
Colgate University Libraries
Digital Commons @ Colgate

Senior Honors Theses Student Work

2018

Knowledge Discovery From Sensitive Data:
Differentially Private Bayesian Rule Lists
Armando Belardo
Colgate University, abelardo@colgate.edu

Follow this and additional works at: http://commons.colgate.edu/theses

Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems
Commons, Information Security Commons, and the Other Computer Sciences Commons

This Thesis is brought to you for free and open access by the Student Work at Digital Commons @ Colgate. It has been accepted for inclusion in Senior
Honors Theses by an authorized administrator of Digital Commons @ Colgate. For more information, please contact seblack@colgate.edu.

Recommended Citation
Belardo, Armando, "Knowledge Discovery From Sensitive Data: Differentially Private Bayesian Rule Lists" (2018). Senior Honors
Theses. 18.
http://commons.colgate.edu/theses/18

http://commons.colgate.edu?utm_source=commons.colgate.edu%2Ftheses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.colgate.edu/theses?utm_source=commons.colgate.edu%2Ftheses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.colgate.edu/students?utm_source=commons.colgate.edu%2Ftheses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.colgate.edu/theses?utm_source=commons.colgate.edu%2Ftheses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=commons.colgate.edu%2Ftheses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=commons.colgate.edu%2Ftheses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=commons.colgate.edu%2Ftheses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.colgate.edu%2Ftheses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=commons.colgate.edu%2Ftheses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.colgate.edu/theses/18?utm_source=commons.colgate.edu%2Ftheses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:seblack@colgate.edu


Bachelor Thesis

Knowledge Discovery From Sensitive Data:
Di�erentially Private Bayesian Rule Lists

Armando Belardo

Date: May 22, 2018

Advisor: Michael Hay

Technical Report: COSC-TR-2018-01

Department of Computer Science
Colgate University

Hamilton, New York





Abstract

The utility of machine learning is rising, coming from a growing wealth of data and problems
that are becoming harder to solve analytically. With these changes there is also the need
for interpretable machine learning in order for users to understand how a machine learning
algorithm comes to a speci�c output. Bayesian Rule Lists, an interpretable machine learning
algorithm, o�ers an advanced accuracy to interpretabilty trade o� when compared to other
interpretable machine learning algorithms. Additionally, with the amount of data collected
today, there is a lot of potentially sensitive data that we can learn from such as medical and
criminal records. However, to do so, we must guarantee a degree of privacy on the dataset;
di�erential privacy has become the standard for this private data analysis. In this paper, we
propose a di�erentially private algorithm for Bayesian Rule Lists.

We �rst break down the original Bayesian Rule List algorithm into three main components:
frequent itemset mining, rule list sampling, and point estimate computation. We then per-
form a literature review to understand these algorithms, and ways to privatize them. There
after we computed the necessary sensitivities for all subroutines, and ran experiments on
the resulting di�erentially private algorithm to gauge utility. Results show that the proposed
algorithm is able to output rule lists with good accuracy and decent interpretability.

iii





Acknowledgments

I would like to thank Professor Michael Hay for providing me all the information and
guidance I could ever need throughout this project.

I would also like to take this opportunity to express my gratitude to all of the Department
faculty members for their help and support. Additionally, I would like thank my parents
and brother for their continued encouragement, support and attention throughout my
academic career and personal life. I am also grateful to George Armstrong for his advice and
always listening to me ramble about my work, and to Allie Nyer for her constant support
throughout my college career.

v





I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

PLACE, DATE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Armando Belardo)





Contents

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. RelatedWork 5

3. Preliminaries 7
3.1. Frequent Itemset Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. Di�erential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1. The Laplace Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2. The Exponential Mechanism . . . . . . . . . . . . . . . . . . . . . . 8

3.3. Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4. Bayesian Rule Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Bayesian Rule Lists under Di�erential Privacy 11
4.1. Antecedent Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2. Rule List Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3. Noisy Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5. Privacy Analysis 15
5.1. Antecedent Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2. Rule List Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3. Noisy Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4. Putting It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6. Experimental Results 19
6.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7. Conclusion 25
7.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



Contents

7.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A. Appendix 27

x



1. Introduction

1.1. Motivation

Machine learning is becoming ubiquitous in the tech industry. As more problems arise
where a solution is not analytically tractable, solutions must come from learning models
training on the data we have at hand [1]. Music recommendations using your previously
played music, recognizing your friends using your past photos you have tagged them in,
and retail recommendations using your purchase history are all examples of this learning
problem in action. However, there are times where a black box algorithm like a neural net
does not have the transparency needed for the application. At a high level, there may be a
time when the �eld expert would like to understand why an input lead to a speci�c output,
verifying against their own expertise and experience the validity of the result.

if hemiplegia and age > 60 then probability of stroke risk = 0.589
else if cerebrovascular disorder then probability of stroke risk = 0.478
else if transient ischaemic attack then probability of stroke risk = 0.238

...
else (default rule) then probability of stroke risk = 0.087

Figure 1.1.: Rule list trained on patient medical history determining stroke risk, rule list from Letham
et al. [17]

In a world where our penal system utilizes learning tools to determine the risk of criminals,
we run the chance of life-threatening bias if our model is not transparent or understandable,
possibilities of dramatic sentencing due to arbitrary variables such as the defendant’s race
plague such opaque systems [8]. Interpretable machine learning allows us to see into this
black box in a human-understandable way. Speci�cally, interpretable learning in the form of
decision trees or lists o�ers a series of If-Then statements that are logically structured and
relatively simple to follow. As such, these forms of learning allow their users to understand
the reasoning behind each prediction that a model makes. Figure 1 shows an example rule
list from the research of Letham et al. [17]. This rule list determines the 1-year stroke risk
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1. Introduction

of a patient after receiving an atrial �brillation diagnosis, based on patient medical history
with factors such as their age, and prior illnesses and disorders. For an example, say we
have a patient under the age of 60 that does not have cerebrovascular disorder, but has
su�ered from a transient ischaemic attack in the past. From Figure 1 we can say there is a
23.8% chance that this patient is at risk of a stroke, given that they satisfy the third condition
without satisfying the two prior.

Now, such a model would be tricky to publish given it has been trained on medical data.
Such a problem has real world traction as interpretable machine learning in highly sensitive
areas such as medicine is on the rise [6, 16]. Privacy becomes an important issue as we deal
with sensitive information. If we train a model on such data, there is the risk of revealing
information about a participant from the data set and causing unintended consequences
once we publish the model. A lack of privacy on a model trained on sensitive data lends itself
to “model inversion attacks,” such that an attacker, with only black box access to the model,
could uncover unintended information from the model about speci�c participants [4, 12].
Fredrikson et al. perform such attacks on machine-learning-as-a-service APIs in order
to retrieve information such as faces from a facial recognition neural network or spousal
in�delity from a decision tree learned on FiveThirtyEight survey data [12]. Carlini et al.
even developed a metric to measure memorization of sensitive data in deep learning models,
utilizing this to extract information like credit card numbers from a model trained on an
email dataset [4]. However, with di�erential privacy, we can make algorithms trained on
con�dential data widely available for public use, con�dent that we are ensuring privacy for
the underlying dataset. Colloquially, an algorithm is di�erentially private if we learn little
from an individual from the underlying dataset, and the impact on any one person should
be the same whether or not they participate in the study [11].

