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ABSTRACT 

The progression of urbanization throughout the state of California has had overwhelming 

and long-term effects on the state’s waterways. Don Dahvee Creek appears to be 

physically declining because of active channel erosion due to urbanization. This erosion 

has affected the amount of sediment being conveyed into Lake El Estero and the 

Monterey Bay.  

For this assessment the geometry of Don Dahvee Creek, adjacent to Whole Foods Market 

in Monterey, CA, was examined to determine rates of erosion. Suspended sediment 

concentration samples (SSC) were taken in an attempt to determine if the creek is a 

source of water pollution due to bank erosion, creating excess sediment downstream. 

Using a regression model of SSC it was found that there is no significant difference 

between the amount of sediment in the water entering and leaving the stream reach, 

during low-flow conditions. The P-values from the regression of SSC against distance 

downstream are much greater than .01; therefore, we fail to reject the null hypothesis at 

99% confidence, leading to our conclusion that the stream banks are not generating 

sediment during low-flow conditions. A budget analysis used for discharge determined 

that there is a loss of 1/3 the water between the upper and lower culvert during low-flow 

conditions, possibly due to infiltration. 

 Using cross sectional data it has been determined that the best restoration plan for Don 

Dahvee Creek involves dressing back and stabilizing both the bed and banks with a 

combination of vegetation and rock, increasing the width/depth and entrenchment ratio.  

  



INTRODUCTION 

The Clean Water Act 

In 1972 the Clean Water Act (CWA) was enacted and became the principle law 

governing pollution control and water quality of the nation's waterways. The CWA 

established guidelines for restoring and maintaining the chemical, physical, and 

biological integrity of all rivers, lakes, streams, tributaries, wetlands, and groundwater. 

Additional objectives were to make all waters of the United States fishable and 

swimmable by eliminating all pollutant discharges into waters of the U.S. by 1985 and 

securing healthy waters for fish, shellfish, wildlife, and people by 1983 (Northern 

California River Watch Annual Report 2002 – 2003). The CWA created a process to 

quantify the maximum amount of a pollutant from all possible point and nonpoint sources 

that a typical water body can hold, and still meet water quality standards. This process is 

called Total Maximum Daily Load (TMDL). The most prevalent and damaging pollutant 

requiring TMDLs is sediment (Pons, 2003). Physical, chemical, and biological damage 

associated with sediment flow costs about $16 billion annually in North American (Pons, 

2003). Excessive erosion and the transport and deposition of sediment in surface waters 

are major water-quality problems (Pons, 2003). 

Hydrologic and geomorphic impacts of watershed urbanization 

By creating innumerable impermeable surfaces, we have altered the sediment load and 

discharge regime of our nations rivers (Mount, 1995). Urbanization involves widespread 

application of impermeable materials to the surface of a watershed (Mount, 1995). These 

  



impermeable surfaces impact sediment load and discharge of rivers by reducing 

infiltration of precipitation in watersheds. 

Infiltration is the process by which precipitation moves downward through the surface of 

the earth and replenishes soil moisture, recharges aquifers, and ultimately supports 

streamflow during dry periods (Viessman and Lewis, 1995). The rate at which infiltration 

occurs is influenced by such factors as the type and extent of vegetal cover, the condition 

of the surface crust, temperature, rainfall intensities, physical properties of the soil and 

water quality (Viessman and Lewis, 1995). Roofs, sidewalks, streets, and parking lots 

have negligible infiltration capacities (Mount, 1995). 

 Rain that falls on urbanized areas is rapidly converted to overland flow, which 

discharges into local rivers and streams through complex runoff subsystems (Mount, 

1995). The impact of rainfall and overland flow on bare soils or in watersheds 

undergoing urbanization will often have sediment yields that are one hundred times 

higher than natural rates (Mount, 1995). The influx of sediment eroded from uplands to 

local tributaries during urbanization overwhelms local tributaries, thus leading to 

aggradation downstream. 

Incised urban creeks 

Incised rivers can be caused by several factors such as channelization, straightening, 

encroachment, confinement, urban development, major flood, change in sediment regime 

and riparian vegetation conversion.  

 

  



 

Figure 1. Rosgen classification
 

Incised streams are channels that are vertically contained and in a general sense have 

abandoned their floodplains, typical of stream types A, G and F (Fig. 1; Rosgen, 1997). 

Incised urban creek channels lead to accelerated stream bank erosion, land loss, aquatic 

habitat loss, lowering of water tables, land productivity reduction, and downstream 

sedimentation. Rivers, being very dynamic, are subject to change when the variables that 

shape and maintain their geometry are altered. These variables include velocity, 

roughness of the boundary, slope, width, depth, discharge, size of sediment debris, and 

concentration of sediment (Leopold, 1997). 

Don Dahvee Creek, located in the city of Monterey, CA is an incised urban creek (Fig. 

2). The creek at the location of the study reach has an estimated drainage area of .224  

  



square miles. The water flowing into the creek is discharged from a culvert at a high 

velocity during storm events, creating a steep gully with a poorly defined step-pool 

system in the upper reach. Sediment from this erosion site is either transported to El 

Estero lagoon, or is stored in a lower gradient section of the channel just below the gully. 

 

Figure 2. Location map for Don Dahvee Creek 
 

Restoration of urban creeks 

Restoration in the purest sense is often associated with returning a stream to a pristine or 

pre-disturbance condition (Rosgen, 1997). Returning a stream to a pristine condition is 

often not possible because the sediment and flow regime, as well as many other variables, 

  



have been significantly altered in the watershed (Rosgen, 1997). In cases where pre-

disturbance conditions cannot be achieved, we strive to create a stable stream within a 

disturbed watershed. Restoration of a functioning stable system takes into consideration 

the morphological potential of each individual stream.  

