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Some Binary Quantum Codes with
Good Burst-Error-Correcting Capabilities

Kin-ichiroh Tokiwa, Kazutaka Kiyama and Takahiro Yamasaki

Abstract

Quantum error-correcting codes have been developed as one of the promising tools for
protecting quantum information against quantum errors. A great deal of effort has been
made mainly to construct efficient quantum random-error-correcting codes. In this article,
we investigate a class of quantum codes capable of correcting quantum burst errors, and
present a list of some new good quantum burst-error-correcting codes of length less than

or equal to 51.
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1 Introduction

The first quantum error-correcting code was discovered by Shor [1]. Since then, the theory of
quantum error-correcting codes has progressed rapidly, and various code constructions have been
proposed on the assumption that quantum errors occur independently. One of the most important
families of quantum error-correcting codes has been provided by Steane [2] and Calderbank and
Shor [3]. These codes are commonly referred to as Calderbank-Shor-Steane (CSS) codes. On
the other hand, Vatan, Roychowdhury, and Anantram [4] have explored the design of quantum
error-correcting codes for the case when quantum errors occur predominantly in bursts. However,
few quantum burst-error-correcting codes have been known so far.

The main purpose of our work is to find out many good quantum codes capable of correcting

quantum burst errors. In this article, we consider the subject from the following points of view:

+ focusing our attention on a class of CSS type nondegenerate binary quantum error-correcting

codes,

+ utilizing an algorithm [5] which can efficiently search a basis of any CSS type quantum

error-correcting code, and

+ specifying good quantum burst-error-correcting codes in terms of computer search.

As a result, we present a list of some new good quantum burst-error-correcting codes of length

up to 51.
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2 CSS Type Quantum Codes

For n > k, an [[n, k]] binary quantum error-correcting code can be regarded as a mapping of k
qubits (i.e., a Hilbert space of dimension 2¥) into n qubits (i.e., a Hilbert space of dimension 27).
Therefore, this code can be uniquely specified with 2¥ orthonormal basis |v1), [vs), ..., |var),
where v; are binary vectors of length n and |v;) denote quantum states of n qubits. Note
here that, to simplify notation, the normalization factors are deleted throughout this article. In
general, the kind of quantum errors to be considered are bit-flip errors, phase errors, and their
combinations. Thus the CSS code construction [1]-[4] for burst-error correction is summarized

as follows:

For i = 1,2, let C; be an [n,k;] binary classical linear code capable of correcting all burst
errors of length b; or less. Suppose that the dual of Cy is a subcode of C1 (i.e., C3 C Cy) and
ki + k2 > n. Then we have an [[n, k1 + ko — n]] CSS type quantum code Q which can correct all

quantum burst errors of length b = min(by, be) or less. Basis vectors of Q can be represented as

i) = > le+ay), (1)
cECs-
where a; are chosen from cosets of Ca- in Cy, i.e., a; € C1/Cs-.

According to the well-known Reiger bound [6], it is easily verified that an upper bound on the
quantum burst-error-correcting capability b holds:

b< [n — ma;((kl, kz)J .

(2)

Hereinafter, quantum codes that meet the bound (2) with equality will be called good. It should
be noted that there may exist more powerful codes among the other kind of quantum codes
(e.g., degenerate quantum codes). In this article, however, only CSS type nondegenerate binary
quantum codes will be considered. This is because such codes can be handled easily. Moreover,
note that in this article we exclude a burst error defined with cyclic boundary conditions, that

is to say, an end-around burst error [6].
3 Search Algorithm

As mentioned above, if any suitable classical linear codes C; and C3 could be obtained, then a
CSS type quantum burst-error-correcting code @ can be constructed. However, it is not easy to
find such codes C; and Cs constructively. Hence we take a way to search for an appropriate code
C; for a given code Cy (equivalently, C3-). The outline of our search procedure is summarized as
follows:

Step 1: Choose an [n, k3] classical cyclic code C; and its [n, n — kg] dual code C3, and determine
their burst-error-correcting capabilities by and by, respectively.

Step 2: Search for an [n, k] classical linear code C; with burst-error-correcting capability b;
which includes C5 as a subcode, where by = min(by, b3).

Step 3: Set b = min (b1, b2). If the value of b meets the bound (2) with equality, then an
[[n, k1 + k2 — n]] good quantum burst-error-correcting code @ is obtained. Otherwise,
return to Step 1 and change the initial codes.
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In Step 1, we investigate burst-error-correcting capabilities of C; and C3- by checking whether
all syndromes of the possible burst error patterns are distinct. Clearly, the computational com-
plexity of such method grows exponentially as burst length to be considered becomes longer.
Thus it would be necessary to adopt more efficient schemes (e.g., [7]) in order to search more
powerful codes.