With this, it might not be straightforward why di�erential privacy is needed, could we not
just remove easily identi�able information like names and addresses, e�ectively “anonymiz-
ing” the data? Why do we need such stringent measures like di�erential privacy? If we
were to only remove obviously identi�able data �elds, we still leave ourselves susceptible
to combinations of details being just as identifying as a name such as zip code, date of
birth and sex [11], or even something as unsuspecting as movie reviews [21]. Depending
on the supplementary data an attacker may have on hand, we run the risk of giving them
the remaining pieces to the puzzle of identifying a target. In 2008, Narayanan worked on
the publicly released and anonymized Net�ix Prize dataset to identify the full record of
a user within the dataset, with only the secondary information retrieved from IMDb, a
public repository of movie information which includes user movie reviews [21]. Di�erential
privacy can make an algorithm on a dataset prevent these identity attacks, even when the
malicious party has prior knowledge of their target.

2



1.2. Our Contribution

1.2. Our Contribution

We present the di�erentially private algorithm for a modern and cutting edge interpretable
machine learning algorithm, Bayesian Rule Lists (BRL) as introduced by Letham et al. [17].
We believe this algorithm is unmatched in terms of it’s interpretability and accuracy [17],
making privatizing it a worthwhile contribution to the �eld. We identify the points in which
the algorithm touches potentially sensitive data and make e�orts to privatize them. Breaking
the algorithm down into key components such as: antecedent mining, rule list sampling,
and communicating the �nal rule lists with captures to the user. Further, we performed
literature reviews to understand these topics, and how we could privatize them, focusing
on research in di�erentially private frequent itemset mining, Markov Chain Monte Carlo,
and producing noisy counts with Laplacian noise. We also contribute a sensitivity analysis
along with a proof of privacy for our work, and run experiments to compare accuracy and
interpretability across private and non-private algorithms.

1.3. Organization

The paper is organized as follows: Chapter 2 describes the previous relevant work in the
�elds of privacy and interpretable machine learning. In Chapter 3, we give a review of the
core concepts and algorithms of the paper such as frequent itemset mining, di�erential
privacy (showcasing speci�c concepts like the Laplace and Exponential Mechanism), and
Bayesian Rule Lists. Chapters 4 and 5 introduce our algorithm DP-BRL, and its privacy and
sensitivity analyses. The experiments and analyses are in Chapter 6, and we conclude with
Chapter 7.
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2. RelatedWork

Our work is an extension of privacy-preserving machine learning. A topic explored by
many researchers, with a plethora of applications. An overview of the topic may be found
in Chapter 3, and below a brief overview of research relevant to this topic and our speci�c
research can be found.

Di�erential privacy stemmed from the need for a rigorous de�nition for concrete protection.
A paradigm composed of techniques such as k-anonymity [23] left much to be desired as
they focused on protection from speci�c adversarial attacks. Depending on the critical
variables such as adversarial knowledge, these techniques could leak potentially threatening
and private data about participants of the data set. Cynthia Dwork introduced the de�nition
of di�erential privacy with the desire to allow for the study and analysis of sensitive data
while minimizing the risk of individual identi�cation from an underlying dataset [11]. From
this, di�erential privacy has been integrated into �elds such as machine learning [2, 5, 13,
14, 24, 29] with the goal of preventing events such as model inversion attacks, like those
mentioned in Chapter 1. In [2], Abadi et al. study the addition of di�erential privacy to deep
neural networks, a popular machine learning model for black box learning. The work goes
on to establish bounds on the privacy budget, model utility and quality, and the complexity
of the model [2]. Di�erential privacy has also been integrated into models like Naïve Bayes
Classi�cation [24], the linear classi�cation algorithm Linear SVM [5], and linear and logistic
regression analysis [14, 29]. In the realm of interpretable machine learning, Friedman and
Schuster consider di�erential privacy with decision trees[13]. The pair analyze the e�ects
of privacy on a learning model and stress the importance of selecting the correct privacy
mechanism for the learning problem.

Di�erential privacy has also been investigated with regards to Markov Chain Monte
Carlo [18, 25, 27], a direct link to our algorithm. Privatizing MCMC is a common issue given
a straight forward implementation would quickly consume a privacy budget over its several
iterations. Multiple methods have been studied for privatizing MCMC, in recent work,
Yıldırım discusses the use of penalty MCMC for di�erential privacy. The paper goes into
the details of the privatization of the algorithm and �nds that it has adequate convergence,
and scales well with data size [27]. Wang et al. discuss how getting a single sample from a
posterior is private for “free” [25], given certain constraints on the posterior. Further, Wang
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2. Related Work

et al. discuss the use of Stochastic Gradient Markov Chain for di�erential privacy with little
to no change to the basic algorithm [25].

Additionally, association rule mining with di�erential privacy is another area of research
relevant to our work that has been widely investigated [3, 28]. Bhaskar et al. introduced
e�cient algorithms for discovering theK most frequent patterns in a data set while satisfying
di�erential privacy. Bhaskar et al. continue their research by introducing a de�nition for
utility that they use to evaluate their private algorithms. Zeng et al. extend Bhaskar’s
research by introducing an algorithm to get the frequent itemsets unbounded by a “top K”
while still achieving di�erential privacy, we discuss this algorithm further in Chapters 4
and 5.

6



3. Preliminaries

3.1. Frequent Itemset Mining

Let D denote some dataset, D is composed of transactions, and a transaction, denoted T , is
comprised of individual data set elements. We de�ne frequent itemset mining to be the act
of discovering sets of elements, or itemsets, within D that occur frequently. To determine
frequency, we de�ne the support of an itemset i to be the number of transactions i occurs
in. We denote the support of an itemset i i.supp. An itemset is then said to be frequent if the
support of that itemset is above some threshold ω, in other words: i.supp ≥ ω.

For the purpose of continuity with the sources we utilize, for the remainder of this paper
we use the term antecedent mining interchangeably with frequent itemset mining.