Although Don Dahvee Creek is located in an urban setting, it is protected from 

development due to its location in the Don 

Dahvee greenbelt (Fig.3). Don Dahvee 

greenbelt is one of the few greenbelts in the city 

of Monterey that represent the link between the 

grass and oak-covered hillsides of the upper 

watershed (Haltiner, 1996). While the greenbelt 

status protects this area from development, the 

quality of the creek is declining due to severe 

erosion, which contributes sediment annually to 

lake El Estero (Haltiner, 1996). In 1983 it was 

recognized that watershed erosion was the cause of 

excess sediment in lake El Estero and the 

construction of a series of sediment basins was recommended (Haltiner, 1996). These 

measures would be of some benefit to the system, they are based on the assumption that 

the sediment is being diffused throughout the watershed (Haltiner, 1996). Instead, the 

source of the sediment is the actual creek banks and channels, which are being eroded 

and down-cut by each winter’s flows (Haltiner, 1996). 

Figure 3. Don Dahvee Creek 

  



Urban channel design has traditionally focused solely on erosion control and flood 

conveyance, ignoring geomorphology and habitat sustainability (Byars, 2002). Like Don 

Dahvee Creek, the Fort Branch of Boggy Creek in Austin, Texas, has experienced 

significant downcutting and bank erosion due to urbanization (Byars, 2002). The stream 

restoration and rehabilitation design of Fort Branch has attempted to arrest further 

downcutting and bank instability (Byars, 2002). Therefore, a natural design approach, 

allowing some mobility in the channel bed and utilizing sediment transport as a basis for 

channel stability was preferred for this project (Byars, 2002). This natural design 

approach is now being evaluated to provide a better understanding of sediment loads and 

better design for channel restoration. 

In the case of Don Dahvee Creek, without the implementation of an active erosion 

control system, the processes of erosion and deposition will continue until the creek 

channel is down-cut completely to the underlying bedrock (Haltiner, 1996). There is 

evidence of this in the upper section of the study site where granite is exposed in the 

channel bottom forming a grade control. If the banks of Don Dahvee Creek continue to 

erode to the point of bedrock exposure, the ecosystem will consist of large, unvegetated 

deep gorges in place of prior meandering stream and bankside vegetation that occurred 

naturally (Haltiner, 1996). The traditional approach to prevent further erosion has been 

the construction of a series of check dams. These check dams are generally constructed 

out of loose rock, which is placed in a trench excavated across the banks and bottom of 

the channel and placed to a height of 4 to 6 feet (Haltiner, 1996). 

  



In most check dams the unnatural straightening of the channel and the flattening of the 

channel gradient causes the river to react by undercutting and often produces a scour hole 

at the toe. There are local examples of this undercutting at recently constructed check 

dams located in the Skyline Forest area of Monterey, CA and the Bryant Canyon area of 

Soledad, CA. The stream in Skyline forest was previously a small gully possible caused 

by a culvert at highway 68. Culverts are often used inappropriately, forcing too much 

water into a concentrated, erosive, high velocity flow. In the Skyline Forest case, a series 

of check dams were installed for grade control, the gully was most likely down cutting 

and the check dams were installed to arrest the downcutting.  

When erosion begins, the stream cuts downward, loses energy and widens. In the check 

dam system the widening of the channel is often not accounted for. At this site, rocks 

were inset and grouted to prevent failure from widening. There were obvious problems 

produced by reducing gradient locally to a low gradient then high then low and so on. 

Coir rolls were also put in place to stabilize the banks however, the channel is 

undercutting at these areas possible because they were not embedded in the sides of the 

banks deep enough. Another problem at this site is that there is not enough energy 

dissipation at the falls; larger rocks should be placed at the toe of the falls to prevent 

scouring. The elevation should also be the same to prevent degradation; another visible 

issue was water leaking through the dam causing standing water where mosquito larvae 

have been observed. 

At Bryant Canyon a drop structure was installed to prevent sheet flow as well as grade 

control. This stream in a natural setting would be a C-type with a high amount of 

meander (Fig 1.). In the current setting the channel is fairly straight and the structure is 

  



already starting to fail after only one season. There is visible downcutting and knick point 

migration up the valley. There is a large pile of sediment in front of the first drop 

structure strictly from the knick point.  At the third drop structure there is major 

undercutting and loss of gradient. At the culvert the grass is being buried by sediment, on 

the backside of the culvert the river is developing its own channel through deposition of 

the floodplain and in large flow events the grass is being overpowered and buried by 

sediment.  

The deviation from the natural slope of the river is the clearest reason that drop structures 

cannot be permanent and should be avoided in erosion control programs (Leopold, 1997). 

For most river systems the most successful approach to understanding a river is 

quantitative field observations. A stream classification system is used to quantitatively 

describe a combination of river features that integrate mutually adjusting variables of 

channel form (Rosgen, 1997).  

STREAM TYPES 

Stream types are used in restoration primarily to describe and extrapolate data associated 

with the reference reach of a stable channel (Rosgen, 1997). Stream types are grouped by 

morphological similarities and are products of erosional and depositional events over 

time in specific valley types (Rosgen, 1997). They reflect similarities in entrenchment, 

channel form, width/depth ratio, sinuosity, slope, and channel materials (Rosgen, 1997).   

The entrenched incised rivers in this classification system are A, F and G stream types 

(Fig. 4). 

