including irrational numbers such as π:1 will create inharmonic spectra and noisy timbres. Again, 

the ratio is usually something that is set as a synthesis parameter and thus remains constant 

across a wide range of notes or fundamental frequencies.  

 Due to the complex spectra that result from the act of frequency modulation, it is not 

necessary to use waveforms other than sine waves to create interesting timbres. The use solely of 

sine waves is known as “simple FM” and can yield many results. However, contemporary FM 

synthesizers offer the ability to use a variety of waveforms as both the carrier and modulator. 

Using these waveforms will yield incredibly complex timbres that are often difficult to predict. 

In fact, even simple FM, while mathematically predictable, is best explored through 

experimentation rather than math. As Chowning notes: 

 Certainly the complexity in the evolution of each of the components of the spectrum  
 makes an important contribution to the lively quality of FM sounds. Because this   
 complexity is a function of the laws of the equation, it is surprising that while the   
 evolution of the components is rigidly determined, they can still produce such rich and  
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 varied subjective impressions. (530)  
 
Indeed, it takes only a matter of minutes to begin exploring the possibilities and surprises of FM 

synthesis. These surprises will increase as more waveforms and parameters are added to 

synthesis instruments. The most famous FM synth of all time, the DX7, featured six operators 

and used only sine waves (Reid, “Yamaha GS1 and DX1”). Today, instruments offer even more 

substantial capabilities. Native Instrument’s FM8 offer 8 operators and a variety of waves to 

choose from including such as noise waves (“FM8 Feature Details”). Furthermore, multiple 

modulators may be used, as well as routing one modulator into another. Newer instruments 

include many LFOs and envelopes for complex modulation.  

 Whereas wavetable modulation synthesis creates morphing timbres unlike those heard in 

the natural world, FM synthesis is known for its unique ability to synthesize realistic instrument 

timbres. In particular it is great for producing bell-like tones, which naturally have sideband 

frequencies above and below the fundamental. Percussive sounds are easy to synthesize by 

featuring a high index during the attack portion, which quickly decays to a low index. Finally, 

woodwinds and brass sounds may be synthesized by paying careful attention to the carrier to 

modulator frequency ratio and thus the resulting harmonic series (Chowning 532).  

 Wavetable and frequency modulation both provide means of exploring continuous tones 

and timbres. On the other hand, granular synthesis, another technique performed exclusively in 

the software realm, may be the form of synthesis best suited for creating interesting soundscapes 

and textures.  

Granular Synthesis 

 Iannis Xenakis was arguably the first composer to implement and describe the technique of 

granular synthesis (Roads, Microsound 65). He describes the central theory of sound grains as 
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follows: “All sound, even continuous musical variation, is conceived as an assemblage of a large 

number of elementary sounds adequately disposed in time. In the attack, body, and decline of a 

complex sound, thousands of pure sounds appear in a more or less short interval of time” 

(Xenakis 43).  

 Indeed, there are cases where such “elementary sounds” are quite evident, as in the 

babbling of a brook, the rolling of the tongue, or the crackling of fire, which was the basis of 

Xenakis’ famous composition, Concret PH. Still, even continuous tones may be said to be the 

result of individual physical events too fast for the ear to distinguish. In granular synthesis, a 

short sound event in the range of 1 to 100 ms is used as the basis for creating interesting textures 

and tones (Roads, Microsound 87). These sound events are known as “grains.” 

 A single or several grains may be the basis for creating complex sounds and textures. 

According to Roads: 

 The grain is an apt representation of musical sound because it captures two perceptual  
 dimensions: time-domain information (starting time, duration, envelope shape) and  
 frequency-domain information (the pitch of the waveform within the grain and the   
 spectrum of the grain). This stands in opposition to sample-based representations that  
 do not capture frequency-domain information, and abstract Fourier methods, which  
 account only for the frequency domain. (Microsound 87) 
 
The previously discussed forms of software synthesis rely mostly on manipulating the frequency 

domain, whereas sampling relies on manipulating the time domain. In this light, granular 

synthesis can be viewed as a hybrid of synthesis and sampling.  

 The most important component of a granular synthesizer is the grain generator. A grain 

generator includes a wavetable oscillator, which may read through traditional waveform tables or 

wavetables extracted from samples of pre-existing audio (Roads, Microsound 90). In either case, 

there are several different parameters of the oscillator and related unit generators. One important 

parameter is the envelope shape. Often times, a bell curved Gaussian envelope is used to smooth 
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out harsh edges of a grain and prevent audible clicks and pops, although other envelopes are 

possible. Other parameters include the frequency, amplitude, and duration of the individual 

grain, as well as per-grain effects and per-grain panning (91). The routing of a typical grain 

generator is shown below: 

 

 Considering the variety of per-grain parameters as well as the large number of grains that 

must be used to create several seconds of sound, it would be incredibly tedious to specify 

parameters and location of each individual grain. Therefore, granular synthesizers generally 

feature high-level grain organization structures. These structures offer certain controls that 

organize the density and parameters of grains according to random or specific patterns. There are 

many ways of organizing grains, but two of the most common forms are synchronous and 

asynchronous granular synthesis.  
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 Synchronous granular synthesis refers to streams of grains at regular intervals apart 