3.2. Di�erential Privacy

To understand privacy, let us �rst de�ne the distance between two datasets by a function d ,
such that d(D,D′) = |(D −D′)∪ (D′ −D)|, the number of records that di�er between the two
datasets. Following the de�nition of di�erential privacy provided to us by Cynthia Dwork
et al. [10], we formally de�ne ϵ-di�erential privacy below:

De�nition 3.2.1. (ϵ-di�erential privacy [10]) A random algorithm A is ϵ-di�erentially
private if for all possible outputs S of A and datasets D and D′ such that d(D,D′) = 1,

Pr [A(D) ∈ S] ≤ exp(ϵ)Pr [A(D′) ∈ S]

It is worth noting that we will speci�cally use unbounded di�erential privacy [9]. In this
de�nition, our datasets D and D′ are restricted such that D′ can be created from D by adding
or removing a single record.

Additionally, sequential composition is a concept in di�erential privacy which states that
any computations that provide di�erential privacy alone, also provide di�erential privacy
when computed in sequence [20]. More formally:

7



3. Preliminaries

Theorem 1. (Sequential Composition [20]) Let Ai denote an algorithm with ϵi-di�erential
privacy. Then algorithm P composed of algorithms Ai in sequence promises (

∑
ϵi)-di�erential

privacy.

3.2.1. The Laplace Mechanism

The Laplace mechanism is de�ned by the addition of Laplacian noise to some function or
query. In more formal terms, for some function f that returns a vector of k real valued
responses, the Laplace mechanism isML(D, f , ϵ) = f (D) + 〈Y1, ...,Yk〉 where Yi are inde-
pendently sampled variables from the Laplacian distribution with scale ∆f /ϵ and ∆f is the
sensitivity of the function f [11]. We de�ne sensitivity of a function to be:

∆f = max
D,D ′:d(D,D ′)=1

| | f (D) − f (D′)| |1.

Note | |·| |1 indicates the l1-norm. Put simply the sensitivity of a function expresses the impact
a single entry in a dataset has on a given function. [11] proves that the Laplace Mechanism
is ϵ-di�erentially private, however it requires we compute ∆f .

3.2.2. The Exponential Mechanism

The Exponential Mechanism was designed for instances of maximization problems in which
we wish to select the best possible result, but directly adding noise is infeasible or degrades
the result to an unusable degree [11]. Formally, the exponential mechanism, denoted
ME(D,u,R, ϵ), selects an output r from output space R with probability proportional to
exp(ϵu(r )

2∆u ) with utility function u. Notice we utilize u(r ) as shorthand for u(r ,D) and clarify
as necessary. Once again, ∆u signi�es the sensitivity of u and is de�ned similarly:

∆u = max
r∈R

max
D,D ′:d(D,D ′)=1

|u(r ,D) − u(r ,D′)|.

From [11], we know that the Exponential Mechanism is ϵ-di�erentially private given we
can calculate ∆u.

3.3. Metropolis-Hastings

In this paper, we utilize a Markov Chain Monte Carlo method known as Metropolis-
Hastings [19]. The Metropolis-Hastings method samples a state x ∈ S from some target

8



3.4. Bayesian Rule Lists

distribution P (x ) over S . Metropolis-Hastings utilizes a proposal distribution Q(x |x′), from
which we can draw samples, that depends on the current state x′ within the Markov chain,
and is not necessarily similar to P (x ) [19].

Metropolis-Hastings is an iterative algorithm, with each step proceeding as follows. Given
current state x′, a new state x∗ is sampled from the proposal distribution Q(x |x′). The
probability that this new state is accepted is min(1, P (x∗)Q(x ′ |x∗)

P (x ′)Q(x∗ |x ′) ). If the new state is accepted,
the Markov chain moves to x∗; otherwise it stays in its current state x′. It can be shown that
this iterative process eventually converges to the target distribution, meaning that after a
su�cient number of iterations, the probability that state x is sampled is equal to P (x ) [19].

3.4. Bayesian Rule Lists

Bayesian Rule Lists (BRL) are a model for interpretable machine learning introduced by
Letham et al. in [17]. A rule list can be seen as a set of antecedents, conditions that are
formed via conjunctions of attribute conditions (e.g., in Table 1.1 the antecedent of the �rst
rule is hemiplegia AND age > 60), and their corresponding point estimates. A data point t is
said to be captured by rule j if rule j is the �rst rule for which the antecedents evaluate to
true for point t , a count is then kept for all possible labels of interest for records captured by
any rule j . These captures are then stored in a vector N, thus N is a vector of length l (m + 1),
where m is the number of rules in the rule list, and l is the number of possible labels. It
is worth noting here that in our work, for simplicity, we assume the classi�cation task is
binary (l = 2), similar Yang et al. [26]. However our approach, much like that of Yang et al.,
may be extended to multinomial classi�cation [26].

Letham et al. propose an algorithm for �tting a BRL on a dataset D (see Fig. 1.1 for a
reminder of the structure of a BRL). The �rst step is to construct a set of antecedents,
denoted A. This is done by using standard algorithms for frequent itemset mining. Then,
the space of all possible rule lists is searched to �nd a rule list that �ts the data well. Fit
is measured by posterior likelihood, Likelihood(N, r ,α ) ∗ Prior (r |A, λ,η) ∝ π , where r is a
rule list, and α a vector of numbers used for smoothing and preference of particular labels.
Additionally,

Likelihood(N, r ,α ) =
m∏
n=0

Γ(Nj,0 + α0)Γ(Nj,1 + α1)
Γ(Nj,0 + Nj,1 + α0 + α1)

Prior (r |A, λ,η) = p(m |A, λ)
m∏
n=1

p(cj |c< j,A,η)p(aj |a< j, cj ,A)

9



3. Preliminaries

The likelihood measures how well the rule list predicts on the training data. The α terms
are smoothing parameters. In our work, we utilize α0 = α1 = 1 similarly to Yang et al. [26].

The prior is used to allow the user to specify preferences for the structure of the resulting
rule list. The �rst term, p(m |A, λ) is a factor that gives higher probability to rule lists
whose length is close to hyper-parameter λ, p(cj |c< j,A,η) gives higher probability to
antecedents whose length is near hyper-parameter η and p(aj |a< j, cj ,A) scores based on
which antecedents are in use.

The hyper-parameters λ and η skew scores based on speci�cations for rule list length and
antecedent length respectively, acting as user-speci�ed preferences for these attributes. In
later experiments, we will evaluate how well the learned rule lists adhere to the speci�ed
values of the hyper-parameters, similar to the approach taken by Letham et al. [17].

The search for a rule list is carried out using Metropolis-Hastings. In our implementation,
we begin with a rule list of length 1, with the �rst antecedent inA. The proposal distribution
considers small changes to the current rule list, either swapping two rules, adding a rule,
or deleting a rule (each action chosen uniformly at random), and the change is sampled
according to the following proposal distribution:

Q(r ∗ |r ,A) =




1
|r |(|r |−1) if swap proposal

1
(|A|−|r |)(|r |+1) if add proposal
1
|r | if delete proposal

Once a new rule list r ∗ is proposed, it is necessary to compute the captures of the rules
within r ∗ so that it can be scored according to π . The proposed rule list is accepted or
rejected according to the Metropolis-Hastings method (see Section 3.3).