 

  



 

Figure 4. Representation of stream-type classification  

 

Stream type G is an incised, moderately steep channel where the previous floodplain 

becomes a terrace following incision of the channel. Don Dahvee Creek has the 

characteristics of a G stream-type. Don Dahvee Creek may have previously been a B-type 

until it was destabilized by the construction of the culvert in the upper section. 

Adjustments in channel morphology leads to stream-type changes through evolutionary 

cycles, through these cycles a B stream type will incise to a G and begin to erode its 

banks until it reaches a B type again (Fig. 5; Rosgen, 1997). The G stream type tends to 

have a floodplain, sinuous channel, and lower gradient. To achieve this geometry it will 

continue to erode its banks to increase its floodprone width (Rosgen, 1997). 

 

  
Figure 5.  Stream type evolution scenario similar to Don Dahvee Creek 



Valley Type 

Valley types involve a combination of landforms, land types, soils, geology, basin relief, 

valley gradient, valley width, and depositional erosional history (Rosgen 1997). The 

general geomorphic setting that Don Dahvee Creek is located in can best be described, as 

is relic marine terrace with a valley width of approximately 40 meters and length of 146 

meters. The total valley slope is 5.3%, from the upper culvert to the footbridge the valley 

slope is 6.07%, the valley slope from the footbridge to the lower culvert is 4.7%.  In this 

valley type, Rosgen classification for a B and G stream type are associated with a “V” 

valley type.  

Restoration 

In 1997 Rosgen introduced a priority system for incised river restabilization. There are 

four different restoration priorities, for Don Dahvee Creek Priority 3 restoration plan is 

best (Fig. 6). The restoration concepts associated with priority 3 are implemented where 

streams are confined laterally, contained and physical constraints limit the use of priority 

1 (Rosgen, 1997). Priority 3 converts the stream to a new stream type without an active 

floodplain, but containing a floodprone area, converting a G type to a B or F to Bc. This 

conversion is done by increasing width/depth, entrenchment ratio and by shaping upper 

slopes and stabilizing both bed and banks (Rosgen, 1997). The advantages of the priority 

3 plans are the reduction of the amount of land needed to return the river to a stable form, 

developments located next to the river need not be re-located due to flooding potential, 

and improves aquatic habitat (Rosgen, 1997).   

 

 

  



Figure 6. Priority 3 restoration design 

Many creek channels in Monterey are incised because of active channel erosion. This 

incision not only results in local creek bank instability and property damage, but also  

represents a source of water pollution as the eroded sediment is conveyed downstream to 

Monterey Bay (Haltiner, 1997). In urbanized areas historic and recent urbanization have 

resulted in further flow increase (Haltiner, 1997). The flow increase initiates gullying in 

creeks, because increased flows increase the channel shear stress and cause erosion 

(Haltiner, 1997).  

Don Dahvee Creek was moderately incised (5-8 feet deep) in the 1950’s, prior to 

significant development in the upstream watershed (Haltiner, 1997). However, with the 

construction of the Del Monte Shopping Center in the early and mid 1960’s in what 

previously had been densely vegetated grass-oak savannah lands became numerous  

 

 

 

 

 

 

 

 

  



buildings and paved parking lots (Haltiner, 1996). The creek channel is now 12-15 feet 

deep in many places and high volumes of sediment have been conveyed to Lake El 

Estero requiring lake dredging in the mid 1980’s (Haltiner, 1997) and as recently as the 

spring of 2003 dredging in the La Mirada sediment basin was conducted (personal 

communication, J. Gonzales, January, 2004).  

The major storms of the last few years, following major droughts in the late 1970’s and 

1986-1991 period have re-initiated creek erosion throughout the central coast region 

(Haltiner, 1997). There has been some erosion control done at the creek; concrete slabs 

have been placed at the culvert in the upper reach to act as erosion control as well as the 

construction of a single rock check dam across the channel, located downstream in the 

Don Dahvee greenbelt area (Haltiner, 1996).  

The Project 

The goal of this study was to determine the discharge, and erosion taking place in the 

study reach of Don Dahvee Creek. Don Dahvee Creek remains at low flow conditions 

throughout most of the year with the exception of winter rain events when large amounts 

of water enter the system.  It is hypothesized that during these large rain events excess 

sediment is produced and large amounts of bank erosion takes place. Geomorphic data 

including bank and bed erosion rates, bed geometry, and cross-sectional geometry were 

collected, during low-flow conditions, in order to recommend a long-term restoration and 

monitoring program to the City of Monterey. This documentation was used to answer the 

question of whether Don Dahvee Creek is incising, widening and generating excess 

sediment through erosion processes. In order to test the hypothesis that a large amount of 

  



erosion is taking place during high-flow events SSC samples were taken during low-flow 

conditions in order to eliminate any erosion problems during normal low-flow conditions. 

METHODS 

Suspended Sediment 

Suspended sediment samples were taken using a DH48 sampler when water flow was 

deep enough, when water flow was not deep enough a grab sample was scooped into a 

sample bottle. Seven samples were chosen in relation to cross section surveys. Each 

sample was taken in the middle of the channel at 7, 20, 52, 70, 85, 110 and 146 meters, 

upstream from the lower culvert. To determine concentration of sediment in each water 

sample, a filtration process was used following the geology capstone protocol. A 

summary of this protocol can be seen below. 