In Step 2, we take advantage of a slightly modified version of the search algorithm proposed
in [5]. In the following, it will be called T-algorithm, and will be described briefly. See [5] for
more details.

Let us provide some definitions and notations. For a vector © = (x1, 2, ..., 1) of any length
L and for any integer £ (1 < £ < L), two kinds of functions ®,(x) and ¥,(x) are defined as

®y(z) = 24 (3)
and
\I’g(m):(xl,...,:Ug_l,:llg+1,...,$L). (4)

The former is a function that takes out the /-th component of @, and the latter is a function that
deletes the ¢-th component from x. Moreover, let (Ok; :c) denote a concatenation of a string of

k zeros and a vector .

T-algorithm: We consider an [n, ks] classical cyclic code C2 and its [n,n — k2] dual code C3-
whose burst-error-correcting capabilities are by and by, respectively. Also, we assume a parity-
check matrix H of C5 is given in reduced-echelon canonical form [8]. In other words, suppose
that the leftmost part of H is a ky X ko identity matrix. Then the following steps are executed:

step i : Obtain a set of sums of syndromes in Cs- as
2 = {(e+e)HT | e e €&},
where & is a set of all patterns of possible burst errors of length b, (: min(bs, bQL)) or less.
step ii : Initialize a column permutation matrix p; as an n X n identity matrix.
step iii : Set k1 =n — kg, a; =0", and j = 1.

step iv : If a set
Fr\s0) = {:1: |z e F " A ¢ 20')}

is empty, then go to step vi. Otherwise, select any vector z; € Fy,'” “/\%()  and make up
an auxiliary vector
-1

u; = (0%;;)p;

and 271 vectors
Apioi-1 = Qg + Uj

for 1 < ¢ <9291,

step v : Using a value v; such that

0 forl1</l<uy;
Dp(x;) = - 7
2(933) { 1 forl=vy;
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update a set of sums of syndromes £U+1) and a column permutation matrix Pj+1 as
20D = {0,,(0) + @,,(0)¥,, (2;) | o € 29}

and
Pi+1 = PjTjs

where 7; is an n X n column permutation matrix by which the (k; +v;)-th column is moved

just before the (x; +1)-st column. Then set x;4+1 = k;+1 and j = j+1, and go to step iv.

step vi : Set ky = k; as the dimension of the desired code C;, and output auxiliary vectors
U1, U, ..., uj_1 and coset leaders a1, as,...,aq-1 in C1/Cy .

In Step 3, in order to find out good codes, we require that the value of b = min(b1, b2) meets
the bound (2) with equality. Clearly, however, this restriction can be relaxed. In any case, we
are able to obtain an [[n, k1 + k2 —n]] quantum code Q which can correct quantum burst errors of
length b or less and whose basis vectors are represented as (1) by using vectors aj,as, ..., a1

given in step vi.
4 Results

In our computer search, the initial codes C5- have been chosen from almost all of binary classical
cyclic codes of length up to 64 whose generator polynomials have degree 35 or less. Some good
quantum burst-error-correcting codes obtained by computer search are listed in Table 1, in which
the following notations are used:

> in relation to quantum code Q

n := code length
k := dimension

b := maximum length of correctable burst errors

> in relation to classical codes C and Cy

ba, 62L := maximum length of correctable burst errors

g(x) := generator polynomial of C;-

> in relation to classical code Cy

b1 := maximum length of correctable burst errors

u; := auxiliary vectors for constructing C;

It should be noted that the generator polynomial g(z) and the auxiliary vector u; are both
given in an octal representation. When the octal representation of g(z) is expanded in binary,
the binary digits are the coefficients of the polynomial, with the high-order coefficients at the
left. In addition, when the octal representation of u; is expanded in binary, the binary digits are
assigned to the rightmost components of the vector of length n. On the other hand, it is easily
verified that a generator polynomial of Cs can be derived from g(z) as a reciprocal polynomial
of (2™ +1) /g(z).
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It should be also noted that the code C; is not cyclic but linear. Thus the code can be uniquely
represented in terms of its generator matrix. Let G and G-2L denote generator matrices of the
codes C; and Cy, respectively. Then the following relationship between these matrices holds:

G = w (5)