Once a rule list has been selected, point estimates for each rule must be computed. Note that
the point estimates are forms of measuring the con�dence of a rule or its ability to determine
the label of a new record. The point estimate PEj of a rule j will be PEj = α1+Nj,1

Nj,0+Nj,1+α0+α1
where 1 is the label of interest, and we denote PE the vector of point estimates for all rules.

Ultimately, the selected rule list and corresponding point estimates are returned to the user.

Also note that for the remainder of this paper, for brevity, we refer to Likelihood(N, r ,α ) ∗
Prior (r |A, λ,η) ∝ π as score(r ,N,A, λ,η,α ).

10



4. Bayesian Rule Lists under Di�erential
Privacy

Our algorithm Di�erentially Private Bayesian Rule Lists (DP-BRL) can be broken down, much
like the BRL algorithm from Letham et al.[17], into three primary components that are
chained together: antecedent mining, rule list sampling and computing point estimates for
the �nal rule list. In this chapter we describe each subroutine in detail. Speci�cally, we
choose these modi�cations for the following reasons: the Laplace Mechanism is a standard
and well known mechanism utilized to privatize counts [11], lending it well to privatizing
point estimate computation, and while there are many ways to privatize MCMC, we believe
the use of the Exponential Mechanism o�ers both little overhead in its implementation
and high utility. Without drastic modi�cations such as Stochastic Gradient or Penalty
MCMC [18, 25, 27] and the ability to sample from our distribution for free [25] (see Theorem
3), we believe the methods of Shen et al. to be optimal choice.

Algorithm 1 DP-BRL(D, λ, η, α , ω, ϵ)
1: Input: dataset D; hyperparameter for the rule list length λ; hyperparameter for an-

tecedent length η; vector of preferences α ; minimum support threshold for FIM ω;
privacy parameter ϵ

2: Output: rule list and corresponding point estimates
3: ϵ1, ϵ2, ϵ3 ← ϵ/3
4: A ← DP-FIM(D, ω, ϵ1)
5: r ← DP-RuleListSample(D, A, λ, η, α , ϵ2)
6: p← DP-PointEstimates(r , D, α , ϵ3)
7: return r and p

4.1. Antecedent Mining

In order to mine antecedents, we utilize the di�erentially private frequent itemset mining
algorithm developed by Zeng et al. [28] which we will denote DP-FIM. At a high level, Zeng

11



4. Bayesian Rule Lists under Di�erential Privacy

et al. truncate transactions in an e�ort to decrease the lower bound they discovered on
the privacy budget ϵ . This truncation �nds an optimal length to make all transactions, this
length is determined based on a distribution of the lengths of all transactions. Once all
transactions are truncated, we then proceed as expected and compute itemset supports
within the normal or truncated datasets, adding geometric noise wherever necessary.

Note that we use this algorithm to mine the set of all potential antecedents for our rule lists,
and so this algorithm is separated from the bulk of the remainder of our work. There are no
requirements we must instill on this algorithm to suit our needs and so this algorithm can
be used without modi�cation.

We keep this discussion intentionally terse and encourage the reader seeking out more
information to review [28].

4.2. Rule List Sampling

Once we have our potential antecedents, we have a massive space of potential rule lists.
Recall that the original BRL algorithm uses Metropolis-Hastings in order to sample a rule
list from the target distribution score(r ,N,A, λ,η,α ). However, directly sampling from
score(r ,N,A, λ,η,α ) violates the di�erential privacy criterion, the proof of this can be
found in Theorem 3 in the Appendix.

Algorithm 2 DP-RuleListSample(D, A, λ, η, α , ϵ)
1: Input: dataset D; antecedent set A; hyperparameter for the rule list length λ; hyper-

parameter for antecedent length η; vector of label preferences α ; privacy parameter
ϵ

2: Output: rule list r
3: n ← |D |
4: Use Metropolis-Hastings to sample r with probability proportional to

exp
(

ϵ
2 log(n+1) log(score(r ,N,A, λ,η,α ))

)
where N = CaptureCounts(r ,D).

5: return r

To ensure privacy, we modify the target distribution from which the rule list is sampled.
The modi�ed probability distribution samples rule list r with probability proportional to

exp
( ϵ

2 log(n + 1)
log(score(r ,N,A, λ,η,α ))

)
.

The proposal distribution used by Metropolis-Hastings is left unmodi�ed. This distribution
is qualitatively similar to the original distribution but smoothed out, where the amount of
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smoothing increases as ϵ decreases (more privacy). During the execution of Metropolis-
Hastings, it is necessary to invoke CaptureCounts to compute the captures of the rules of
the current rule list r for scoring purposes.

Algorithm 3 CaptureCounts(r , D)
1: Input: rule list r ; dataset D
2: Output: vector of capture counts N
3: N→ 〈0, 0, ..., 0〉 where the size of N is 2m + 2 wherem is the size of the rule list.
4: for all records s in D do
5: captured = False
6: for i ∈ {1, ...,m} do
7: if rule i true for s then
8: captured = True
9: if s is labeled 1 then

10: N[2i]← N[2i] + 1
11: else
12: N[2i − 1]← N[2i − 1] + 1

break
13: if not captured then (Default Rule)
14: if s is labeled 1 then
15: N[2m + 2]← N[2m + 2] + 1
16: else
17: N[2m + 1]← N[2m + 1] + 1
18: return N

Note that sampling from this modi�ed distribution is in fact an instance of the exponential
mechanism, where u(r ) = log(score(r ,N,A, λ,η,α )) and ∆u = log(n + 1). Our modi�cation
is similar in spirit to the approach proposed by Shen and Yu [22].

We review the privacy of this further in Chapter 5. We will refer to this subroutine as
DP-RuleListSample.