After each mass was recorded the weight was entered into Excel. To determine the 

amount of sediment in each sample the equations used were as follows, the dry mass of 

sediment, filter paper and tin was subtracted from the dry mass of filter paper and tin to 

determine the amount of solids. To determine the amount of water the total bottle, water 

and sediment weight was subtracted from the dry mass of the bottle and the total amount 

of solids. Dividing the amount of water by the density of water and then dividing again 

by one thousand found volume of water in liters. The total SSC in grams per liter was 

found by dividing the total amount of solids from the volume of water. The total amount 

of suspended sediment concentration for each sample site was then entered in to a 

regression model using Excel. 

  



 

Discharge 

Discharge was measured from both the upper and lower culvert using a bucket to capture 

flow and a stopwatch to record time.  

Field Surveys  

Prior to the survey, the area of the creek was inspected for benchmarks and what sections 

of the creek were going be surveyed. The first cross section was surveyed on the north 

side of the footbridge in April 2003. This location was chosen because it captured the 

steep banks of the upper reach and the channel bottom. The 50 meter tape was secured at 

0 meters on the west side of the creek valley at the sidewalk on Munras Avenue and was 

secured on the east side of the channel at approximately 40 meters. The benchmark used 

was Monterey city well U-19 located approximately 2.5 meters on the north side of the 

walkway. This point was assigned an elevation of 1.32 meters in figure 6. The rod was 

placed directly over the triangle engraved on the well cover to establish instrument 

height. The second cross section was done approximately 36 meters downstream from the 

north side of the footbridge. On both sides of the creek a total of 12 pieces of re-bar were 

driven flush against the bank walls. Three pieces of re-bar were driven in on both sides of 

the bank walls 1.2 meters downstream from the footbridge, and three on both sides of the 

bank walls approximately 25 meters downstream from the footbridge. 

 

The longitudinal profile was surveyed on two separate days. On April 11, 2003 the lower 

reach was measured, the 50-meter tape was run from the footbridge (0 meters) 

approximately 36 meters downstream, and measurements were taken every 2 meters. The 

  



upper reach was measured April 28, 2003. The 50-meter tape was placed at the 

footbridge (0 meters) upstream 18.9 meters. Measurements were taken at each significant 

break in slope in the channel bottom. 

Eight cross-section surveys were completed along the 146-meter reach of Don Dahvee 

Creek in January 2004. Utilizing the benchmarks and data previous collected, these cross-

section surveys were completed on January 17th and 18th   (Fig. 7,8,9). These surveys 

were taken using a auto level #u009261, stadia rod and 50m tape, five sites were chosen 

in the upper section of the study reach at the upper culvert 0 meters, 7, 20, 42, 52 meters 

working downstream from the culvert and three sites at the lower section of the study 

reach, at the footbridge, 70 meters, 25 meters downstream from the footbridge and at the 

entrance to the lower culvert, 146 meters. The cross sectional data was analyzed by 

plotting each cross-section in Excel in order to calculate bankfull geometry. 

  



 

 

 

Figure 7. Location of benchmarks and cross section for study reach of Don Dahvee   
Creek (begin 0 meters at the culvert, end at approximately 46 meters). 

 

 

 

 

 

 



 

 

 

 

Figure 8. Location of benchmarks and cross section for study reach of Don Dahvee   
Creek (begin 46, end at approximately 94 meters). 

 

 

 

 

 

  



 

 

Figure 9. Location of benchmarks and cross section for study reach of Don Dahvee 
Creek (begin 96 meters, end at approximately 146 meters). 

 

 

 

 

 

 

  



 

Figure 10. Rosgen stream evolution scenarios  

 

The difference in net aggradation or degradation at the cross-sections located at the 

footbridge was found by subtracting overall area between 2003 and 2004. A longitudinal 

profile was taken on February 29, 2004. A 100-meter tape was run from the upper culvert 

to the footbridge and from the footbridge to the lower culvert. Using an auto-level 

measurements were taken at each break in slope or area of interest. 

 

  



RESULTS 

Sediment 

A regression model between suspended sediment concentration (g/l) (Appendix A) and 

distance downstream (m) was used to determine whether or not Don Dahvee Creek is 

exporting sediment from its bed and banks or storing sediment (Appendix B). Table 1 

clearly shows that there is not a significant relationship between distance and the amount 

of sediment being generated. When the regression slope is positive the creek is generating 

sediment if the slope is negative the creek is sequestering sediment. 

Table 1. Regression model results 

Date Regression Slope R-Squared P-Value Intercept N 
     December 9, 2004 261 0.022 0.78 7 

February 4, 2004 24.8 0.078 0.54 7 
February 14, 2004 166 0.021 0.75 7 
February 17, 2004 207 0.172 0.35 7 
February 22, 2004 78.4 0.106 0.48 7 

March 2, 2004 145 0.054 0.61 7 
 
 
Discharge 
 
The discharge results were .03 cf/s at the upper each and .01 cf/s at the lower reach, using 

a simple budget analysis it was found that 0.02 cfs is being lost due to infiltration. 

Qin – ET – Qout - I = S∆ 

So  

Qin - Qout = I 
 

Evapotranspiration and change in surface storage were both assumed zero because there 

are no data on ET and it is assumed that there is no change in surface storage over the 

time of this study. 

 

  



Cross-sections 
 
Cross sections taken at the footbridge in 2003 and 2004 were compared (Fig. 11). It was 

found that there was overall aggradation of 1.2 meters. The average hydraulic radius for 

2003 and 2004 at the footbridge was found to be 0.49 m. A longitudinal profile was 

measured to show the shape of the channel and calculate the slope, the average slope is 

2% (Fig. 12). All 2004 cross-sectional data are located in Appendix C. Bank pins that 

were placed at the 2003 footbridge cross-section could not be relocated. 