(Roads, Microsound 93). In this and other forms of granular synthesis, a “density” parameter 

refers to the number of grains per second, which also may be thought of as the frequency of 

grains, measured in Hertz. At a density of less than 20 grains per second, rhythmic effects are 

heard. As the density of grains increases into the range of human hearing and grains begin to 

overlap, a continuous tone emerges. Usually, the density of grains forms the fundamental 

frequency of the timbre, while the waveform and envelope shape contribute to possible 

sidebands and overtone series. Quasi-synchronous granular synthesis also refers to a linear 

stream of grains but at irregular intervals apart. These intervals may be random or the result of 

specific modulation.  

 The perceived pitch of the resulting signal is not entirely dependent upon the density of 

grains, however. There is a relationship between the density of grains, the waveform frequency, 

and the grain envelope (Roads, Microsound 94). For example, if the frequency of the grain’s 

waveform is 200 Hz and therefore its period is 5 ms, a density of 100 grains per second will not 

necessarily create a perceived pitch of 100 Hz. In this case, the grains will begin every 10 ms 

while the grain duration is only 5 ms, leaving a 5 ms gap between grains. On the other hand, if 

the grain duration is significantly longer than the period of the grain density, the waveform will 

barely have a chance to unfold before it begins again, and the resulting signal will have low 

amplitude and little sense of pitch. In general, if the expected pitch is not being obtained, the 

relationship between these parameters must be explored and adjustments must be made. Still, 

pitch-ambiguous sounds may be desirable in some cases.   

 Asynchronous granular synthesis, perhaps the most common form of granular synthesis, 

does not feature linear streams of grains but rather grains randomly (or semi-randomly) dispersed 
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over a duration, sometimes overlapping and other times not (Roads, Microsound 98). These 

disbursements of grains are known as “clouds,” and parameters may be varied within certain 

defined limits within the duration of a cloud. Some of the parameters that may change within a 

cloud are grain duration, grain envelope, grain density, waveform, and spatial positioning. These 

parameters may be varied randomly within defined limits, or perhaps linked to other parameters, 

such as note or frequency of the sampled grain.  

 Envelope variation is one of the simplest ways to develop texture within a cloud. Rather 

than a Gaussian curve, an expodec (exponential decay) envelope may be used to give a 

percussive quality to grains. A rexpodec (reverse exponential decay) envelope, which features a 

slow attack and quick decay, gives the illusion of reversed grains. Grain waveform can also be 

varied within a cloud, leading to cloud “color” type. Monochrome clouds feature only a single 

grain waveform, polychrome clouds feature two or more waveforms simultaneously, and 

transchrome clouds feature one consistently evolving waveform over the course of the cloud 

(Roads, Microsound 100).   

 The overall texture of the cloud is determined by the relationship between grain density 

and grain duration. The grain density may be low, but if long grain durations are used the texture 

may appear full and continuous, whereas short grain durations may appear sparse and 

transparent. Ultimately, the product of density and duration contribute to the cloud’s “fill factor.” 

In a sparse fill factor of less than .5, more than half of the cloud is silent. A covered fill factor of 

roughly 1 means that the cloud is largely filled with grains but not much overlap. A packed fill 

factor of greater than 1 means the cloud will be dense and the grains overlapping. In any case, 

even individual clouds may be used as building blocks for larger textures that feature 

overlapping clouds (Roads, Microsound 105).  
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 Several other grain organizations include Gabor matrices, pitch-synchronous granular 

synthesis, physical modeling, and granulation. Gabor matrices are a way of combining time and 

frequency domains by analyzing spectra of sounds in short windows of time, rather than purely 

examining sound in the time or frequency domains, both of which have limitations. Pitch 

synchronous granular synthesis involves analyzing a sound for its spectral content and then 

resynthesizing it with a specific pitch and formant region. Physical modeling involves analysis of 

acoustic events, and granulation involves splitting a sound into individual grains and then 

reassembling those grains in a new fashion. Granulation is one of the techniques used for time-

stretching a sound while keeping its pitch constant (Roads, Microsound 92-98).  

 Granular synthesis is probably one of the least understood forms of software synthesis due 

to its complexity and many varieties. Whereas wavetable modulation and frequency modulation 

are both adept at producing interesting timbres, granular synthesis is perhaps best at producing 

varied textures and soundscapes. As with any form of synthesis, the best way to obtain effective 

results is through experimentation and practice.  

Part III. The Tools of Software Synthesis 

Frequency modulation, amplitude modulation, vector synthesis, pulsar synthesis, FOF 

synthesis; the list goes on and on. For the many daunting varieties and sub-varieties of software 

synthesis, luckily, there are only a handful of environments for realizing such techniques. These 

environments can be grouped into three main categories: user-friendly virtual instruments, 

graphical programming environments, and low-level coding environments.  