4.3. Noisy Point Estimates

After we retrieve the �nal rule list from DP-RuleListSample, we want to forward it to the
end user with point estimates for each rule that represent a form of con�dence scoring.
Recall that in BRL, each rule has a capture vector with a count corresponding to the
number of records captured by the rule, and the label that record falls under, making this

13



4. Bayesian Rule Lists under Di�erential Privacy

Algorithm 4 DP-PointEstimates(r , D, α , ϵ)
1: Input: rule list r ; dataset D; vector of label preferences α ; privacy parameter ϵ
2: Output: point estimates PE
3: PE← 〈〉
4: N′ ← LaplaceMechanism(D, CaptureCounts, r , ϵ) . Add Laplace noise to capture

counts
5: for i ∈ {2, 4, ..., 2m + 2} do
6: PEj = N′[i]+α1

N′[i−1]+N′[i]+α0+α1
7: add PEj to PE
8: return PE

step require its own privatization. This counting takes place in CaptureCounts, so to
privatize DP-PointEstimates, we must privatize CaptureCounts. For brevity, let us
denote CaptureCounts(r ,D) by f (r ,D). f (r ,D) = 〈x1,0,x1,1,x2,0,x2,1, . . . ,xm+1,0,xm+1,1〉

where xi,j representing the capture of rule i , with label j, in rule list r which is of lengthm
(notice there arem + 1 captures including the default rule). We use the LaplaceMechanism
to add Laplace noise with scale 1/ϵ to each capture count. In Section 5.3, we show that this
is su�cient to ensure privacy. Once we have noisy capture counts, we can utilize these to
compute PE as described in Section 3.4. We refer to this algorithm as DP-PointEstimates.
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5. Privacy Analysis

5.1. Antecedent Mining

Zeng et al. provide a detailed write up on the privacy, utility and sensitivity of their frequent
itemset mining algorithm in [28]. Here, we provide an abridged overview.
DP-FIM touches data in two key locations: truncating the dataset and computing the support
of the frequent itemsets.
As explained in Section 4.1, Zeng et al. truncate transactions in order to get a better lower
bound on their privacy budget ϵ [28]. However, the truncation is based on a distribution
that models the lengths of the transactions, this requires running through the transactions.
To mitigate privacy issues, Zeng et al. provide geometric noise to the distribution in order
to privately select a length to truncate from [28].
From there, in �nding the frequent itemsets, there is the process of checking to see the
threshold of support the itemset has within the dataset. In order to address privacy concerns
here, Zeng et al. compute the support of any itemset by calculating its true support in the
original dataset or truncated dataset, and adding geometric noise to this result [28].

Lemma 1. (Privacy of DP-FIM [28]) DP-FIM satis�es ϵ-di�erential privacy.

5.2. Rule List Sampling

As mentioned in Section 4.2, our method for rule list sampling is based on the Exponential
Mechanism. Recall from Section 3.2.2, that for the Exponential Mechanism to achieve
ϵ-di�erential privacy, we need to sample from exp

(
ϵ

2∆uu(r )
)
, where as we sample with

probability proportional to exp
(

ϵ
2 log(n+1) log(score(r ,N,A, λ,η,α ))

)
. In this section we show

that ∆ log(score(r ,N,A, λ,η,α )) = log(n + 1), and how that makes DP-RuleListSample ϵ-
di�erentially private.

Lemma 2. (Sensitivity of scoring function) ∆u = log(n + 1) where n = |D | is the number of
records in the dataset
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5. Privacy Analysis

Proof. By de�nition, we have that

∆u = max
r∈R

(
max

D,D ′:d(D,D ′)=1
��� log(score(r ,N,A, λ,η,α )) − log(score(r ,N′,A, λ,η,α ))���

)
= max

r∈R

(
max

D,D ′:d(D,D ′)=1
��� log

( score(r ,N,A, λ,η,α )
score(r ,N′,A, λ,η,α )

) ���
)

Note, log( score(r ,N,A,λ,η,α )
score(r ,N′,A,λ,η,α )

) = log( Likelihood(N,r ,α )∗Prior (r |A,λ,η)
Likelihood(N′,r ,α )∗Prior (r |A,λ,η) ) where r is some rule list from

our posterior on the corresponding dataset.

Given we are utilizing the same rule list r ,

log
( Likelihood(N, r ,α ) ∗ Prior (r |A, λ,η)
Likelihood(N′, r ,α ) ∗ Prior (r |A, λ,η)

)
= log

( Likelihood(N, r ,α )
Likelihood(N′, r ,α )

)
= log

(∏m
j=0

Γ(Nj,0+α0)Γ(Nj,1+α1)
Γ(Nj,0+Nj,1+α0+α1)∏m

j=0
Γ(N ′j,0+α0)Γ(N ′j,1+α1)
Γ(N ′j,0+N ′j,1+α0+α1)

)

Note that any data point is captured by only one rule, and within the one rule is captured
by only one of N ′i,1 or N ′i,0, without loss of generality, let’s assume our missing point was
captured by N ′i,0. Then, for all i 6= j, our numerator and denominator cancel out, leaving us
with:

∏m
j=0

Γ(Nj,0+α0)Γ(Nj,1+α1)
Γ(Nj,0+Nj,1+α0+α1)∏m

j=0
Γ(N ′j,0+α0)Γ(N ′j,1+α1)

Γ(N ′j,0+N ′j,1+α0+α1)

=
Γ(Ni,0+α0)Γ(Ni,1+α1)
Γ(Ni,0+Ni,1+α0+α1)

Γ(N ′i,0+α0)Γ(N ′i,1+α1)

Γ(N ′i,0+N ′i,1+α0+α1)

=
Γ(Ni,0+α0)Γ(Ni,1+α1)
Γ(Ni,0+Ni,1+α0+α1)

Γ(Ni,0+α0−1)Γ(Ni,1+α1)
Γ(Ni,0+Ni,1+α0+α1−1)

=
Γ(Ni,0+α0)

Γ(Ni,0+Ni,1+α0+α1)
Γ(Ni,0+α0−1)

Γ(Ni,0+Ni,1+α0+α1−1)

=

(Ni,0+α0−1)!(Ni,0+Ni,1+α0+α1−2)!
(Ni,0+α0−2)!(Ni,0+Ni,1+α0+α1−1)! = Ni,0+α0−1

Ni,0+Ni,1+α0+α1−1 .

To maximize this, we let Ni,1 = 0, and Ni,0 = n, then n+α0−1
n+α0+α1−1 , so Ni,0+α0−1

Ni,0+Ni,1+α0+α1−1 ≤
n+α0−1

n+α0+α1−1 .
To minimize this, we want Ni,0 as small as possible, so Ni,0 = 1, note Ni,0 > 0 given the
data point concerned was captured by Ni,0. Maximizing the denominator, we want Ni,1 as
large as possible, so Ni,1 = n − 1, so α0

n−1+α0+α1
≤

Ni,0+α0−1
Ni,0+Ni,1+α0+α1−1 . Recall from Section 3.4 that

α0 = α1 = 1. So, ∆u = max
{
|log( 1

n+1 )|, |log( n
n+1 )|

}
= log(n + 1).

Lemma 3. (Privacy of DP-RuleListSample) Given that Metropolis-Hastings has converged
to our target distribution, DP-RuleListSample satis�es ϵ-di�erential privacy.

Proof. In DP-RuleListSample, we sample a rule list with probability proportional to

exp
(

ϵ

2 log(n + 1)
log(score(r ,N,A, λ,η,α ))

)
.
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5.3. Noisy Point Estimates

Notice that this is in fact the exponential mechanism, given that ∆u = log(n + 1), which we
have by Lemma 2. By Dwork and Roth [11], we know the exponential mechanism preserves
ϵ-di�erential privacy.