 
Figure 11. Comparison of net aggradation between 2003-2004 at the footbridge. 
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Figure 12. February 29, 2004 longitudinal profile of Don Dahvee Creek 
 

Profile Don Dahvee Creek

92
94
96
98

100
102

0 20 40 60 80 100 120 140 160
Distance (m)

El
ev

at
io

n 
(m

)

 
Discussion 
 

It was hypothesized that during large rain events excess sediment is produced and large 

amounts of bank erosion takes place at the study reach of Don Dahvee Creek. Because 

data were collected only during low-flow conditions, the question of how much large rain 

events impact the creek remains unanswered. However erosion from low-flow conditions 

was minimal.  

The study reach of Don Dahvee Creek is eroding because of the steep, raw banks of the 

creek over the long-term. Repeat surveys indicate that annual bank erosion is occurring. 

The study reach is apparently following Rosgen’s typical evolutionary cycle of a stream 

that was once a B-type and will continue to erode its banks until it becomes a B-type 

again (Fig. 5). 

The results of the regression model for SSC show that there is no significant difference 

between the amount of sediment in the water entering and leaving the stream reach 

during low-flow conditions. The P-values from the regression of SSC against distance 

downstream are much greater than .01; therefore, we fail to reject the null hypothesis at 

99% confidence, leading to our conclusion that the stream banks are not generating 

  



sediment during low-flow conditions, nor is the stream reach sequestering SSC. These 

results also show that the amount of sediment being liberated varies throughout the upper 

and lower reaches. Therefore no relationship can be drawn between the length of the 

channel and the movement of sediment.  

From the data comparison of the 2003 and 2004 cross-sections it was found that the 

lower portion of the creek is aggrading its bed and widening its banks, emulating a 

natural river, trying to regain some semblance of equilibrium (Fig. 13).  

 

Figure 13. Evolution of Don Dahvee Creek. Don Dahvee creek is following the typical evolutionary 
pattern of an incised stream eroding its banks to reach equilibrium. In this figure the cross section at 
the footbridge is evolving from a G stream type to an Fb and will eventually return to a B stream 
type. 

  



The net loss of 30% of the water flow, most likely due to infiltration may be in 

relationship to the survey wells located along the eastern sided of the creek. Attempts 

were made to contact the Regional Water Quality Board, Specifically the “Underground 

Tank Clean-Up” task force headed by Eric Gobler, however these attempts were 

unsuccessful.  

The creek channel at the footbridge has the largest hydraulic radius, meaning that it has a 

smaller amount of water in its cross-section in contact with the wetted perimeter. This 

creates less friction, which in turn reduces energy loss and therefore allows for greater 

velocity. This indicates that at the footbridge the creek is more efficient in high flow 

situations compared to 25 meters downstream where the hydraulic radius is extremely 

low.  The creek at 25 meters has a smaller hydraulic radius meaning that a larger amount 

of water is in contact with the channel bed and bank sides. This results in greater friction, 

more energy loss and reduced velocity. Therefore 25 meters downstream from the 

footbridge the creek is less efficient than at the footbridge.  

The shape of the cross-section controls the area of maximum velocity in any river 

channel and the point of maximum velocity at each site varied, with hydraulic radius 

increasing from the upper culvert to the footbridge, decreasing from the footbridge down 

to 25 meters and then increasing again at the lower culvert. Because Don Dahvee Creek 

has a slope of .02 in the upper section it can be classified as a G stream-type, the lower 

section, below the footbridge has a slope < .02 in the upper reach and is a Fb stream-type.  

These results lead me to recommend two separate variations of priority 3 restorations. 

Priority restoration plan 3 would reduce the amount of land needed to return the river to a 

  



stable form, developments adjacent to the river would remain unaffected and aquatic and 

riparian habitat would be improved (Fig 6). For the lower 76 meters of the creek a 

variation of priority 2 would also be appropriate (Fig. 6) decreasing bank height, 

streambank erosion, reduction of sediment and the opportunity for riparian vegetation to 

help stabilize the banks.  

The results from the data collected show that Don Dahvee Creek has generated, and will 

continue to generate excess sediment over the long-term. Based on geomorphology it is 

recognized that the upper section of Don Dahvee Creek will continue to change from a G 

stream-type to a B-type until it reaches some level of equilibrium. Therefore, I feel that 

further monitoring on the entire creek is necessary and restoration should be 

implemented. 

The cross-sectional data and suspended sediment results provide a detailed description of 

this geomorphically sensitive site and can be used as an indicator of morphologic changes 

associated with urban watershed development, monitoring and restoration This data set 

can serve as a foundation for monitoring changes in the Don Dahvee greenbelt.  
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Appendix A:  Suspended Sediment Concentration 

 
1st 12/9    2nd 2/4/04    

CSS  (g/liter) mg/liter Distance (m) CSS  (g/liter) mg/liter Distance (m) 
0.2304 230.3639 7  0.0044 4.3905 7  
0.3128 312.8409 20  0.0568 56.7577 20  
0.1442 144.1810 42  0.0156 15.5946 52  
0.3317 331.6961 52  0.0135 13.4574 70  
0.2409 240.8724 70  0.0035 3.5000 85  
0.2163 216.2798 85  0.0107 10.7000 110  

    0.0188 18.7742 146  
4th 2/14/04        

CSS  (g/liter) mg/liter Distance (m) 3rd 2/17/04    
0.0771 77.106379 7  CSS  (g/liter) mg/liter Distance (m) 
0.2237 223.70593 20  0.2535 253.4657149 7  
0.1958 195.77073 52  0.1116 111.5531962 20  
0.0253 25.285177 70  0.2886 288.6336693 52  
0.2742 274.17255 85  0.0720 71.95875295 70  
0.1641 164.06381 110  0.0890 89.03122807 85  
0.0650 64.957504 146  0.1764 176.3750835 110  