User-friendly Virtual Instruments 

 User-friendly virtual synthesizers are just what they sound like; they are ready-to-use 

software synthesizers that can run as stand-alone applications or as plugins hosted by a digital 
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audio workstation, or DAW (Walker). Support for plugin formats varies according to the DAW, 

but some of the most common types include VST, AU, and AAX.  

 Native Instruments, as already mentioned, is one of the leaders in virtual synthesizer 

plugins, but other manufacturers include Arturia, Korg, and Moog, to name just a few. Synthesis 

type and features vary widely by manufacturer, but most include multiple oscillators and support 

for polyphony, as well as plenty of envelopes and LFOs for modulation. Many are emulations of 

classic analog synths, while others are completely unique to the software realm. Advanced 

features include built-in sequencers, customizable waveforms, effects, and modular routing. 

 The main benefit of these synthesizers is that they are ready to use without any 

programming, thus offering the quickest means for getting musical ideas into the computer. They 

also include many presets for quickly exploring timbres and are easy to learn. For beginning 

musicians, these synths are definitely a great starting point for exploring synthesis techniques. 

The drawbacks of these synths are that they are not flexible in what they can do and they provide 

only a limited understanding of what is going on beneath the hood, so to speak. Often times, 

manufacturers use their own terminology for certain parameters, so it is not always clear what a 

virtual knob or slider does. Finally, sound quality can vary widely according to the manufacturer.  

Graphical Programming Environments 

 Graphical or visual programming environments are a level below user-friendly soft 

synths. They are applications that allow users to create their own synthesis instruments, generally 

by patching together different visual objects that each perform a specific task (Storr). Often 

times, they provide user-created presets or “patches” for quick use, while still offering the ability 

to deconstruct and reroute the objects. Examples of these environments include Max/MSP, Pure 

Data, and Native Instruments Reaktor.  
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 One of the main benefits is a more intimate understanding of digital signal routing and 

the various forms of synthesis. The user is forced to look more closely at the relationship 

between different signals such as oscillators, envelopes, and LFOs, while also thinking about 

certain “control” elements such as shutting off processing when a unit generator is not in use. 

The other major advantage of these tools is flexibility, as a patch may always be added to or 

modified. This allows experimentation and combining different forms of synthesis into one 

instrument. Drawbacks include a steeper learning curve and a certain amount of time spent 

programming rather than making music, which can take a musician out of the creative mindset.  

Low-level Coding Environments 

 The final tool for realizing synthesis is the low-level coding environment. Rather than 

using visual objects to perform tasks, low-level tools require writing many lines of code and 

knowledge of programming languages such as C++ or Python. Lines of code are “compiled” in 

integrated development environments or IDEs, such as Xcode or Visual Studio. However, the 

entirety of the code need not be written in the IDE. Standard development kits, or SDKs, are 

often provided by plugin manufacturers and contain many files of code that aid in audio 

processing, audio synthesis, or file organization. An SDK might provide code that takes care of 

the plugin-format and routing audio through the audio driver, allowing the programmer to focus 

on the actual signal processing or synthesis code. An example of a common SDK is the VST 

SDK provided by Steinberg.  

 Although the final lines of code are compiled in IDEs, programmers may use an 

application programming interface, or API, along the way. An API is an environment dedicated 

to programming for a specific task, such as audio, which often includes a visual interface as well 

as pre-written code for common tasks (“Projucer and Juce 4”). The most common API used in 
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the audio world is Juce, a C++ programming environment. Juce provides a visual interface for 

creating the graphical user interfaces of plugins, meaning that the audio programmer does not 

need to write lines of code focusing on graphics. It also helps organize SDK files appropriately 

for the desired plugin format, and includes files of code containing algorithms for common tasks 

such as filtering or amplification. Some of the manufacturers that develop software in Juce 

include Cycling ‘74, Universal Audio, Arturia and Korg.   

 The main advantage of low-level coding is that it provides ultimate flexibility. Any form 

of synthesis can be realized as well as new forms yet to be explored by the audio community. 

This method provides an enhanced understanding of audio synthesis. The obvious drawback of 

low-level coding is the steep learning curve, requiring knowledge of a programming language 

and perhaps some advanced math. This is also the furthest removed from actual creation of 

music, requiring hours of coding and debugging before a useable product is created. These 

environments are best suited for those who want to get into professional audio programming for 

profit.  

Conclusion 

 Since its creation by Max Mathews in the 1950s, software synthesis has led a revolution 

in terms of providing a convenient means of sound creation for musicians. However, many of 

these forms, such as wavetable modulation, frequency modulation, and granular synthesis, are 

still being explored and expanded upon. Surely, there are new forms of synthesis that will soon 

be discovered, and the tools for realizing these forms will continue to grow in convenience, 

flexibility, and affordability. When they do, the general public may first deem these new forms to 

be nothing but noise, but there will be those few individuals like Varèse at the forefront of the 

revolution, listening to the music. 
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