Note that Lemma 3 requires convergence of the markov chain. We discuss the criterion
we used to asses convergence in Section 6.2 to ensure the proper application of Lemma 3
within our experiments.

5.3. Noisy Point Estimates

DP-PointEstimates uses the LaplaceMechanism to inject noise into the capture counts.
Recall from Section 3.2.1 that the LaplaceMechanism, when applied a function f , adds
noise sampled from the Laplace distribution with a scale of ∆f /ϵ where ∆f is the sensitivity
of function f . This ensures ϵ-di�erential privacy. Here we show that our function of interest,
CaptureCounts, has sensitivity of 1.

Lemma 4. (Sensitivity of CaptureCounts) The sensitivity of CaptureCounts is 1.

Proof. For brevity, we refer to CaptureCounts as the function f . This function is formally
de�ned in Section 4.3. Recall the de�nition of sensitivity: ∆f = maxD,D ′:d(D,D ′)=1 | | f (r ,D) −
f (r ,D′)| |1. Recall that any data point, t , is captured by only one rule, and either has label 0
or 1, without loss of generality, let’s assume that t was captured by rule i with label y = 1.
Then xk,j = x′

k,j
∀ k, j such that (k 6= i and j 6= 1), so ∆f = maxD,D ′:d(D,D ′)=1 | |xi,1 − x

′
i,1 | |1= 1

since we only add or remove a single point, our capture count can only change by 1 for rule
i while captures for all other rules remain unchanged.

Lemma 5. (Privacy of DP-PointEstimates) DP-PointEstimates satis�es ϵ-di�erential pri-
vacy

Proof. Lemma 4 establishes that our use of the LaplaceMechanism is ϵ-di�erentially private.
Further, the “Post-Processing” result of Dwork and Roth [11] shows that an ϵ-di�erentially
private functionM , and an arbitrary mappingд, can be composed into a di�erentially private
algorithm. In other words, д ◦M is also ϵ-di�erentially private. In our case, д corresponds to
the function that converts the noisy counts into point estimates: PEj = α1+Nj,1

Nj,0+Nj,1+α0+α1
. This

establishes that the entire DP-PointEstimates subroutine is ϵ-di�erentially private.
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5. Privacy Analysis

5.4. Putting It All Together

Notice, as shown through Algorithm 1,DP-BRL is comprised of DP-FIM,DP-RuleListSample,
and DP-PointEstimates. Utilizing the antecedents mined from DP-FIM with ϵ1-di�erential
privacy, we then use DP-RuleListSample to sample a �nal rule list from our posterior
log(score(r ,N,A, λ,η,α )) ∝ π with ϵ2-di�erential privacy, and lastly, DP-PointEstimates
adds noise to the captures in the �nal rule list to allow us to compute the point estimates
for end user consumption with ϵ3-di�erential privacy.

Theorem 2. DP-BRL is ϵ-di�erentially private.

Proof. Recall from Algorithm 1, that the input ϵ is divided into three equal shares ϵ1, ϵ2, ϵ3 =
ϵ/3, which are passed to the three di�erentially private subroutinesDP-FIM,DP-RuleListSample,
andDP-PointEstimates respectively. By Lemmas 1,3, and 5, each subroutine is di�erentially
private.

Therefore, by sequential composition (Theorem 1), we can conclude that DP-BRL is di�er-
entially private with ϵ = (ϵ1 + ϵ2 + ϵ3).
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6. Experimental Results

In this section we evaluate the interpretability and accuracy of the DP-BRL algorithm on
various datasets. Speci�cally, we utilize the Adult and Mushroom data sets from the UCI
Machine Learning Repository [7], and the Titanic dataset from Kaggle [15]. We demonstrate
the utility of our algorithm, directly comparing several rule lists learned utilizing di�erent
ϵ values to the accuracy scores and interpretability measures of the original algorithm.
We also discuss the scalability of the algorithm over these datasets of di�ering sizes and
complexity with di�erent ϵ values, and the convergence of our MCMC

6.1. Experimental Setup

Our experiments were performed on a MacBook Pro running macOS High Sierra version
10.13.4 with a 3.3 GHz Intel Core i7 processor and 16 GB of main memory. All algorithms
were implemented in Python, basing our algorithm o� the algorithm from [17], with the
exception of our frequent itemset mining algorithm which was implemented separately
in C++. All experiments were run 5 times, each end-to-end experiment running MCMC
for 3,000, 1,500, and 1,000 steps for the Adult, Mushroom and Titanic datasets respectively,
and the results averaged to leave us with a mean and standard deviation for examination.
Additionally, for our MCMC trials, we ran our algorithm, with di�erent privacy budgets,
for 5,000 steps on the UCI Mushroom dataset, and 2,000 for the Kaggle Titanic dataset,
note we did not run MCMC trials on the UCI Adult dataset given its magnitude and our
computational setup. We check our code for correctness through both unit and system tests
implemented in Python and C++.

We note here that for all experiments we utilize a non-di�erentially private frequent itemset
miner. The decision was made to focus our e�orts on the research and implementation
of the other routines in the algorithm and, while we do provide a privacy analysis for the
frequent itemset miner, we do not include the Zeng et al. algorithm [28] in our experiments.
We believe the algorithm to be usable with little modi�cation, but given that we did not
have the code available, it is important to note that the following experiments and results
do not factor in the privatization of the antecedent mining step.
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6. Experimental Results

Datasets

The Adult dataset from the UCI Machine Learning Repository has 14 attributes and roughly
34,000 entries once cleaned. We split this dataset up, utilizing 30,000 entries for training our
models and 4,000 to test them. The dataset collects information such as class, education and
race and the classi�cation task is to predict whether an adult makes over $50K annually.
The Mushroom dataset from the same repository has 22 attributes and around 8,000 records.
We separate 7,000 of these entries for training and use the remaining 1,000 for testing.
The classi�cation problem here is to predict the edibility of a mushroom based on several
sensory characteristics such as odor and color. Lastly, the Titanic dataset from Kaggle has
10 attributes (of which we use 6) and 900 records. We use 800 records to train the model and
reserve just under 100 records for testing purposes (we recognize this is a small number,
however our goal was to reserve roughly 10% of each dataset for testing). From this we can
predict the survival of passengers aboard the ship.

For each dataset we mined around 300 antecedents, with the exception of the Titanic dataset
for which we mined 28. Again, we have a much smaller sample for the Titanic dataset,
which just re�ects the small size of the dataset.