    0.1045 104.4811496 146  
        
        
    6th 3/2/04    

5th 2/22/04    CSS  (g/liter) mg/liter Distance (m) 
CSS  (g/liter) mg/liter Distance (m) 0.0715 71.4806 7  

0.0875 87.5000 7  0.0680 68.0162 20  
0.0682 68.2377 20  0.6038 603.7725 52  
0.1009 100.9192 52  0.2170 216.9863 70  
0.0894 89.4309 70  0.1203 120.3439 85  
0.0803 80.2594 85  0.0362 36.1735 110  
0.2260 225.9898 110  0.3944 394.3780 146  
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Appendix B: Regression Models for Suspended Sediment Concentration 

 
SUMMARY OUTPUT 22-Feb      

         

Regression Statistics        

Multiple R 0.3258678       
R Square 0.1061898       
Adjusted R Square -0.0725722       
Standard Error 56.76296       

Observations 7       

         

ANOVA         

  df SS MS F Significance F    

Regression 1 1913.9816 1913.982 0.5940291 0.4756883   
Residual 5 16110.168 3222.034     

Total 6 18024.149         

         

  
Coefficient

s Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 

Intercept 78.466576 39.460537 1.988482 0.1034504 -22.969797 179.90295 -22.969797 179.90295

X Variable 1 0.3646516 0.4731232 0.770733 0.4756883 -0.8515484 1.5808516 -0.8515484 1.5808516

         
         
SUMMARY OUTPUT 14-Feb      

         

Regression Statistics        

Multiple R 0.1457499       
R Square 0.021243       
Adjusted R Square -0.1745084       
Standard Error 100.06808       

Observations 7       

         

ANOVA         

  df SS MS F Significance F    

Regression 1 1086.6826 1086.683 0.10852 0.755187    
Residual 5 50068.104 10013.62     

Total 6 51154.786         

         

  Coefficients
Standard 

Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 165.67095 69.565438 2.381512 0.063047 -13.152406 344.49431 -13.152406 344.49431

X Variable 1 -0.2747645 0.8340745 -0.32942 0.755187 -2.4188176 1.8692886 -2.4188176 1.8692886

         
 
 
 

  



Appendix B: Continued 
 
SUMMARY OUTPUT 2-Mar      

         

Regression Statistics        

Multiple R 0.2333707        
R Square 0.0544619        
Adjusted R Square -0.1346457        
Standard Error 224.47622        

Observations 7        

         

ANOVA         

  df SS MS F Significance F    

Regression 1 14511.907 14511.9 0.28799 0.6145172   
Residual 5 251947.87 50389.6     

Total 6 266459.78         

         

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 145.59259 156.05163 0.93298 0.39366 -255.55023 546.73541 -255.55023 546.73541

X Variable 1 1.0040874 1.871025 0.53665 0.61452 -3.8055277 5.8137024 -3.8055277 5.8137024

         
SUMMARY OUTPUT 9-Dec        

           

Regression Statistics          

Multiple R 0.147841          
R Square 0.021857          
Adjusted R Square -0.22268          
Standard Error 75.53593          

Observations 6          

           

ANOVA           

  df SS MS F Significance F      

Regression 1 509.9822 509.98221 0.08938 0.7798541     
Residual 4 22822.7 5705.676       

Total 5 23332.69           

           

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%   

Intercept 261.7966 61.06514 4.2871701 0.01277 92.252282 431.34099 92.252282 431.34099  

X Variable 1 -0.34256 1.1458 -0.2989675 0.77985 -3.5238133 2.8386996 -3.5238133 2.8386996  

           
           
           

 

  



Appendix B: Continued 
 
SUMMARY OUTPUT 17-Feb       
          

Regression Statistics         
Multiple R 0.415168        
R Square 0.172364        
Adjusted R Square 0.006837        
Standard Error 85.03279        
Observations 7        
          
ANOVA          

  df SS MS F Significance F     
Regression 1 7529.2 7529.23 1.0413 0.354327    
Residual 5 36153 7230.5758      
Total 6 43682          
          

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%  
Intercept 207.1269 59.113 3.5039028 0.01721 55.17183 359.08192 55.171827 359.08192 
X Variable 1 -0.72324 0.7088 -1.0204432 0.35433 -2.545151 1.0986644 -2.545151 1.0986644 
          
SUMMARY OUTPUT 4-Feb       

          

Regression Statistics         

Multiple R 0.278925        
R Square 0.077799        
Adjusted R Square -0.10664        
Standard Error 19.09452        

Observations 7        

          

ANOVA          

  df SS MS F Significance F     

Regression 1 153.79 153.79332 0.42181 0.544685    
Residual 5 1823 364.6007      

Total 6 1976.8          

          

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%  

Intercept 24.83197 13.274 1.8707013 0.12031 -9.290263 58.954202 -9.290263 58.954202 

X Variable 1 -0.10337 0.1592 -0.6494713 0.54468 -0.512484 0.3057521 -0.512484 0.3057521 

          
          
          
          
          
          
          
 

  



Appendix C: Cross-sectional data used in Excel 
 

0m upper  culvert 7m downstream from upper culvert 
 1/20/2004   1/20/2004  

Dist (m)  Elev (m) Corr. Elev. Dist (m)  Elev (m) Corr. Elev. 