Ug

In Table 1, the symbol “a” means a good code which meets the bound (2) with equality, and
the symbol “b” shows a code whose burst-error-correcting capability is only one smaller than the
maximum value ensured by the bound (2). In addition, codes assigned the symbol “c” in Table
1 are worthy of attention. Calderbank, Rains, Shor, and Sloane [9] gave a useful table on the
highest achievable minimum distance in any quantum random-error-correcting code of length
up to 30, and Grassl [10] extended the table to codes of length up to 36. From these tables,
it is possible to evaluate the limits of quantum random-error-correcting codes. It is clear that
we can successfully correct quaﬁtum burst errors of length up to such evaluated limits by using
those quantum random-error-correcting codes. However, quantum codes designated in Table 1
as the symbol“c” allow us to correct longer burst errors than any best quantum random-error-
correcting code. Finally we also emphasize that the seven codes with the symbol “d” have the
same correcting capabilities even if the end-around burst errors are included.

Table 1 Parameters of Good Binary Quantum Burst-Error-Correcting Codes
(Length up to 51)

Q Ca Cy Cy

n kb b ] b] g by | w; =1,2,...,k)

15123 3] 4 1163 || 3 257 433 ac

15412 21 5 3545 || 2 25 52 211 [acd

407

21 [ 3[4 4] 6 13123 || 4 1467 | 2531 4605 || acd

21|63 3| 7| 61671 3 111 2922 444 || ac
2061 | 4036 | 11062

2315 5[ 5 12237 || 5 6165 acd

24|24 4 4 12105 || 4 467 | 5316 bcd

2845 5 71 170377 ] 5 2661 | 10513 | 20570 || a c
55420

28 | 6| 4 4 6 | 270547 | 4 421 1042 2104 | bc
4233 | 20176 | 50254
30| 5|6 6 8 | 1012405 || 6 | 23221 | 43762 | 155304 || a c
376727 | 777771
306195 ) 8 | 1533407 || 5 2041 4102 | 10204 || bc
20456 | 41273 | 401403
301914 4 || 10 | 4202425 || 4 421 1042 2104 || b c
4210 | 20023 | 40041
100114 | 200205 | 410256
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Table 1 (Continued)

Q Co Cy C1
nk[b ][ b]bf g(z) by | uj (j=1,2,...,k)
3t 1] 7 7 8 200427 || 7 177415 acd
31| 3] 6| 7 6 312017 || 6 12565 63307 | 104233 || a c
31 8] 5| 5| 10| 5203467 | 5 2041 4102 10204 || a c
20410 41020 | 200117
400252 | 2101764
31 [11] 4 4] 10] 11223653 | 4 421 1042 2104 || bc
4210 20023 40041
100114 | 200224 | 410004
1000141 | 6010332
33 8] 5| 5 9| 7142147 5 2041 4102 10204 | bc
20410 41021 | 200101
400053 | 1000405
34| 4| 6] 6| 6] 1012501 || 6 10313 20115 41454 | b c
502036
351 4| 7 7 8 6215517 || 7 40603 | 100221 | 201357 || a c
407046
35| 7| 6| 6 10] 23766233 || 6 10101 20202 40404 || a c
101010 | 202020 | 404047
2000117
35 [11] 5| 5 11| 55326013 | 5 2041 4102 10204 || ac
20453 41121 | 200051
400103 | 1000217 | 2000424
4100264 | 10101722
35 |14 | 4| 4] 10 244303045 | 4 421 1042 2104 || b c
4210 20023 40041
100114 | 200204 | 410001
1000045 | 2000106 | 10000174
20010004 | 40000235
39 [11] 6| 6] 13663364621 || 6 10101 20202 40404 || a
101010 | 202020 | 404040
2000103 | 4000205 | 10000411
20001021 | 40002260
45 | 210 10| 11 [ 107767117 || 10 | 4023003 | 40124201 a
45 6] 9 o 12777070007 || 9 | 1003005 | 2005017 | 4011033
10021243 | 20310350 | 40740522
47 11 | 11 ] 11 | 106331123 || 11 | 75667061 ad
51 12 [ 12| 12 | 246527647 || 12 | 142315235 ad
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5 Conclusion

We have investigated a class of CSS type nondegenerate binary quantum codes capable of

correcting quantum burst errors. As a result, we have given a list of some new good quantum

burst-error-correcting codes of length up to 51 in terms of computer search. These codes are very

efficient and attractive for correcting quantum burst errors excluding end-around burst errors.
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