6.2. Experimental Results

Accuracy

Adult Mushroom Titanic

Mean AUC Standard Deviation Mean AUC Standard Deviation Mean AUC Standard Deviation

Original 0.71139 0.04170 0.99733 0.00467 0.81305 0.00123
ϵ = .9 0.66321 0.09196 0.97783 0.01646 0.78152 0.02749
ϵ = .5 0.60904 0.06682 0.97432 0.01495 0.77028 0.02383
ϵ = .1 0.64220 0.08623 0.97238 0.01894 0.65021 0.04417
ϵ = .01 0.60532 0.03015 0.61258 0.31384 0.56300 0.05639

Table 6.1.:Mean Area Under the Curve of the ROC Curve on the out-of-sample data from each data
set. Recall, this is averaged over 5 runs, with the mean score and standard deviations
presented.

After �tting the BRL algorithm and our DP-BRL runs with di�erent ϵs on these three
datasets, we tested the out-of-sample accuracy of the resulting rule lists. Table A.1 in the
Appendix displays similar patterns for in-sample accuracy. As expected, we witness a
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degradation in accuracy as we increase privacy (decreasing ϵ), this is expected given the
more privacy, the more noise we add. However, it should be noted that this is not always
the case. Moving from ϵ of 0.5 to 0.1 on the Adult dataset witnesses an increase in accuracy,
potentially due to a lack of convergence for MCMC on this dataset given we could not run
our convergence tests for this dataset. It should also be noted that especially within the
more complex datasets, the UCI Adult and Mushroom datasets, accuracy is penalized only
a small amount. ϵ values of 0.9 and 0.1 yield accuracy scores within 0.07 of the original
algorithm. Overall, DP-BRL with ϵ = 0.1 scores decently well, staying within 0.17 of the
original algorithms results for all datasets, and within 0.025 for the Mushroom dataset. It’s
worth pointing out that the expected patterns of degradation are followed more closely
while examining in-sample accuracy (Table A.1). These results are promising in terms of
the utility of DP-BRL.

Interpretability

Adult (λ = 13;η = 1) Mushroom (λ = 7;η = 1) Titanic (λ = 3;η = 1)

Rule List Len. Avg. Antecedent Len. Rule List Len. Avg. Antecedent Len. Rule List Len. Avg. Antecedent Len.

BRL 14.20 2.49 9.40 3.38 3.20 1.58
ϵ = .9 17.60 3.06 12.20 3.42 5.40 1.56
ϵ = .5 17.80 2.94 10.00 3.44 12.40 1.57
ϵ = .1 23.40 2.86 8.40 3.87 7.20 1.65
ϵ = .01 9.00 2.733 12.60 3.19 6.80 1.65

Table 6.2.:Mean rule list length and average antecedent lengths averaged over 5 runs, with prefer-
ences λ and η for rule list length and antecedent length respectively.

Letham et al. introduce hyperparameters λ and η for users of BRL to add their interpretability
preferences into the algorithm. Given that these factors are a measure of interpretability
within the original algorithm, we wish to compare our closeness to these parameters and
the “interpretability” of the rule lists sampled by the original algorithm. In Table 6.2, we
can see that if these are our metrics of interpretability, then the DP-BRL algorithm seems to
follow the parameters far less closely than the original algorithm. In considering the simpler
Titanic dataset, we can see rather arbitrary numbers for rule list length, this could have
some relation to the limited set of antecedents given the size of the dataset. In contrast, rule
list lengths from DP-BRL trained on the other two datasets seemed to follow the original
algorithm more closely, however, they do still di�er by a noticeable degree. Additionally, it
is interesting to note that the average antecedent lengths for all algorithms are very close,
appearing as though di�erential privacy had little e�ect in disturbing this aspect of the rule
lists interpretability.
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(a)UCI Mushroom Dataset (b)Kaggle Titanic Dataset

Figure 6.1.: log(score(r ,N,A, λ,η,α )) for the rule list retrieved at the end of every MCMC step. Burn
in not depicted.

Log Scoring, MCMC Convergence, and Scalability

Log Scoring In Figure 6.1 we plot log(score(r ,D, λ,η,A)) as a function of MCMC steps. In
doing this, we can compare the log-scores of the sampled rule lists with di�erent privacy
budgets against the original BRL algorithm. Note that for the mushroom dataset with 22
categories, rule lists created with a large ϵ of 0.9 are comparable in score to a small ϵ of
0.5. What’s more is that these ϵ values also score similarly to the original algorithm, which
makes us believe that utilizing a somewhat small privacy budget does not signi�cantly harm
the utility of the algorithm given a more feature-complex dataset. On a simpler dataset,
such as the Titanic dataset with only 6 attributes, results may seem sporadic and low-utility,
however we observe a window of around 100, which is a fairly small range (log(100) ≈ 5),
within which these scores land in Figure 6.1b for low values of ϵ . These observations are
forti�ed by our �ndings in the previous section on accuracy analysis.
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(a)UCI Mushroom Dataset (b)Kaggle Titanic Dataset

Figure 6.2.:Convergence of MCMC as a function of score over steps. Burn in included.

MCMC Convergence To determine convergence of MCMC for our di�erent algorithms, we
run our chains for a �xed number of steps, splitting the runs into windows of 250 steps. After
these runs, we check that the scores of the rule lists from the last two windows are within
[−0.05n, 0.05n] of each other, where n is the number of records in the dataset. Utilizing this
methodology, all �ve algorithms converged for our two test datasets.

Moving onto �gure 6.2 we observe that our MCMC mixes well over time. We utilize each
algorithms respective scoring function to gauge convergence here (for the original algorithm:
u(r ), and ϵ2

2∆uu(r ) for DP-BRL, where u(r ) = log(score(r ,D, λ,η,A))), and it should be noted
that we count the �rst 170 and 70 steps as burn-in for the trials on the Mushroom and
Titanic datasets respectively. Additionally it can be seen in �gure 6.2a that di�erential
privacy, and subsequently smaller privacy budgets, cause MCMC to converge earlier within
the same dataset. Intuitively, this is caused by ϵ dampening the scores we calculate for each
rule list. The smaller ϵ , the closer our scores are the 0 and the less variety between them,
allowing our MCMC to mix faster.