0 3.335 93.325 0 3.335 93.325 

0 1.255 95.405 0 1.94 94.72 

0.5 1.2575 95.4025 0.5 1.96 94.7 

1 1.28 95.38 1 1.935 94.725 

1.5 1.2575 95.4025 1.5 1.99 94.67 

2 1.25 95.41 2 1.98 94.68 

2.5 1.215 95.445 2.5 1.9875 94.6725 

3 1.185 95.475 3 1.975 94.685 

3.5 1.235 95.425 3.5 2.005 94.655 

4 1.41 95.25 4 2.035 94.625 

4.5 1.695 94.965 4.5 2.75 93.91 

5 1.925 94.735 5 2.895 93.765 

5.5 2.17 94.49 5.5 3.005 93.655 

6 2.45 94.21 6 2.775 93.885 

6.5 2.525 94.135 6.5 3.235 93.425 

7 2.65 94.01 6.85 3.875 92.785 

7.3 2.51 94.15 7 3.905 92.755 

7.5 2.205 94.455 7.5 3.39 93.27 

8 1.745 94.915 8 3.305 93.355 

8.5 1.465 95.195 8.5 3.32 93.34 

9 1.125 95.535 9 3.245 93.415 

9.5 0.785 95.875 9.5 3.29 93.37 

10 0.525 96.135 10 3.275 93.385 

10.5 0.22 96.44 10.5 3.205 93.455 

11 3.335 93.325 11 2.305 94.355 
   11.5 1.975 94.685 
   12 3.335 93.325 

      
      

 
BM well U-21 

 
 
 
Permanent benchmarks 
Permanent benchmarks are well caps U-21, U-20, and U-19. They are located on eastern 
side of the creek. There are two screws on each cap and the rod was placed on the screw 
furthest away from the white lettering of each cap.  
                                                                                   U-21 
           
 

 

  



Appendix C: Continued 
 

20 meters from the upper reach culvert. 42m downstream from upper culvert. 
 1/18/2004   1/18/2004   

Dist (m) Elev (m) Corr. Elev. Dist (m) Elev. (m) Corr. Elev.  
0 1.93 96.14 0 0 99.38  
0 1.4 96.67 0 0 98.568  

0.5 1.405 96.665 0.5 0.005 98.51  
1 1.41 96.66 1 0.01 98.525  

1.5 1.42 96.65 1.5 0.015 98.505  
2 1.46 96.61 2 0.02 98.525  

2.5 1.455 96.615 2.5 0.025 98.525  
3 1.46 96.61 3 0.03 98.51  

3.5 1.5 96.57 3.5 0.035 98.505  
4 1.675 96.395 4 0.04 98.48  

4.5 1.865 96.205 4.5 0.045 98.44  
5 2.275 95.795 5 0.05 97.785  

5.5 3.13 94.94 5.5 0.055 97.34  
6 3.77 94.3 6 0.06 96.905  

6.5 3.79 94.28 6.5 0.065 96.39  
7 3.63 94.44 7 0.07 96.345  

7.33 3.695 94.375 7.33 0.0733 95.69  
7.5 3.08 94.99 7.5 0.075 96.275  
8 2.685 95.385 8 0.08 96.41  

8.5 2.435 95.635 8.5 0.085 96.975  
9 1.9 96.17 9 0.09 97.68  

9.5 1.695 96.375 9.5 0.095 98.06  
10 1.625 96.445 10 0.1 98.425  

10.5 1.565 96.505 10.5 0.105 98.525  
11 1.515 96.555 11 0.11 98.61  

11.5 1.41 96.66 11.5 0.115 98.69  
12 1.345 96.725 12 0.12 98.735  

12.5 1.23 96.84 12.5 0.125 98.8  
13 1.13 96.94 13 0.13 98.955  

13.5 1.07 97 13.5 0.135 99.095  
14 0.93 97.14 14 0.14 99.23  

14.5 0.75 97.32 14.5 0.145 99.4  
15 0.575 97.495 15 0.15 99.6  

15.5 0.365 97.705 15.5 0.155 99.595  
16 0.185 97.885 16  99.595  

 1.94 96.13   99.38  

 
                                BM well U-21                            BM well U-20 
 
 
 
 
 

  



 
Appendix C: Continued 

 
                                 1/18/2004                                            1/20/2004 
 

52m downstream from upper culvert (Deep Pool). Footbridge downstream side, lower reach 
       

Dist (m) Elev (m) Corr. Elev. Dist (m) Elev (m)    Corr. Elev. 

0 0.31 99.38 0 0.825 98.35  

0 1.58 98.11 0.5 0.795 98.38  

0.5 1.595 98.095 1 0.7975 98.3775  

1 1.6 98.09 1.5 0.75 98.425  

1.5 1.58 98.11 2 0.755 98.42  

2 1.535 98.155 2.5 0.745 98.43  

2.5 1.58 98.11 3 0.725 98.45  

3 1.595 98.095 3.5 0.76 98.415  

3.5 1.585 98.105 4 0.755 98.42  

3.8 1.565 98.125 4.5 0.76 98.415  

4 1.75 97.94 5 1.305 97.87  

4.5 2.54 97.15 5.5 2.15 97.025  

5 4.715 94.975 5.9 2.77 96.405  

5.5 4.92 94.77 6 2.84 96.335  

6 4.965 94.725 6.5 2.88 96.295  

6.5 4.895 94.795 6.9 2.81 96.365  

7.33 5.075 94.615 7 2.65 96.525  

7.5 2.135 97.555 7.5 1.77 97.405  

8 1.57 98.12 8 1.245 97.93  

8.5 1.455 98.235 8.5 0.71 98.465  

9 1.415 98.275 9 0.6 98.575  

9.5 1.3675 98.3225 9.5 0.525 98.65  

10 1.295 98.395 10 0.49 98.685  

10.5 1.245 98.445 10.5 0.485 98.69  

11 1.16 98.53 11 0.455 98.72  

11.5 1.025 98.665 11.5 0.395 98.78  

12 0.9 98.79 12 0.33 98.845  

12.5 0.785 98.905 12.5 0.275 98.9  

13 0.59 99.1 13 0.23 98.945  

13.5 0.51 99.18 13.5 0.185 98.99  

14 0.35 99.34 14 0.1275 99.0475  

14.5 0.25 99.44 14.5 0.825 98.35  

15 0.195 99.495     

15.5 0.095 99.595     

16 0.095 99.595     

 0.31 99.38     
       

 
 
                             BM well U-21                                    BM well U-19 

  



 
 

Appendix C: Continued 
1/19/2004 

 
25.45m downstream from foot bridge  Cross section lower reach culvert  

Dist (m)  Elev (m) Corr. Elev.  Dist (m)  Elev (m) Corr. Elev.  

0 0.115 99.77  0 0.115 99.77  

0 1.295 98.59  0 3.415 96.47  

0.5 1.315 98.57  0.5 3.46 96.425  

1 1.3075 98.5775  1 3.455 96.43  

1.5 1.32 98.565  1.5 3.365 96.52  

2 1.35 98.535  2 3.41 96.475  

2.5 1.4 98.485  2.5 3.48 96.405  

3 1.43 98.455  3 3.55 96.335  

3.5 1.54 98.345  3.5 3.635 96.25  

4 2.07 97.815  4 3.925 95.96  

4.5 2.17 97.715  4.5 4.17 95.715  

5 2.11 97.775  5 4.54 95.345  

5.5 2.1 97.785  5.5 4.64 95.245  

6 1.995 97.89  6 4.645 95.24  

6.5 2.08 97.805  6.5 4.655 95.23  

7 2.15 97.735  6.6 4.61 95.275  

7.1 1.55 98.335  7 4.15 95.735  

7.5 1.505 98.38  7.5 3.62 96.265  

 0.115 99.77  8 3.355 96.53  

    8.5 3.145 96.74  

    9 3.16 96.725  

     0.115 99.77  

        
        
        
        
        

        
BM Well U-19 

 
 
 
 
 
 
 
 
 
 
 
 

  



Appendix C: Cross-sections 
 
 

Cross Section Upper Reach Culvert
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Appendix C: Cross-sections 
Cross Section 3
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Cross section 4 (Deep Pool)
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Appendix C: Cross-sections 
 

Cross Section 7
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Lower Reach Culvert

103
103.2
103.4
103.6
103.8

104
104.2
104.4
104.6
104.8

0 2 4 6 8

Distance (m)

El
ev

at
io

n 
(m

)

10

  



Appendix D: Bankfull Morphology 

Stream-Type G 
 

Cross section upper  culvert  Cross section taken 7m downstream from upper culvert. 
bankfull meters English (ft)  bankfull meters English (ft)   

area 0.54 3.91  area 0.58 6.19   

width 2.00 3.28  width 4.00 13.12   

depth 0.27 1.19  depth 0.14 0.47   

w/d 7.45 2.75  w/d 27.81 27.81   

max depth 2.65 336.23  max depth 3.20 10.50   

wetted per. 1.54 5.06  wetted per. 2.88 9.43   

R 0.35 0.77  R 0.20 0.66   

substrate silt/sand  substrate silt/sand    

 
 

Cross section is located 42m downstream from uuper culvert. 52m downstream from upper culvert (Deep Pool). 
bankfull meters English (ft) bankfull meters English (ft) 

area 0.88 9.49 area 7.35 79.02 

width 2.50 8.20 width 3.00 9.84 

depth 0.35 1.16 depth 2.45 8.03 

w/d 7.08 7.08 w/d 1.23 1.23 

max depth 3.40 11.15 max depth 5.00 16.40 

wetted per. 2.17 7.12 wetted per. 9.06 29.73 

R 0.41 1.33 R 0.81 2.66 

substrate silt/sand  substrate silt/sand 

 
 

Footbridge on the downstream side, lower reach 25.45m downstream from foot bridge 
bankfull Meters English (ft) bankfull meters English (ft)

area 4.73 50.92 area 0.20 2.18  

width 1.50 4.92 width 3.00 9.84  

depth 3.16 10.35 depth 0.07 0.22  

w/d 0.48 0.48 w/d 44.44 44.44  

max depth 2.80 9.18 max depth 2.10 6.89  

wetted per. 3.47 11.40 wetted per. 2.16 7.10  

R 1.36 4.47 R 0.09 0.31  

substrate silt/sand  substrate silt/sand   
       

 
 

 
 
 

  



 
 
 

Appendix D: Continued 
 

This Cross section is located 20 meters from the upper reach culvert. Cross section lower reach culvert 
bankfull meters English (ft) bankfull meters English (ft) 

area 0.91 9.74 area 0.60 6.46 

width 2.00 6.56 width 2.50 8.20 

depth 0.45 1.49 depth 0.24 0.79 

w/d 4.42 4.42 w/d 10.41 10.41 

max depth 3.70 12.14 max depth 4.60 15.09 

wetted per. 2.25 7.37 wetted per. 1.63 5.35 

R 0.40 1.32 R 0.37 1.21 

substrate silt/sand  substrate silt/sand  
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