Dataset: Adult Mushroom Titanic

Time Time Time

BRL 392.566 43.906 1.597
ϵ = .9 386.833 44.177 2.568
ϵ = .5 354.940 38.554 2.809
ϵ = .1 335.519 34.813 2.556
ϵ = .01 248.485 30.816 2.125

Table 6.3.: Run time in seconds of the full algorithms, averaged over �ve runs.
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Scalability Table 6.3 shows algorithm run times. From these results, patterns seem to arise
from both the size of the dataset, but also the complexity of it. We observe a vast increase in
run time from the Titanic to Mushroom datasets, which can be attributed to the complexity
of the datasets and the size disparity. Additionally if we compare the timing of the original
BRL algorithm to our DP-BRL runs within the Adult and Mushroom datasets, we can see
a decrease in run times as our privacy budget decreases, giving us improved scalability,
seemingly at a trade o� with accuracy. The time di�erence reaching over two minutes per
run for ϵ = 0.01 on the Adult dataset.
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7. Conclusion

7.1. Contributions

This paper has introduced DP-BRL, a di�erentially private version of the Bayesian Rule List
algorithm introduced by Letham et al. [17]. In doing so we analyzed the algorithm as three
separate components, and performed a literature review to gain an understanding of ways to
potentially privatize the di�ering parts. Once our methods of privatization were determined,
we calculated the sensitivities (see Chapter 5) necessary and proved the privacy for each
subroutine. Through experimentation on the completed algorithm, we were able to perform
critical analyses of the e�ects of our privacy budget ϵ on the interpretability, accuracy and
scalability of our model. While the original Letham et al. algorithm bests our algorithm in
both interpretabilty and accuracy, we believe this degradation is manageable and a necessity
when promising privacy. Additionally, the improvements to run time through the addition
of di�erential privacy may make the algorithm more attractive to some users, o�setting the
setbacks to accuracy and interpretability. As for the interpretability of rule lists retrieved
from DP-BRL, we hope further investigation can unpack our seemingly arbitrary results.

7.2. Future Work

For the future, we hope that a full suite of experiments can be run on DP-BRL with a di�eren-
tially private frequent itemset mining algorithm in place. Tests for utility and interpretability
would be both useful and interesting to examine after this modi�cation. Moreover, it would
be interesting to drop our privatization subroutines into the Scalable Bayesian Rule Lists
algorithm by Yang et al. [26] for an even faster, more scalable interpretable machine learning
algorithm with di�erential privacy. In addition, we would be interested in running our
algorithm on a server or cluster to test accuracy and e�ciency on larger, real world datasets.
The e�ects of noise due to privacy on an algorithms accuracy can can be mitigated by
database size, and so the experimental utility would be nice to see on sets of larger size.
Further, given the lack of correlation between the interpretability hyperparameters and the
lengths of rule lists retrieved from DP-BRL, we are interested in investigating ways to modify
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DP-BRL in order to improve interpretability. In a similar vein, we believe that some usability
testing would be of interest to gauge interpretability. For now, we gauge interpretability by
λ and η, but interviewing users of the current BRL algorithm, and potential users could be of
interest to understand what truly determines interpretability, and how much our di�erential
privatization e�ects these factors.

To close, our code is open sourced and publicly available on GitHub1 for any future work
and innovation that may come. We encourage the inspired reader to continue o� our work
in this paper, and to contribute to the growing �elds of di�erential privacy and interpretable
machine learning.

1https://git.io/DP-BRL
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A. Appendix

Theorems

Theorem 3. Sampling from score(r ,N,A, λ,η,α ) is not ϵ-di�erentially private

Proof. For sampling from score(r ,N,A, λ,η,α ) to be ϵ-di�erentially private, we need there
to exist ϵ such that exp(−ϵ) ≤ score(r ,N,A,λ,η,α )

score(r ,N′,A,λ,η,α )
≤ exp(ϵ).

score(r ,N,A, λ,η,α )
score(r ,N′,A, λ,η,α )

=
Likelihood(N, r ,α ) ∗ Prior (r |A, λ,η)
Likelihood(N′, r ,α ) ∗ Prior (r |A, λ,η)

Since we utilize the same rule list r , and the prior does not correlate to the data, we can
further simplify:

Likelihood(N, r ,α ) ∗ Prior (r |A, λ,η)
Likelihood(N′, r ,α ) ∗ Prior (r |A, λ,η)

=
Likelihood(N, r ,α )
Likelihood(N′, r ,α )

=

∏m
j=0

Γ(Nj,0+α0)Γ(Nj,1+α1)
Γ(Nj,0+Nj,1+α0+α1)∏m

j=0
Γ(N ′j,0+α0)Γ(N ′j,1+α1)
Γ(N ′j,0+N ′j,1+α0+α1)

Recall any data point is captured by only one rule and one label, contributing to one count
of N ′i,1 or N ′i,0, without loss of generality, let’s assume our missing point was captured by
N ′i,0. Then, for all i 6= j, our numerator and denominator cancel out, leaving us with:

∏m
j=0

Γ(Nj,0+α0)Γ(Nj,1+α1)
Γ(Nj,0+Nj,1+α0+α1)∏m

j=0
Γ(N ′j,0+α0)Γ(N ′j,1+α1)

Γ(N ′j,0+N ′j,1+α0+α1)

=
Γ(Ni,0+α0)Γ(Ni,1+α1)
Γ(Ni,0+Ni,1+α0+α1)

Γ(N ′i,0+α0)Γ(N ′i,1+α1)

Γ(N ′i,0+N ′i,1+α0+α1)

=
Γ(Ni,0+α0)Γ(Ni,1+α1)
Γ(Ni,0+Ni,1+α0+α1)

Γ(Ni,0+α0−1)Γ(Ni,1+α1)
Γ(Ni,0+Ni,1+α0+α1−1)

=
Γ(Ni,0+α0)

Γ(Ni,0+Ni,1+α0+α1)
Γ(Ni,0+α0−1)

Γ(Ni,0+Ni,1+α0+α1−1)

=

(Ni,0+α0−1)!(Ni,0+Ni,1+α0+α1−2)!
(Ni,0+α0−2)!(Ni,0+Ni,1+α0+α1−1)! = Ni,0+α0−1

Ni,0+Ni,1+α0+α1−1 .

To minimize this, we want Ni,0 as small as possible, so Ni,0 = 1, note Ni,0 > 0 given the data
point concerned was captured by Ni,0. Maximizing the denominator, we want Ni,1 as large
as possible, so Ni,1 = n − 1, so 1

n+1 ≤
Ni,0+α0−1

Ni,0+Ni,1+α0+α1−1 . Note that as n → ∞ then 1
n+1 → 0 and

@ ϵ such that exp(−ϵ) ≤ 0 < score(r ,N,A,λ,η,α )
score(r ,N′,A,λ,η,α )

.
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A. Appendix

Tables

Adult Mushroom Titanic

Mean AUC Standard Deviation Mean AUC Standard Deviation Mean AUC Standard Deviation

Original 0.83159 0.00347 0.96521 0.00883 0.83191 0.00026
ϵ = .9 0.81652 0.00591 0.96586 0.00251 0.80088 0.02982
ϵ = .5 0.81024 0.00378 0.95815 0.00565 0.79669 0.024615
ϵ = .1 0.77889 0.01559 0.87845 0.03401 0.66865 0.06099
ϵ = .01 0.72638 0.04993 0.76669 0.08074 0.57981 0.07639

Table A.1.:Mean Area Under the Curve of the ROC Curve for all �ve algorithms on our three datasets
(in-sample). This is averaged over 5 runs, with the mean score and standard deviations
presented.
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